{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"ename": "FileNotFoundError",
"evalue": "file not found\n\n 'tracking_losses_ntuple_Dst0ToD0EE.root'\n\nFiles may be specified as:\n * str/bytes: relative or absolute filesystem path or URL, without any colons\n other than Windows drive letter or URL schema.\n Examples: \"rel/file.root\", \"C:\\abs\\file.root\", \"http://where/what.root\"\n * str/bytes: same with an object-within-ROOT path, separated by a colon.\n Example: \"rel/file.root:tdirectory/ttree\"\n * pathlib.Path: always interpreted as a filesystem path or URL only (no\n object-within-ROOT path), regardless of whether there are any colons.\n Examples: Path(\"rel:/file.root\"), Path(\"/abs/path:stuff.root\")\n\nFunctions that accept many files (uproot.iterate, etc.) also allow:\n * glob syntax in str/bytes and pathlib.Path.\n Examples: Path(\"rel/*.root\"), \"/abs/*.root:tdirectory/ttree\"\n * dict: keys are filesystem paths, values are objects-within-ROOT paths.\n Example: {\"/data_v1/*.root\": \"ttree_v1\", \"/data_v2/*.root\": \"ttree_v2\"}\n * already-open TTree objects.\n * iterables of the above.\n",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)",
"File \u001b[0;32m/work/cetin/software/miniconda3/envs/env1/lib/python3.11/site-packages/uproot/source/file.py:112\u001b[0m, in \u001b[0;36mMemmapSource._open\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 111\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[0;32m--> 112\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_file \u001b[39m=\u001b[39m numpy\u001b[39m.\u001b[39;49mmemmap(\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_file_path, dtype\u001b[39m=\u001b[39;49m\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_dtype, mode\u001b[39m=\u001b[39;49m\u001b[39m\"\u001b[39;49m\u001b[39mr\u001b[39;49m\u001b[39m\"\u001b[39;49m)\n\u001b[1;32m 113\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_fallback \u001b[39m=\u001b[39m \u001b[39mNone\u001b[39;00m\n",
"File \u001b[0;32m/work/cetin/software/miniconda3/envs/env1/lib/python3.11/site-packages/numpy/core/memmap.py:229\u001b[0m, in \u001b[0;36mmemmap.__new__\u001b[0;34m(subtype, filename, dtype, mode, offset, shape, order)\u001b[0m\n\u001b[1;32m 228\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m--> 229\u001b[0m f_ctx \u001b[39m=\u001b[39m \u001b[39mopen\u001b[39;49m(os_fspath(filename), (\u001b[39m'\u001b[39;49m\u001b[39mr\u001b[39;49m\u001b[39m'\u001b[39;49m \u001b[39mif\u001b[39;49;00m mode \u001b[39m==\u001b[39;49m \u001b[39m'\u001b[39;49m\u001b[39mc\u001b[39;49m\u001b[39m'\u001b[39;49m \u001b[39melse\u001b[39;49;00m mode)\u001b[39m+\u001b[39;49m\u001b[39m'\u001b[39;49m\u001b[39mb\u001b[39;49m\u001b[39m'\u001b[39;49m)\n\u001b[1;32m 231\u001b[0m \u001b[39mwith\u001b[39;00m f_ctx \u001b[39mas\u001b[39;00m fid:\n",
"\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: 'tracking_losses_ntuple_Dst0ToD0EE.root'",
"\nDuring handling of the above exception, another exception occurred:\n",
"\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)",
"File \u001b[0;32m/work/cetin/software/miniconda3/envs/env1/lib/python3.11/site-packages/uproot/source/file.py:36\u001b[0m, in \u001b[0;36mFileResource.__init__\u001b[0;34m(self, file_path)\u001b[0m\n\u001b[1;32m 35\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[0;32m---> 36\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_file \u001b[39m=\u001b[39m \u001b[39mopen\u001b[39;49m(\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_file_path, \u001b[39m\"\u001b[39;49m\u001b[39mrb\u001b[39;49m\u001b[39m\"\u001b[39;49m)\n\u001b[1;32m 37\u001b[0m \u001b[39mexcept\u001b[39;00m uproot\u001b[39m.\u001b[39m_util\u001b[39m.\u001b[39m_FileNotFoundError \u001b[39mas\u001b[39;00m err:\n",
"\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: 'tracking_losses_ntuple_Dst0ToD0EE.root'",
"\nThe above exception was the direct cause of the following exception:\n",
"\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)",
"\u001b[1;32m/work/cetin/Projektpraktikum/wetest.ipynb Cell 2\u001b[0m line \u001b[0;36m2\n\u001b[1;32m 1\u001b[0m \u001b[39m#file = uproot.open(\"tracking_losses_ntuple_Bd2KstEE.root:PrDebugTrackingLosses.PrDebugTrackingTool/Tuple;1\")\u001b[39;00m\n\u001b[0;32m----> 2\u001b[0m file \u001b[39m=\u001b[39m uproot\u001b[39m.\u001b[39;49mopen(\u001b[39m\"\u001b[39;49m\u001b[39mtracking_losses_ntuple_Dst0ToD0EE.root:PrDebugTrackingLosses.PrDebugTrackingTool/Tuple;1\u001b[39;49m\u001b[39m\"\u001b[39;49m)\n\u001b[1;32m 4\u001b[0m \u001b[39m#file.keys()\u001b[39;00m\n\u001b[1;32m 5\u001b[0m \u001b[39m#file.show()\u001b[39;00m\n\u001b[1;32m 6\u001b[0m \u001b[39m\"\"\"\u001b[39;00m\n\u001b[1;32m 7\u001b[0m \u001b[39mvertices = file.arrays([\"all_endvtx_x\", \"all_endvtx_y\", \"all_endvtx_z\"])\u001b[39;00m\n\u001b[1;32m 8\u001b[0m \u001b[39mvt_length = file.arrays([\"all_endvtx_x_length\", \"all_endvtx_y_length\", \"all_endvtx_z_length\"])\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 18\u001b[0m \u001b[39mfromPairProd = file[\"fromPairProd\"].array()\u001b[39;00m\n\u001b[1;32m 19\u001b[0m \u001b[39m\"\"\"\u001b[39;00m\n",
"File \u001b[0;32m/work/cetin/software/miniconda3/envs/env1/lib/python3.11/site-packages/uproot/reading.py:142\u001b[0m, in \u001b[0;36mopen\u001b[0;34m(path, object_cache, array_cache, custom_classes, decompression_executor, interpretation_executor, **options)\u001b[0m\n\u001b[1;32m 133\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mnot\u001b[39;00m uproot\u001b[39m.\u001b[39m_util\u001b[39m.\u001b[39misstr(file_path) \u001b[39mand\u001b[39;00m \u001b[39mnot\u001b[39;00m (\n\u001b[1;32m 134\u001b[0m \u001b[39mhasattr\u001b[39m(file_path, \u001b[39m\"\u001b[39m\u001b[39mread\u001b[39m\u001b[39m\"\u001b[39m) \u001b[39mand\u001b[39;00m \u001b[39mhasattr\u001b[39m(file_path, \u001b[39m\"\u001b[39m\u001b[39mseek\u001b[39m\u001b[39m\"\u001b[39m)\n\u001b[1;32m 135\u001b[0m ):\n\u001b[1;32m 136\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mValueError\u001b[39;00m(\n\u001b[1;32m 137\u001b[0m \u001b[39m\"\u001b[39m\u001b[39m'\u001b[39m\u001b[39mpath\u001b[39m\u001b[39m'\u001b[39m\u001b[39m must be a string, pathlib.Path, an object with \u001b[39m\u001b[39m'\u001b[39m\u001b[39mread\u001b[39m\u001b[39m'\u001b[39m\u001b[39m and \u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 138\u001b[0m \u001b[39m\"\u001b[39m\u001b[39m'\u001b[39m\u001b[39mseek\u001b[39m\u001b[39m'\u001b[39m\u001b[39m methods, or a length-1 dict of \u001b[39m\u001b[39m{\u001b[39m\u001b[39mfile_path: object_path}, \u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 139\u001b[0m \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mnot \u001b[39m\u001b[39m{\u001b[39;00mpath\u001b[39m!r}\u001b[39;00m\u001b[39m\"\u001b[39m\n\u001b[1;32m 140\u001b[0m )\n\u001b[0;32m--> 142\u001b[0m file \u001b[39m=\u001b[39m ReadOnlyFile(\n\u001b[1;32m 143\u001b[0m file_path,\n\u001b[1;32m 144\u001b[0m object_cache\u001b[39m=\u001b[39;49mobject_cache,\n\u001b[1;32m 145\u001b[0m array_cache\u001b[39m=\u001b[39;49marray_cache,\n\u001b[1;32m 146\u001b[0m custom_classes\u001b[39m=\u001b[39;49mcustom_classes,\n\u001b[1;32m 147\u001b[0m decompression_executor\u001b[39m=\u001b[39;49mdecompression_executor,\n\u001b[1;32m 148\u001b[0m interpretation_executor\u001b[39m=\u001b[39;49minterpretation_executor,\n\u001b[1;32m 149\u001b[0m \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49moptions, \u001b[39m# NOTE: a comma after **options breaks Python 2\u001b[39;49;00m\n\u001b[1;32m 150\u001b[0m )\n\u001b[1;32m 152\u001b[0m \u001b[39mif\u001b[39;00m object_path \u001b[39mis\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[1;32m 153\u001b[0m \u001b[39mreturn\u001b[39;00m file\u001b[39m.\u001b[39mroot_directory\n",
"File \u001b[0;32m/work/cetin/software/miniconda3/envs/env1/lib/python3.11/site-packages/uproot/reading.py:582\u001b[0m, in \u001b[0;36mReadOnlyFile.__init__\u001b[0;34m(self, file_path, object_cache, array_cache, custom_classes, decompression_executor, interpretation_executor, **options)\u001b[0m\n\u001b[1;32m 577\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mhook_before_create_source()\n\u001b[1;32m 579\u001b[0m Source, file_path \u001b[39m=\u001b[39m uproot\u001b[39m.\u001b[39m_util\u001b[39m.\u001b[39mfile_path_to_source_class(\n\u001b[1;32m 580\u001b[0m file_path, \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_options\n\u001b[1;32m 581\u001b[0m )\n\u001b[0;32m--> 582\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_source \u001b[39m=\u001b[39m Source(\n\u001b[1;32m 583\u001b[0m file_path, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49m\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_options \u001b[39m# NOTE: a comma after **options breaks Python 2\u001b[39;49;00m\n\u001b[1;32m 584\u001b[0m )\n\u001b[1;32m 586\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mhook_before_get_chunks()\n\u001b[1;32m 588\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_options[\u001b[39m\"\u001b[39m\u001b[39mbegin_chunk_size\u001b[39m\u001b[39m\"\u001b[39m] \u001b[39m<\u001b[39m _file_header_fields_big\u001b[39m.\u001b[39msize:\n",
"File \u001b[0;32m/work/cetin/software/miniconda3/envs/env1/lib/python3.11/site-packages/uproot/source/file.py:108\u001b[0m, in \u001b[0;36mMemmapSource.__init__\u001b[0;34m(self, file_path, **options)\u001b[0m\n\u001b[1;32m 105\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_num_requested_bytes \u001b[39m=\u001b[39m \u001b[39m0\u001b[39m\n\u001b[1;32m 107\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_file_path \u001b[39m=\u001b[39m file_path\n\u001b[0;32m--> 108\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_open()\n",
"File \u001b[0;32m/work/cetin/software/miniconda3/envs/env1/lib/python3.11/site-packages/uproot/source/file.py:118\u001b[0m, in \u001b[0;36mMemmapSource._open\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 116\u001b[0m opts \u001b[39m=\u001b[39m \u001b[39mdict\u001b[39m(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_fallback_opts)\n\u001b[1;32m 117\u001b[0m opts[\u001b[39m\"\u001b[39m\u001b[39mnum_workers\u001b[39m\u001b[39m\"\u001b[39m] \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_num_fallback_workers\n\u001b[0;32m--> 118\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_fallback \u001b[39m=\u001b[39m uproot\u001b[39m.\u001b[39;49msource\u001b[39m.\u001b[39;49mfile\u001b[39m.\u001b[39;49mMultithreadedFileSource(\n\u001b[1;32m 119\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_file_path, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mopts \u001b[39m# NOTE: a comma after **opts breaks Python 2\u001b[39;49;00m\n\u001b[1;32m 120\u001b[0m )\n",
"File \u001b[0;32m/work/cetin/software/miniconda3/envs/env1/lib/python3.11/site-packages/uproot/source/file.py:248\u001b[0m, in \u001b[0;36mMultithreadedFileSource.__init__\u001b[0;34m(self, file_path, **options)\u001b[0m\n\u001b[1;32m 245\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_num_requested_bytes \u001b[39m=\u001b[39m \u001b[39m0\u001b[39m\n\u001b[1;32m 247\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_file_path \u001b[39m=\u001b[39m file_path\n\u001b[0;32m--> 248\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_open()\n",
"File \u001b[0;32m/work/cetin/software/miniconda3/envs/env1/lib/python3.11/site-packages/uproot/source/file.py:252\u001b[0m, in \u001b[0;36mMultithreadedFileSource._open\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 250\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39m_open\u001b[39m(\u001b[39mself\u001b[39m):\n\u001b[1;32m 251\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_executor \u001b[39m=\u001b[39m uproot\u001b[39m.\u001b[39msource\u001b[39m.\u001b[39mfutures\u001b[39m.\u001b[39mResourceThreadPoolExecutor(\n\u001b[0;32m--> 252\u001b[0m [FileResource(\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_file_path) \u001b[39mfor\u001b[39;49;00m x \u001b[39min\u001b[39;49;00m \u001b[39mrange\u001b[39;49m(\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_num_workers)]\n\u001b[1;32m 253\u001b[0m )\n\u001b[1;32m 254\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_num_bytes \u001b[39m=\u001b[39m os\u001b[39m.\u001b[39mpath\u001b[39m.\u001b[39mgetsize(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_file_path)\n",
"File \u001b[0;32m/work/cetin/software/miniconda3/envs/env1/lib/python3.11/site-packages/uproot/source/file.py:252\u001b[0m, in \u001b[0;36m\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 250\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39m_open\u001b[39m(\u001b[39mself\u001b[39m):\n\u001b[1;32m 251\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_executor \u001b[39m=\u001b[39m uproot\u001b[39m.\u001b[39msource\u001b[39m.\u001b[39mfutures\u001b[39m.\u001b[39mResourceThreadPoolExecutor(\n\u001b[0;32m--> 252\u001b[0m [FileResource(\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_file_path) \u001b[39mfor\u001b[39;00m x \u001b[39min\u001b[39;00m \u001b[39mrange\u001b[39m(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_num_workers)]\n\u001b[1;32m 253\u001b[0m )\n\u001b[1;32m 254\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_num_bytes \u001b[39m=\u001b[39m os\u001b[39m.\u001b[39mpath\u001b[39m.\u001b[39mgetsize(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_file_path)\n",
"File \u001b[0;32m/work/cetin/software/miniconda3/envs/env1/lib/python3.11/site-packages/uproot/source/file.py:38\u001b[0m, in \u001b[0;36mFileResource.__init__\u001b[0;34m(self, file_path)\u001b[0m\n\u001b[1;32m 36\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_file \u001b[39m=\u001b[39m \u001b[39mopen\u001b[39m(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_file_path, \u001b[39m\"\u001b[39m\u001b[39mrb\u001b[39m\u001b[39m\"\u001b[39m)\n\u001b[1;32m 37\u001b[0m \u001b[39mexcept\u001b[39;00m uproot\u001b[39m.\u001b[39m_util\u001b[39m.\u001b[39m_FileNotFoundError \u001b[39mas\u001b[39;00m err:\n\u001b[0;32m---> 38\u001b[0m \u001b[39mraise\u001b[39;00m uproot\u001b[39m.\u001b[39m_util\u001b[39m.\u001b[39m_file_not_found(file_path) \u001b[39mfrom\u001b[39;00m \u001b[39merr\u001b[39;00m\n",
"\u001b[0;31mFileNotFoundError\u001b[0m: file not found\n\n 'tracking_losses_ntuple_Dst0ToD0EE.root'\n\nFiles may be specified as:\n * str/bytes: relative or absolute filesystem path or URL, without any colons\n other than Windows drive letter or URL schema.\n Examples: \"rel/file.root\", \"C:\\abs\\file.root\", \"http://where/what.root\"\n * str/bytes: same with an object-within-ROOT path, separated by a colon.\n Example: \"rel/file.root:tdirectory/ttree\"\n * pathlib.Path: always interpreted as a filesystem path or URL only (no\n object-within-ROOT path), regardless of whether there are any colons.\n Examples: Path(\"rel:/file.root\"), Path(\"/abs/path:stuff.root\")\n\nFunctions that accept many files (uproot.iterate, etc.) also allow:\n * glob syntax in str/bytes and pathlib.Path.\n Examples: Path(\"rel/*.root\"), \"/abs/*.root:tdirectory/ttree\"\n * dict: keys are filesystem paths, values are objects-within-ROOT paths.\n Example: {\"/data_v1/*.root\": \"ttree_v1\", \"/data_v2/*.root\": \"ttree_v2\"}\n * already-open TTree objects.\n * iterables of the above.\n"
]
}
],
"source": [
"#file = uproot.open(\"tracking_losses_ntuple_Bd2KstEE.root:PrDebugTrackingLosses.PrDebugTrackingTool/Tuple;1\")\n",
"file = uproot.open(\"tracking_losses_ntuple_Dst0ToD0EE.root:PrDebugTrackingLosses.PrDebugTrackingTool/Tuple;1\")\n",
"\n",
"#file.keys()\n",
"#file.show()\n",
"\"\"\"\n",
"vertices = file.arrays([\"all_endvtx_x\", \"all_endvtx_y\", \"all_endvtx_z\"])\n",
"vt_length = file.arrays([\"all_endvtx_x_length\", \"all_endvtx_y_length\", \"all_endvtx_z_length\"])\n",
"vert_len = vt_length[\"all_endvtx_x_length\"]\n",
"\n",
"vtx = vertices[\"all_endvtx_x\"]\n",
"vty = vertices[\"all_endvtx_y\"]\n",
"vtz = vertices[\"all_endvtx_z\"]\n",
"\n",
"isElectron = file[\"isElectron\"].array()\n",
"lost = file[\"lost_in_track_fit\"].array()\n",
"\n",
"fromPairProd = file[\"fromPairProd\"].array()\n",
"\"\"\"\n",
"\n",
"#vt_length[\"all_endvtx_y_length\"]\n",
"#vertices\n",
"\n",
"#array[array.isElectron]\n",
"allcolumns = file.arrays()\n",
"tracked = allcolumns[(allcolumns.isElectron) & (~allcolumns.lost)]\n",
"lost = allcolumns[(allcolumns.isElectron) & (allcolumns.lost)]\n",
"\n",
"\n",
"#~ := logical not \n",
"\n",
"#allc_isE= allcolumns[(~allcolumns.isElectron) & (bool 2)]\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAaoAAAGFCAYAAACsdbcVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAD9NElEQVR4nOz9d5xc9X3vjz/POdPLTt3etNKqN0AIJDqmCExxt2MSfc2NQ3wvNvy4huTe2N/k6yTGSVyS+NqJ4/hysa+xjVtsjHEwYLolmgD1XraX2el9Tvv9MTujnW3alXa1I+k8H48B7cyZz/nMmTPndd7vz7sIuq7rGBgYGBgYVCniQk/AwMDAwMBgOgyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjAwMDCoagyhMjCYAbquo2kauq4v9FQMDC44TAs9AQODaqQkTIqilB+SJCFJEoIgIIoigiBM+jAwMJhbDKEyMBhF0zRUVUVRFGRZRlXVsgUliiKiWHRA6Lpe8RpQFqjpRGzsdgYGBjPHECqDC5aS4KiqiizLKIqCpmnARMEByn9PNk7p/1OJmKZpxONxAoHApEJW2s7AwGAihlAZXFCMd+eVRKUkGCaTadaCMZ3QlARLURTefPNNbrrpJlRVnfS9hiVmYDA5hlAZnNeULJyx4lQSj8msprlm/LhjrbKxVtdM3Ilj32+ImMGFhCFUBucVJfdbSZRkWS5H65Uu+FO58M7W/CYTmPHzmU7Exr/PEDGD8x1DqAzOeUoXclmWyWQyjIyMUFtbC1AhTAt50T5dd+Jk752NiJUehogZnMsYQmVwzlEKHZ8sCCKTyXDkyBEaGxvP2wvxbESs9Bi/bSaTwWQyYbfbDREzqHoMoTI4JxjrzisFQZTESRTFcn6TJEnAhXuhnamIHT58GI/HQ3t7+4TtDEvMoNowhMqgKpks4Xb8WtNkEXrzeRHVNK0shOcik7kFS59nKkvMEDGDasAQKoOqYaqE27EX1ZlcCOeqzJGqqsRiMSKRCOFwmEwmg81mw+l04nA4yv8vPUpBDecC44/R6bgTZypiY18zMDgdDKEyWDAmS7gdexFciCCIbDZLOBwmEokQiUQwm80EAgGWLFmC1+sll8uRyWTIZDJEIhF6e3vJZDLouo7dbi+L1lgxs9lsZ23+84EhYgYLjSFUBmeVkjuvUCgQDodxu90As7aapmK279U0jVgsVhanTCaDx+MhEAiwePFinE5neUyz2YzT6SQQCFSMoes6uVyOdDpNJpMhnU4zMjJCOp0mm80CYLfbATh48OAEEVuoi/Rc7HeuRKzk1rVarRMEzBAxA0OoDOaVqRJuZVnm3Xff5aqrrsJsNs/pxehUrr9cLkc4HCYcDhONRpEkiUAgQEdHB36/H5Npdj8LQRCw2+1lMRqLpmnkcjlisRi7du1C13WGh4fLIiaK4gQrrPTvsRftc5HZiNjg4CC9vb1s3LhxwjglC6zkWp2scofB+Y0hVAZzytjQ8ekSbkvMdfLtZGOV6uyVxCmTyVBTU1MWJ5fLNW8XvJIQlcRvxYoV5c+vaVrZjViyxAYHB0mn0+RyOSRJmtSV6HA4sFgs5/RFejIRK50f40WsFN1ZKj011iqbror9uXx8DCoxhMrgjJlJ6DhMXwtvrueTz+fLwhSJRBBFkUAgwKJFi/D7/ZjN5jnf70znVkIURVwuFy6Xa8J2qqpOELFYLEY6nSafz2MymaYVsdnMo9o4lSVWem6siJX+HvseQ8TOHwyhMpg1UyXcnip0fCxzfaHQNI1EIsHQ0BC6rvP73/++bDW1t7fjdrvPqYuTJEm43e7yGt5YFEWpELBSYEc6naZQKGA2myd1JTocjgUT6FMx2drVZEwnYqVxSv8vidhs27GcS+fJhYIhVAYzYjJ33mQJtzNl7F3x6VIKyChZTYIg4PF4ALjqqqtmZFnMhpleTOcbk8lETU0NNTU1E15TFKUiqCOTyRAKhchkMsiyjMViweFwkMvl0HUdm81WFrPZrs1VI9Plc82kHUvp/4aIVRfn/plpMC+MTbgt5TTN1mqa6X5ms20ikSiLUzKZxO12EwgEaG1tpaamhlwux8jIyJyL1LmCyWTC4/GUBXsshUKhbIkdOXKEfD7PsWPHyGQyKIqC1Wqd1JXocDjmPdH5bNwEzFbEMpkMu3fv5rLLLpuRiE01tsGZYwiVQZnx7jxVVTl27Bgmk4n29vYzDh0fy0zHkWW5wmrSdR2/309LSwuBQGCCII211IyLRiUWiwWLxYLX62VgYIBgMEh7ezu6rpdFrGSFJRIJBgYGyGQyqKpakeg8XsTmItF5ob+vqYQmlUpVdHY2ujsvDIZQXcDMJOG2ZFnN1x31eItK13WSyWSF1VTKXVq7di01NTXnVAWIambsBdRqtWK1WvH5fBXblAJTxopYLBajr6+PTCaDpmnY7fZJRaxU8PZcZWxVFDh1MJAhYvOHIVQXGGPr540PHZ8s4VYQhHmJEBtr+ciyXC5TFA6H0TQNv99PU1MTgUAAq9U663EN5gZBELDZbNhsNvx+f8VrpUTnsSIWDofp6ekhk8kAVIjYWDGz2+0V39VCW1STMZM5zSZXzOgpdvoYQnWeM1XCra7rM+rVNB8/El3XSaVSAOzZs4dUKoXD4SAQCLBmzRo8Hs8Z34lX44XvfEMQTiY6j6/WUUp0LglYJpNheHiYTCZDNpstv7ckXrlcjkKhQC6Xq5pE5zM9hwwRmzsMoTrPmGnC7WxO8LmwqBRFqbCaSsmbwWCQtWvXzlk9vGr/4VZL/tJ8z2NsxY3xaJpGNputELFEIkEul+PFF19EFMVJXYlOp/OsJjrP583OmYiYruv09vbS3NxcTjc430XMEKrzgDNJuD0VgiBUJFXOZk7pdLosTPF4vHznvWrVKrxeLy+//DL19fXzUrS1WgTBYCIlIXI6neXnTpw4QTQaZd26dRUilk6n6e/vJ5PJlKt1TOZKdDqd81KKayEu9qcSMU3T2L9/P/X19RWVPMa/r/Q4H0TMEKpzkPG9mgYGBnA4HOUCp3MVOg6zW6NSFIVoNFoWJ1mW8fl81NXVsXLlygm18OZj/ataf4DVOK9qmlNJFCRJOmW1jrEiViokXKrWMV7EziTRuRrdx2PnI0lShYv8fO4pZgjVOcJUvZoAuru7aWtrm7SKwZkynZjoul5eQA+Hw8RiMex2O36/nxUrVuD1ek8ZLThflo9hUZ1/zKRax2QV7GVZLle+n0zEpkp0rkahAsoejskEaLJ/w7kvYoZQVSmThY6PPUEnO4nmg/FCpapqhdVUKBTw+XwEg0GWL18+6ZrEdGMbLAzVJuRnKgrTVeuQZbksXul0mlQqVa5gP1mic+nfqqpW5Tla+u5mE3A0VyJmNpsXpMu1IVRVxGQJt2NDx6dy581XCHkJRVHo6ekpW00Wi4VAIMCyZcvw+XxndOJeKK4/g+mZT+vFbDZPWq2jlBox1gpLJBLlCvYloXrjjTcmXRdbqByxydakzoTZiNhCYQjVAjJVwi1MtJqmY66FqtSCPRwOMzg4WBbNYDDI0qVLcTgcc7b+NV9Um8VQjVzooi4IQrlax2SJzv39/Rw5coSmpqZy9frxic6TuRLnO9F5KtfffDA+122hMITqLFIyqadKuD2d0HGYG6EqtWAvNRM0m80Eg0GCwSCKorBu3bozGn8yLqRginOdvliWPf0JLlvkw+eY+zqK1bYeVPJgmM1mWlpaKl4rVesouRJL1eunSnQeL2Jn+jmr7VidDQyhmmdKVlMpAGK2CbczYXyzuZkwtgV7OBwmm83i8XgIBoMsWbKk3IK9u7ubeDx+2nM7FUYwxbnBcDJPPCMTScsXhFDB1OeQIJys1jE+0VnXdbLZbEVgx8jICF1dXWSzWYApW7CUonZnMq+z7XYsXbMWCkOo5pjJEm5PnDiBy+XC7/efttU0HTO1TMa3YDeZTPj9fpYsWYLP55s0+mm+AzUMFobZXnTWNXto9dkJOC+sqvSn490oCVAwGKx4rZToPFbEhoaGytU6SknSk62Hja3WUY2iPt8YQjUHnCrhNpVKYbFY5q3fz1RCNVkLdo/Hg9/vZ/HixWWr6XTGnivOBddfKQw/nU6XE1Vn20bkXL+wSKJA0DXzmouzpRovvpqmzemcxiY619bWTtjX+GaY4xOdS+IlSRK6rhONRucl0bkaMYTqNBifcHuqDrfzfbEfO/74FuySJBEIBOjo6MDn85124uN8MJ/H5UzHLYn8yMgIIyMj5PN53G43uVyOfD5fzssZ/zhVNNh08xp/sU7nFRyWuWmtksorALisJ3/ypzuuqukMxHPU11gxS+dudfSZcLYEQBTFUyY6l0QsGo2iaRrvvvtuOdF5MkusJGLnA4ZQzZDpEm5P1eH2dMsQzXResiwzMjJSDqsttWBftGgRLpfrjH5s8ykm83EROJMxFUUhHA4zMjJCOBxGFEUCgQBLly7F5/NhtVoRRbHcRbf0KPVuSqfT6LpeXkgf+zhVmaiCovG7gyF8dhObFgfoi2XZ0RWjs87JqsaJuUGzQdd1nt03DMD71jciimf2nR4JpXnjeIQGjxWzKBLJyNy+tgGLaWaiVVA0dvcn6Ag48I+6EqvRoqqWOY1PdI5GoySTSa677rpyovPYPLGS96RQKGA2m8uiNX5dbLYenvnO2ZwOQ6imYKrQ8bFW00y/uLm+2I9vwa6qKk6nk7a2NgKBwJzeRZ1rrr/ZjpvNZstWUywWK68trF+/npqamkm/36m66JbaXowVsdLNQy6XA+DNN9/E5XJNELLRAdBG5+2wSNgtEm7rmf9EBUGgyWtD10EUz/xC01BjJZzOk5VVamxmBIHyvEscDaVJ5GQuavFMOIY90SwHBpNkCypXdVYGI1QT1SJU4xnrkpxponMmkyknOmcyGWRZxmKxTFmtYyGSeqfDEKoxzLZX00w5nai8sej6xBbsJaupra2N3t5e7HY7DQ0Np72PqTjfLCpdLzZmDIVCjIyMkMlk8Hq9BINBVqxYMaEe4Wz3XWp7MX4hPZ/P88ILL9Da2koulyOZTDI0NFROLLXb7fSnzAyYrTRKaWrcLq7uqJlxL65wqsDxcJpwqsCqphpafZWf4/IO/4T3nO7x99jNvG99E0dDKa5cEsAkiWUX4OGhFM/sH6agKDitFtr9dnZ0xekIOuisK7q12vx2srKHtjFzrEZRqMY5wcznNVWiMzBpR+exic5Wq3WCeLlcrln1hptLLmihKllN43s1wewSbk/F6VzsC4VCRVsMgEAgQGtrK36/v2Ix/0yFcDrOZnmmuWSysk+hUKjcmLHkGg0EAvMW5DKW0h1qQ0NDhcVbyslJpVKMHBwmns4yNDRE14nj5HK5cqHVydbCxt717u6LczycwSKJJHMyMLXgFpSTbujuSAZZ1VlS65xy+8lI5VVGUgWiGYUm70m35hsnouzsiTGczON1WGjxWAmlZWRNKwuVWRJZ01RTMZdqTCeoZqE60/D0UqKz1+udMPZ4ESslOjc0NEzY/mxxQQlVKTpvbKmikhB0dnbOS+g4zGyNqnSnX5pPIpHA7XYTCASmdUOVxj8X3XPzNbYgCBQKBaLRKCMjI0QiESwWC7W1taxevXpOGjOeKam8QqagUue2lnNyPhQMVlwcVVWtcCOmUqkJVlhJuHyiFUfQQkedh0CNk95olteOR9jY7qM94ODt7hhdkQyNNTZOhDO4sxqtwPZjERRNp8VrwyyJHBpOYTGJLA4WhevdnjiZgsLmxX5eOBhC1eHGFbWYpVEvwzhX4vvWN+C2mdjVGyeVV1CBG1bU4ndaOD6S5s2uGNd0Bmjw2NB1nV/vGkTTdVbadZJ5ncff7OWiVg8rGua+wPJsqWahmq95CYKA1WrFarVWVOsw8qjOIrqu43Q62b59Ox0dHYiiiKqqpFKpeb2rnkpIxrdg13Udv99Pc3Mza9eunbGZPd/uuXPBWtN1vVwxW9d1duzYgcfjIRAIsGTJkjkr+zRXvHkiSjKncP3yWtw2E+m8Qiwr0+w9aQllFR2r3UlBsFLj8tPhtCCJAnlZRVUKZMcsoMvJCNl0mlcOZXFYJNKCnRMpCa8ap3fAxn8eTtEWdNFYY+PoSJpGTSVdUDkwmMJqEnli5yCSCG93x3HbJO7e3I7FJHJ8JE1B1digaIykCuiArsOKBvcEMcnJKsm8yiVtXoIuC92RDNcsDeCxW3j9eIRjoTSKrpMuFJtmCoKAx2FC04qDZlWdTEEhmpHP4jcxNdUqVHMdNn8ucEEJFRRNXk3Tyu6XUk7CfCKKYnm9K5VKVVhNTqeTQCDA2rVrqampOa07/XNVqODMLKpSdY1SMEShUMDvL67FbNiwYVLffLXQEXQSThdwWIruux3dMSLpApYlIrVuK9mCyvMHQqTyMqmCykAsx80r6xhOFXh23xBWs8R/f08nbW0BusIZtLxCR42N5/YPcSyRptEpcmWdhlMo8I3tXXRHVWrS/YRzViwZC3E1x8GeELGEjsNhQVZVRCRWN7nxOy3s6IqRyMusbqwhU1CxmETet74RncqAjDdORJEEAYtJYPvRCP2JHCvqXbhtJhQNJEFE03ReOxZhT3+SD17SWOFmvGFFHd2RDD995QSXtjj56IYWnNbqWMivVqFaiMoUC80FJVSlMvWFQqHiufmuPF4KH/3973+Pqqr4/X4aGxtZs2bNnCxOzmf4e7VZVCV3bcmlJ4oiwWCwopL7iy++OKPIx0ROYUd3jCVBJ23+iWs6iZyCSRTKYjIXlI7looCDRYGTLVGW1DpJ51W6Ihn8Tgs6OoIAiwJOjobSpPIK+weTHA2lOTaSoclrI5LO0+K3s6svzkiqgM9u5p2eKLv6UjitEsvr3WxoD9LRYka1ZFi/voFOvwm5J4op3odHyOBQC+hRmd7MIIpoxmW3orodtAScaJKJI8NJTkSyqJrOqiY3ug4mUUAUBI6E0uzsjdEbzdHosdITyWKzSLT67GxaHCAvqzhGoxaDLitmKcVwIj/hmMQyMjlFJ13QiWVlXj0a5qolAVy24nuTOYUndw+wrM7Fpe2+8ntEAWrs85cnVM1CtVDzMsLTzxIWi2WCUM3lRb7kghrbgt1kMmGxWOZtfaTaxGQ2Y89k3qV6aSMjI8TjcZxOJ8FgsNwscrI5zmTcvKySkzWSo8mwY5FVjTdPxDBLAtcsPfMQ6lMdx2avnYODKXqjWRYHnRwbyaBpOosCTi5u9bB3IMFrx6O8Z3mQFp8dVdNZFCwK3ebFfl48OMKu/gR7Boq5XGuaamj02Njdm8BsElnVWMNgSiEpQ05wYhVtrGlfxIfbnLzdHSWczJBO5YimZYYzacgl8Il5sjmFg0Mmhvr7eMlp53hCo7PWidthY2dfiraAg43tXlRNZ3HQidNi4rIOH/sGEnx/ezeXL/HzvnWNDCdyCFC+IVC14vcjiQLrWjxkQw58TgtHQmn6Yln64zmW2YrBFzlZJVNQiaSLLkFF1fjJjl4EQeBPrmyft3O0WoXKcP1dAJhMpgqhmouIuclasPv9furr61m1ahUDAwNks9kJrQTmivPN9VcKxy+JUyaTKbe0X7Vq1SmTZ2f6I651W7luWQDbJImqJlGgocaCzTx31lR/pphDtKR+8vJLVpNAdzSLrGqYJdjRFWMokefjG5tRNZ2ucIaBeJ6VDS5++nY/sYzMe1bUsqTWyYp6Fw6zSNdIirUtXu6/fgmCAM/tH+bgUIo6l5VUQWV3T4yRjIJHKXAkN0JrnYZZkjgaLhBJy4ykCrT57aztbOPVnhgFWQFbjrdCOTrlAsejBYZiaeqsGuE8JOIi/UMhltU6+H1Pjg9f0oCwyIOq6eRVjWRWYd9gkucPhkgVVFJ5lZys8rMdfcRyCvde04EoCjjNxeCMTYt8tPrsdIyxNmvdVj5+aQv20e9CEgXa/A5M4vwmoFZjJCJUr4DOJxecUFksFmT55GLt6VhUpdpv41uwBwIBVq5cidfrrbCazmYJpfngbIigqqpEIpGyOOm6TjAYpKOjA7/fP+tgl5nO2T6FEAmCwOqmM6sIUULVdLojGbqTAnv6kyypL17IQ8k8tW4rkigQSRf42TsDxDMydS4zqZzC291xnj8UIiur+OxmzCaQVRW/y8KyehcFReXwUJK/+I/dZGWd2horBUWlxe9gV18cq0ngx2/1kJc1EnmFdEGl3m1D0TTiss4yt8ZgPEe7347XbmJ3f4xYRkXRdHoiaY6EUsSzMtmCSjKnEHDb6ahzckl7Dd2RHCtsIiPJLDlZ5ng4y0Aix/bdxwl3H0bBxEqHlWZR5z9eC+G2CGxs85HJK/zd0wc5NJSioGi0+uy8b31j+VjJqs7Lh0c4NmLnppV15eed40o/3bK6fk6+m+mo1rWgap3XfHJBCZUgCBOEaqYW1VQt2Gtra0+ZKDqfeU5w7lpUmqYRjUYZGhoiGo1itVqpra09o8ASqL4CsIeHU7zdFUHWdC5prUHXdQ4NpdjTH2d1Yw2rmmpQNZ02n40+dPpiecKJHLIqYxEFdvVG2DeYRdM03jgepd5j5e7NbTx/cIRD/TFCqWIYeHokgwjs6Y3z+vEoBVVnMJZDB6TSIdE0fA4L6YJGOq+Q1fMURiMANQ1EAWxmkd/tH2IgWkAXQRDAJAk4zBKSSeRYKMv241F0XafRY6XZa8ftklgpFehLF9h+NIfXJtLuNbO6ycRQPIELmaGBJHuP9yNKIppgwmM1kU/FiMXs5W66glC8EL/TE6PJYyvfLORlFVnVy+tWmqbPSZWN6ahWi2ohXH8LfSwuKKECJg2mmMyiKvWVKS3cx2Kxcv+Z5cuX4/V6Z1xm5Fy2qOZy7FLUY8lqSiaTKIpCU1MTnZ2dJ0sJzdG+qoX6GiuDyQKxgsDvDoZp8GZZ21TD0VCat05Eee/aBpxWE4sCTvYNJNmxa4BYpoCmQ8Bp4Y3jCQqjHyc5kEKnn5/v6OdEOENehdIlS9FBAoZTOSJpFQ2K4eTA6JIQPXGZnnjxRu1ANI7FFMfrsHDVYj8+h5m8rBJNF0iWdqgVxzRLAgVV5fImHz/e0UciU8BqFgmPhqzLqk6r187hkTTZgs6igBuv28mOqBW/z89gssDVy4Is8prZ3x/llaMxhlJ5ntw9SHK4j0abgtkkEQ6HWWqxMhLReOtwP4s8Ena7nZ+/28+OEzEubvVw65p6fv72AMsbnFy7rLIK+VxSrS62ap3XfHJBCtVUFtXYFuylcOdSeZ3ly5fjcDimGnZa5jMqrzR+tQpVyWoqiZOiKPj9flpaWujv76epqYnGxsZTD3QO43NY+MD6Rn4wcAy/w4yu69S6rSytc/H8wRC7+xJsWVVP1CZT67aypy9BZjS+I56TyyIFoALHhzOYTQL5YjoSY78dFRhOqeW/zcBUWUkakFNgMFHg5+8OFi0vQKPy+1aBZEHjwGCKvf1JcqPDuyURl9VEY42NfQNJwukC+YKODqyqd6EAv9g5iK5reB0WQsk8b3VHsUoii+u9DB6NEMoLDFoChLNh1tQ7aG6uJRRNEDAlSEfi/O1Puqi3g9liYW8P9I/EWOIskMkVKMjzX86nGgXBcP1dAIyP+svn82iaxs6dO4lGo1gsFgKBQEW485lyrltUs6VUzb0UQm4ymcq19Hw+X/lHNjg4OG+VKaqNNr+dS4I69V4bzX4XFpPItcuCtPvtNHhsvNsTBwRuWVVHMlvg5cNhcipkCzpWibIomQVIq4A6s+M209TZ0mjqNNuk5cp9RjMKiZzCoVCx/fpgPI8AiMCv9wxxUYuHWKaAoOtc3RnA77Tw9N4h7GYTV3T6CGfyaJrOU3uHkGWZHUMan6lrZXt/hnf7JZI5GzU2F7U+Nx9c5yMh9iKoMqRHWCOlkbu7eX5oP3aHg4JoZ19ER5PM3HVZKx6364wv5tUaXbdQFpVRPf0sYrVa2bt3L/l8ns7OTrLZLLqu4/V66ezsnJcKBhfCGtX4EHKXy0UwGJy21Ug196OaD5IyxIbTRLIaQ4k8R0dStPmdtPgchFMFohmZdEHlzouaSeRVdnTFEAFVBZcFzKJIRtamV5OziAqoWuXfJeJ5jVePRsvPPb1nkDfdEXqiBUQBNrZ70PWi3mqaVhxH13n50Ahuh5mOgAOzJKDqYLWYUa1ugoEAQZeZzRc3A8UbonQ6zX+808cLh6OEUjJmVEzxPha59Yr2FmMfFouFZE7BahJP2ZqkGoWqWgV0PrkghCocDvOTn/yE3/zmN2zbto19+/bxR3/0R2zZsgWHw8Hrr79Oa2vrvJnT57LrDya/6GuaVhFCnsvl8Pl85ZD8U4WQw/xdBM72j3jb0TB9sRwfurhp2gV+txnammuQJBN7BxIkszINi4ruqwaPnWhGpqDqdATt1LmsLK93cmgwjQIUZLDbtLJlBcW1qeqT45OMFa6UDKlI0ZOh6fCjt/oQdSgAQkHFa4W+hILcHWNxnYtbVtexyO9g+/EIa5pqcFokLmv30jYmbN1sNuP1emmuy7OmYKbGaiKZV7C4LRzJ5vEAm70Wctlit9x0Os2+UB5BMnEibaa+xsYH1tVO2fSyWl1s1Tqv+eSCEKrBwUF+/OMf8973vpdIJMIHP/hB/vRP/xSgvF51rlo8pfHPRmUKRVHKIeRjK7ovWbIEn893WvUSzweL6omdA0QzMpe2e+gITuzQCqPV+AVYWusA0US6oNDqc1BfY+X4SJpf7xrE77TwnuVBGjw2PvOexfzlE/vL61OKDqHsyfEkqsawOi2UsetuKmRk0NHQ0Xnl4DCvHQ1zzdIA0ayM12HmzRMxvHYTF7V5gWJC9kiqQEONlS2r67l2aYDfHQzxq12D7OlP4LGbWd1UQ0NzK+mCynKHGVnVeeelo8iyTItLI5XJ8avdw1zsV8hnM4xveplMJrHZbOTzeSwWS9VYMUYwxXnK6tWrefHFFwF45ZVXJuRRwbkvVPM1fqFQQFVV3n33XaLRaLnX0rp166at6D4Tzpcf20c3tHA0lKLJM3WKwmvHIzzZJbI+XaDRby2XAopnZV44GKI/nqPJY8NmkfjNniE6a52EkieVqfTtCoBdhMw09yVNbolIWiU3f0b8nGI1Fy0uqwiJXIGcqpHMazy3f4hat53n9w+zusmDx2biG88fZSiRZdvRKF6nmQdu6GRpnYsv/uYAmq6TLRSrjVza5uRjlzbz+vEovzsQ4rplQW5aVceW1Q3YzBJLap3820vH2dOf4KaNHaxqdJebXqZSqXLZs1L35qnarTidzrNu3SyU628hf6+zEqpvfetbfOtb3+LEiRNAUQD+6q/+iltvvRUoXuz/+q//mn//938nGo1y+eWX8y//8i+sXr26PEY+n+ehhx7iRz/6EdlslhtuuIF//dd/paWlpbxNNBrl/vvv51e/+hUAd955J9/4xjcqeqF0d3fz6U9/mueffx673c5dd93FV7/61Yo+TZMxWQklYF5dc+fSGlWp3UjJpVdqr+73+1m2bNlpRz5OxnwJ7Ex/UOF0gYKi0eg5tZtyOja0e9nQ7gXg0FCKHd1Rbl3dgNdxsg7dwcEUvWl4fEc/91y9mK88e4Rmrw0RgUPDaW5YESRTUPnxW330RDP87sAwybyKwGh4uKkYoaczvUgB9CfPLVtrtDISOQ16YydvIuN5HVXPMpTI0hXOIIkC+wZTo8VuixGRj7x6ggduWILXbkFRVVStWHLJYTWh6/Czt3sZSha4ujPAQDzHigZ3uTXJxW0eYlmZ/niO1U01E5pellqpLFq0qKLdSjKZZHBwkEwmg6qqEzrkljo4z5cVput61XXgnW9mJVQtLS38/d//PZ2dnQB873vf433vex/vvPMOq1ev5stf/jL/+I//yHe/+12WLVvGF7/4RW666SYOHjyI211sCfDAAw/w5JNP8vjjjxMIBHjwwQe5/fbb2bFjR/ng33XXXfT29vL0008D8Kd/+qds3bqVJ598EiieQLfddhu1tbW8+uqrhMNhPvGJT6DrOt/4xjem/QwWiwVFOVnbrXQ3dK4IyXyMPzaZuRRCXuoe7HA4ePvtt2lra5vDGZ9kIV1/v9kzjKzpfPzSJuxmideOR3m7O86igJ0mr52LWmZfmeJIKE0oVWAoma8Qqj/Y2Mye/QexmSWGknkODSXpjWbZsrqOFp8NAfj3V0+wJGhn02I/b3fFMYkiHpuEWRJJF1QkQUPVi2JlEoprPeeI0XTapAo6AsXW9rJ60t1pMwn4HGb2DiT58jNHuLozQDxTYHd/kvoaK1cuCXBwKEUkI6NpOv/xbj+vnYhw/fJarl1aFKJL23147Gba/JPffJVcbCaTadJOubqul62w0mNoaIhjx47NqunlbDFcf6fgjjvuqPj74Ycf5lvf+havvfYaq1at4p//+Z/5/Oc/zwc/+EGgKGT19fX88Ic/5FOf+hTxeJxHHnmE73//+9x4440APPbYY7S2tvLcc8+xZcsW9u/fz9NPP81rr73G5ZdfDsB3vvMdNm/ezMGDB1m+fDnPPPMM+/bto6enh6amJgC+9rWvcffdd/Pwww9TUzP1BWYhLKpqFKpCoVBRhdxsNhMMBieUgMpkMlUV+j5X42p6sTq5yyqVa/0NJfMk8gqvHI3id6bKQiWr2oQGgWPpCmcYSua5tM3LjStqWdvkxmISCSVyvHo0zJJaF2ua3FzVoLNhdS01Tit/vmUp2YJGQdVp9zn4wq8P0B/PIgjwdx9oZk2Th5F0gaFEDlnVySkqVhEEERxmgXRBJzuxlu55iQ7l3C0ohr/nVR1ZUckVVI6H0uRllVCqWJLqo5c0E3RZqLGZWNNYw3AyT1YpJjK3jOn3JYnCtA0aTyUIgiBMsMJKzKbp5diH1Wo95flrCNUsUFWVn/70p6TTaTZv3szx48cZHBzk5ptvLm9jtVq59tpr2bZtG5/61KfYsWMHsixXbNPU1MSaNWvYtm0bW7ZsYfv27Xg8nrJIAWzatAmPx8O2bdtYvnw527dvZ82aNWWRAtiyZQv5fJ4dO3Zw/fXXTznv8Qm/cHZccwsthKX6hCWXXqmDcKmentPpPOsh5KV5nS6Zgspv9g6zor4oBLMZN5KWSWQVnDYTewdS5BWN29fUc93SAF2RLM7R1h6JTJ7v/v44JiXDJb4Cdrsdq91BSreyrNGL2+3m6b2DbD8e5a6NraxqdOO2mvjXl47x+6NhrBaJm1fUs6bJzU+OifwydIhL2v2YRYHBRA4dgXi2QCRToMZmxiIK/PCNHi7v8LG2qQZFg6YaEy8ciiDrIOoQz+koWvHHW5j2U56faICmQSSrIIqAqJPKF0jlFFY0umn02fmrX+3jSCjNIr+dxUEH4YzM3ZvbK3phnYozEQRJkqipqZlw06zrOvl8vkLEhoeHSafTZLNZJEmaci2sZIUZa1QzYPfu3WzevJlcLofL5eIXv/gFq1atYtu2bQDU11cWi6yvr6erqwsoRt9ZLJYJVcTr6+sZHBwsb1NXV8d46urqKrYZvx+fz4fFYilvMxXjLSqYfyFZqDUqTdOIx+Nlccrn8zPqhRXLyNTYTYhjEvzm4y7uTEUwmpEZThYQhXSFUAmCQF7RRquQT77QHXCai6WNEnleOjSCySSyrtmNx25mVb1AOBxmz57jDAyHGRkR8NXUsKRzKTu64zz/doSRTIGr6rtZZC+Qi5tIxSV+uv0gkZyAIArU19goqDq1VhPvXVtPQdFIyWDLq+i6zt6BJHv6E2QKKkF7cT3lgxfV0x8v8NrxCK8di7C7L46qw9vdxXPTaoK8MrPk3AuBQukA5FViGRVJBAGBaDrPW90xkjmVaDbPQDyHrOu8cGiENc0zb6Y5X+e8zWYrl2Mbi6qqZMZ0bU6n04RCIdLpNIqiYLPZcDqdZLNZFEVhZGQEp9OJzWY77y2sWQvV8uXLeffdd4nFYvz85z/nE5/4BC+99FL59fEHbCZf9vhtpuovNNttJsNisZDL5SqeO5eCHU41vqIoZZdeOBxGFEUCgQCdnZ34/f5T+sb3DiR5dHsPG9q8fPzSpnkXqjOh2WvjA+vr8Tkqm+flVZ3vvTWEvyZNndvKooCd9c2Vd7aDiTyHh9NYzRJrm1z4bCKhoUFCoRCRSASHw0FtbS2bNrYzcjDB7w6O8OO9SVRd4u1hBZMoccf1l1PvMuM/Nsyxt/pQCjI98QwmYJk1xRK7yCK7QrTnMH1YuaFZY+2qBoayIgeHIJQsoOqQGvVr/ezdQWqsJnqiWSRRIDcmhlsAGmrsdEezVGEu84JSyi1TNDg0kOCrz2RJ51V0IJXTGaJAwGmhPTB1VOZknO2kcUmScLvd5fX8sfMoFAqkUinS6TQnTpwgnU6zd+/eCitsbIKzy+XC4XCcVspINTLrT2GxWMrBFJdeeilvvvkmX//61/kf/+N/AEVrZ2zttuHh4bL109DQQKFQIBqNVlhVw8PDXHHFFeVthoaGJuw3FApVjPP6669XvB6NRpFleYKlNR6z2Uwikah47lzOc4LiepMsy7zzzjvEYjEcDgfBYJD169fPOoS8xmbCahKpdxejJ+f7Tu1Mj3ujx8ZP3u4nW1D5o8takEQBSSxW+raZRGKZAv2SMEGonj0wQjJbYCCSYeexfrySzIdW2NmXdvKeletZ2lxsaa9oOgPxYWIZGUkUuHKxn2hapi1gp3l0vWNRY4AaZ5RhvcCaZhsfu7SZG1cEOdQfQS3kePXwCG90D9ETE3m27xDDWYGCJqDrRQEqnRkjKZmRVNEtLWuVx0UHQoksgiFSwNTJzgMpGVIyJgHsJrBIEp21TqxmiWf2hbhtTSOSKPBWV4x9Awk+eHETLuvkl8FqWQsSBAGr1YrVaiUQCDAyMoLf72fRokVomlZhgaXT6XK07lgrbPzjXLPCzlhuSz7Xjo4OGhoaePbZZ7n44ouB4gX0pZde4h/+4R8A2LBhA2azmWeffZaPfvSjAAwMDLBnzx6+/OUvA7B582bi8ThvvPEGl112GQCvv/468Xi8LGabN2/m4YcfZmBgoCyKzzzzDFarlQ0bNkw73/FtPqA61pBmQymEPBQKlU/KUkv2U7UcORWtPjsP37mi/Pep8sxePxHlpcMRPnVVG54ZtgV/syvGW11xNvvg9Gd6kmxBJa/o5QuXWRS46+IggUCAWEbGaT1pRWYymeJNT2GIvlwaRbdgctvZ3NlG2GzmNzt7eLH7BF/7kIM6t5Ujw2lEQeD6ZQH++Mp23DYLF7V4+Y93B3jo57sJOKy8Z1mAZ/aH0HSdT16xiC2jvZJWttbyozd7eCuk46jx4MkOs35JM7/aNYyuqpNE7GkUQwUmJ32BBE/MBMuoG3QqzJLAsnoXQbeVv7x1Of/0u6NAMXTdaTVxcDDJcDJPNCNXvVCNZ2xlClEUp7XCxgtYV1cX2WwWQRCmXAubzApb6JJksxKqz33uc9x66620traSTCZ5/PHHefHFF3n66acRBIEHHniAL33pSyxdupSlS5fypS99CYfDwV133QWAx+Phk5/8JA8++CCBQAC/389DDz3E2rVry1GAK1eu5JZbbuGee+7h29/+NlAMT7/99ttZvnw5ADfffDOrVq1i69atfOUrXyESifDQQw9xzz33TBvxB5OvUZ0Lrr9SCHkoFCIcDqNpGoFAgEWLFiFJEgcPHqS1tXWOZjyRqeb/7IEReqM5Dg2n2TiaS3QqfrlzkJGUTJOos9Z55sf9jy5rQdN1TJNE5nnsJhLJJINDIWKRYrdgv9/P2iUtXH95kAOhHEdCaW5bU8+vdw/iMEssDtpJ5GR29SXZ2ZtgY7uHyxZ5cVqKP5eBRJ6dvXFeOBDCYTWxuNaOIAhIwFO7B+mOZvjS+4u5g4eHUrx+PIrfaeZqv0ZHwEaDx4bHJrG3/2SV9CJTidT0AnYhokyzQGcR4arOAPde24HVLNHgsfFXt6+goGgMJvIMxOO876JG4lm5bBVPRjUL1anmNdYK8/v9Fa9pmjZhLSwcDpNOp5FlGavVOkG87HY7LtfkVVfOBrMSqqGhIbZu3crAwAAej4d169bx9NNPc9NNNwHw53/+52SzWe69995ywu8zzzxTofb/9E//hMlk4qMf/Wg54fe73/1uxdrJD37wA+6///5ydOCdd97JN7/5zfLrkiTx1FNPce+993LllVdWJPyeCrPZXJFHBdUbTJHP5ytCyC0WC7W1taxevRqPx1O+q4rH4/MeQj7V+Pde3c6h4TQb2k69SC2rGq8cifDxS5sYShZo1EKnPe+CovHb/SE6a52sbHDx+rEYkgCXjM4jnU4TiUQIhUL89oRMTrDxp1e10t5YV3HH+PqJQQYTeVY3ujkcyrK+pYbVTW5+uXOI9c1uvHYTqxrdFXfd7X47n9jUittqwmwS+MglLSzyO/jLJ/fTFc1gNYv8du8QTquJn7/dX2xgmCjwREJkR7K4P3udE5MkVNYSmhJDwMZTKh4vMjGXzCwJtPpsPLVnCIfFxJZVdXTWucBavJGIZRWW1jmnFakS1ShUZxr1J4oiLpdrUuEZb4VFIhF6enrI5XLl6/xCMCuheuSRR6Z9XRAEvvCFL/CFL3xhym1sNhvf+MY3pk3M9fv9PPbYY9Puq62tjV//+tfTbjMZC2lRnepOSNf1soleaixYCiFfsmTJlJXdz0abj6nG9zstbOqYvhpIPCvzD88exWMz0xPNsqzOyf3Xd3DwYPi05zWUzHNkOE00I7Mk6OD5gyF+fyRMwA63NebI549TW1vLsmXL6Lbk6I8XaKg7KVKyqiGrOh9Y38DxcIaldU7+n8ub0XSdULLA8ZE0b3bHkQSBgNPMsZEMLX4nLpuIIAgEXVZWNrpY5LeTKSj8Zu8wQ4k8kgCRdJ5/eOYQzR57xTqKhkBXJIuqw86+5Gl/9pNMJVJjCy6dv0gCxTQCXSVVgPVNTnYPpNF1SORULmlzk86r5cTrA4NJzJLIFYv91LlP3cuqWquUz2dRWovFMmlktqIoC1oI9/wICZkFVqt1QdaoYHKTXdM0YrFYWZwKhQJ+v5+mpiaCweApS0KVxj9bSbm6rvPd13oxSwJ/dFnLFO86ydFQmoFEnkhaRhIEVje6uX7ZybBcRdU4NJymI2CfNJT8aCjND97s54blAa5cUnRh7OxL8FZXjPcs8+Mky5FDB0iGRkjnQFUlerMmXPXN7B8RGemKYDVLfPqaRTgsJ632b7x4gkhG5qEbOmj1FksoNY2WUkrnVaIZhXhOwecwc3g4zX/uC7E46ORjG4vu1Sd2DvBvLx0lVdAJOM101joRBB1Nhf54sZWFyyKhjukbVWvRGSicjQvfVPsoneMiRTGrvovwTLGbwCSJqJpaLsHUE88DoKJjNUv0RHPcsKKWoKsoSnv6E6PuvpkHElSrUJ3teS30cbjghMpkMi2IRQUnrRJZlitceqVAiNNt1jhXQpUpqDyzP8SmDh8NNdZJ565oOm91xxEEuGtjM+IkJ3BB0djVn6DZY+PLzx1DFOD/vbWTgNOC3XzyswmCwK7hPAeO9nFxm4fbVk+M2FQ0HR2dvFK8yCqKwv9++SjDiSziSIEVtVZqa2v5xHUraDmWZnWjm1jvEX64M0xOKUYA1thMJHIyDotETzRLbyxHjU3iRDjDf//ZPoZTBa7t9NPss/MHG5o4GsoQzym8f109V3X6GU4WyBRU2nx2Iqk8+wZTuK0m3A4zyUKBSEamL5bFY7MQGm3NrupwcDhT8VnOjkhNx9gbgfFzObfciLJWtIrHnvXRtILdIlLrtjIUzyGrGmNPzy2r6omkC9TXzKwz8Lm8RnW+ccEJ1UJE/ZVM5p6eHiKRCPF4HKfTSTAYpK2tDbfbfcZVyOdCqLYfj/LS4TChVIE1TW7e6opxz5VFC6I0vlkS+fObliAKTCpSAF98+jCvn4hx/dIAl7V7sJmlitI1JaI5jZGMwsGhAhlZ472r6iYch2V1Tm5fFcCpZ9i5cyfhcISLPTZeyEg0dSxl05pirte2Y1EsJpFNHT7+owsiaYUrOgPcuDxAfY2NhpqitfSLdwdJ5BQaPcWL1UAiR0GFkbRMXtWJZWXe7C62lLhmaYD+eI7v/L4bRdX4zu+7SBdUFFXnvWsa+MJtq/jN7n7eOBHDJArkFRVJFCqsqLPB3PSlOrfWwUo/V0kofnYNCDgkLBYTTosJt83Mp6/toM59suCw22bCbZv5Ja9aBWEhXJIL2d0XDKEC5sd1put6ubFgKBQCIBKJUFdXx8qVK88ohHw8czX/yxd5CacKXLHEx189eYjj4QyvHotwtUdg85jx2/3Tz31ZnZOjoQybOrysaaphKJnn2EiGxcHK4p//sT/FUFqho85Hm69yzFwuRygUYufxIZ48lKLObeFPNjWzK+NhfzxLvU8nXjj543mzK8ZwMs9rJ2K80qvgc1hZEnRy5ZKTbsasrDKQyKOoGjaLSFZWuWqxn2avjdvW1pPMKTy6vQddh0UBO9986QQui4Ss6kiCQKqg0DWSBQGe3jtIZ8iF1WwinJbRdB27RUJYgFaG87vH6hQwfXTv8uiHF4BEXsNv0qixm7iqM8A7PXFOhAe567KWGadOVOyjSoXKaJx4ATDZGpUoinNiUamqWm4sODIygq7r5Xbs+/btY82aNTNac5otcyVULquJj24o1k/84yta+bdXuoimZY6LAqqm8Zu9w7T57BPq6o3njy5r4Y8ua+FoKM1//9lehlMFFgcd/OvH1lT88K9ud/DOQJb/ftMSdvUl+dlbPVwaVOkbCpFKpakPeFnRVsewFOSSdh/tLR5c0UGCToUPX9zIojHdXu/e1MJgIs/BoTRWk8CHlvn40MYmEjmFd3riXL7IiyQU3Zv1NRZuW12P32HhiZ2DPL0/hMUk8t419eRkjYYaKy8cjnA0lKYzaKc3lqPFa8NrM2OtF4lnFRJ5mecPDJFXdQqqjkksfg/ThU3Pdl1IHN26NKRJAFEour0skoAkQl7WF6iU0nQCNt3rc8fYM94qCUgmgfoaO7GMzJ6BBO0+O8mcPOX7Tzl+FQtVNc5rPrnghMpsNs/pGlU+ny8LUzQaxWq1EgwGWbNmTTmEXNd19u3bN69deOHMT2Bd1/nf23oA+JMrWlE1nZ++3Y9dzrCjJ8Fv90XQdZ3VTW4+vqGJ5w+FeeNEjI6ggz+5orVi34OJHD9/d5DhVIGg08zyOieKpmOWBF4+EmEgnuMiv4l2p4UfvLyfn+yO4rfq1F/q5uE3FCTJQavfRJsvz5/duJjCqDvtAxc1TPicqqZTUDSW17tYFHBw4sRxTkTzJHMKv90f4p2eBImcgkUquucODKZZcoODzloHA/Ec7/bEycgaX3nuKMvqnGxs8xJOFxiM5zg0nCGZV4llFWrdVmxmka98cA1/9vM9xHIaAkUxcZgF7GaRbKHYsdY0SeS5RQCbRUJR1XH5U5WIQMBpQtMhklGQBGj02rCIIm0+K9uOR9F0HfTiMZBG56CNtv5YWKaLRNSneX12eKwCmYJe7oCcU3XsInTWOWny2LlhRS2/fLef/YNJDg6muKzDN/2Ak824SgVhIVx/51TC7/nAZEI1G4tE13VSqVRZnFKpFDU1NQSDQTo7O3E6J1ZnLvl3z0YI+emewJmCiqrrHBpOwagDK+iy0Oix0ZAX+OIzJ7CaJTa0efn9sShvd8cYSsrkZJUTkSwWSaAnlqPeZeHgcJq3uuO4LBJXd/rRdZ3fH4visErcc0UbP9/RQ380TaZJZpFb490+GxlVQJPNbIu6ycg5LOgcDaXpi2b50m+P0hfL8cD1HaxuqlzPi6QLPPZmH3v6k9xzZRsb273E8zqJvExXJMvmDh/7BpI8fzDM4VAKm0mixm7iS789zNJaF5+/ZSnxrMxnfrKXWKbAwcEkP3yzj29/fC2XtHr439u68eQVVja40QV4uzvOPz53mGRewWISkBDQdI14XieeL5TtpfHLVCJQ0AXUgkqz10Z3NIdVKtapkwRwmEUy8sl+U8UyVlbShRQOi8TGNi8nIhnsFhONNTZMaCQKOmlBwSyJWCWx2HvptL79s0FJ0idj9lZYLD9ZEWY4NJjiPctrWVbvYmVjDbGcctrBjdUqVIbr7wLAarWiKErFSXiqYApN04hGo2VxUhQFv99PS0sLgUCgakLIT3f84WSev/3PwwSdFv7HTcU6jqIg8MLBEYYSebpiAgVFY0W9m3uuaOV9//YmBQ1MItyyqpY9/Skefa2XZo+VJ4bTiKJAQSlaOf/tqjYe+sU+jgynyWRyNGa7WGuHvf0i3zkgYJZM/D+bm2lpyPPbfSF++u4gPoeZ9ywLsG8wxaZFXurcVg4MpjgezrB61O2YyMmoms7/evEEJ0bS6IKAezQp95oWE4Lby8oGF3/32yNsOx4j4DDjtZtpqrHwdm+Srki2bKVtOxalK5wpCwTArr4kbX477T4Ha5vdiCI8ur2XVF7hne4YboeVi5prqHNbOTyc5tBwumwzlLBIoGrQEbAhiSKHhlPYLRKL/A56YzkEodgA0GEx4XeaCSXzZAoqbpuJuho7dW4rdquZvliOkXSB9c0e3umJoyNQ0ItVAu1mkbysEs6p53A19TNfB7MAkgiJvMLRUJprl9Vy5/pG3rumHtMUFfRPRTULVTXOaz654IRqpgm/siyXhSkSiWAymcq19Lxe72mFkJ8N19/p8P3Xe+mN5Wj12Qm6Toruhy9p4n/+cj+7R8Bk0gg6TbzTG8csCRQ0HVWDbUejJPMKugbLah0omo6iFNds0HX+50/f5lBIRtGhO6ny814H3/7Di9jzywPs6I6SV3VePBRmWX2xwsRgIk/QZUFWdYaTed7tS/Anm1pxWiWe3DPMZYu8iAJ87JF3UDWd/7K5hUROZiCe56XDYRYH7Xz97Rw1zhFkk4uDQyncFon/ds0iltU6+MB33iKv6Nx1aRN/vLmVeFbml7sGkVWNvKqxpsnLtZ0BVF3n/2zvwW6R+NiGJj78nR3EszKaVhQjOZ0jL6t01rqosZlYErBzIpplNIoeu1nEJEJB1Wn0Ovj7D6zm4//6Ema7Fa/DTLvPzkAiR17RqbEJpAsqdotEk8dGo9fGSLJAKF1g6+WtvHEiSmONjQ9vaOKx13tI5RQW+e38YtcgBwaTSIKISdRQq9ecOk1OLWDWURerIBbP/zVNbt5/UROHh1O0+R0VuXOzZaHdXVOxUFF/C8kFKVRThaePbSwYj8dxuVzlYAiXy1UVIeRTjQ2n/8O6fJEXRdO595r28nPxrMyJcIY2v50dPQkKss7Pdg7z2wPhcvsJHUgV1HJ4cF5WcZgFknkdRdNJFTTeGtAq1k32D+d4ck+IvKKCpmMSYN9AEo9dotljozPoYCCZ46k9g+QUiGZlPv/rgzgsJja2ebj1X95A03UcFomcrLF/MIWuw3CyQNBloaDqJAqQ02WOhzO0Bxz8yRVtLA46KCjaaLUInfeta8DvtPDtV7oQEairsZLIKiytdbGx3cu/vHSCvf0JHFYTe/oT/MWWTp7cPcSxkTQWk8S+wSSpvMLvj0VQtWLE300razkayuB1mOgJZxFFgaysMpjIo2s6ORVGEnmGEyFkTR8Noxa4dJGXwXgeh0XCYRExSSIXtdTwoUtaaA84kFWNrkiWz/1yH1cs9rG83k19jZXjkSxHh9MIgs7GRT5eORytYtffXCKWJSzoLLZDMQngt6hcbB7k2VfjHIhLLK1zctOq+nLLi9m6y6rVxbZQ8zLC088iYxN+dV0nHo+TSCTI5XJ0d3fj9/upr69n1apV2Gy2U4w2c6pZqLKKRiyr8MqRCLeuLjat/MXOQXb1Jjg6Upm0ms5XVv1WVR2Nomi905dELy8IFNe5xgYUCEBO1vjb/zw8YdH/5aPFWn2aVmwQWGqznpN1RBQKqs5v9g2X3XV5udjG/Td7QywJ2lkStPPjHf386K0+TAJc1GjjlaMR7GapHBZvMYl86+Nr+cqzR/j+G738j5uWsKMnjqrprG5w0R3Nsbzeidtm4saVtZyI5hiI5/j33/fwv/9wHdctr0WSJD7z+E6Ohop37B+7tJnXj0fZ2ZvgxEiWFp+dPX0JwukCPoeZT13dgY6OrOm8t1UHXyOvdcWIZRU2tHn4/25fSY3NxEA8T0ONlc88voudvXEcFpG2gJMfvtnLcDLPzavqePzNXnb2xlla50QUil6AoNtCPCNzeDiFVYLsuev/mxWlc1ARTPzptYvQgPcsCxC0wVAkjnwkTJNd4dixY6RSKXRdx+Fw4HK5yv2apqsWDtVrURmuvwsARVEIBoN8/OMf5yMf+Qh1dXWYzWY8Hg+rV6+et0Zj81n94kyFqrPWyc7eJEvrTgaCbFrk46k9w2RlFasIZhN47BYUVWMoVVQRuwRZ9WTItX6KVevyGs4k09T1URcORZEaW2xUEosCObZHU0mwdODISJYjI9nynGQNfnOg+HmuXxbgpm+8xpKgk3/7+FqyBQWbWeI9y4KE0zIHh9LIqsbS2noaPTr//MJxOgIO/v2udWxa5OU/94ZY0eDie6/1cDiU4W/uWInPYcZuNjGYyPPasSj/6w/W8/TeIfpiWcKpomW37WiY+ho7R0JpToQzPH9wBFNG4F8/tIjvvjHAoaE0n76ug2ROwWM38+qREYaTBf706na+82oX7/bG+cmOXsyShKbr3Lamnv0DSXb1xbl1dQM/eL2bWE7h8nYvb5yIEU0XkCRhYhTHeU6moHLd8gCLAicLrLpcLpa0NZf/1nWdbDZLOp0uNx/s7u4uVwu32WwVAlb6Nyy8y2syzrZQleqULiQXjFD99Kc/5ZFHHuH555/HarVyxRVXsHr1apYvX86xY8dQFGVeu2FW8xpVR8DBQzcurnhueX3xIv/cgRECUoHhgglFUVntg6FUUZyK/53bFNfSWGOPVHKSCK+p9plVwSyAAhwKpVnUnySUKhDNyHzn1S529iV57USUp/YMo+vgd5rREblhRRC/w8yf/2J/OaHZ77Twh5cVL3iPbu8hkVe490c76YnleM+KIHsHUuXeU7dMUv4J4KGf7yErqyyrc1HqmPXfrl2Mpul87ol9ZAsqf3r1Il46PEI4LfOBixr5l4+v50dv9qBpOq+fiOK0mLCaJf7s5qV87om9vNMTw+ewkMyr5BUNswiKAjI6Fql48ArnmV5NVn3DKglYJIm3uuIVQjXhvYKAw+Eod20uMb5zbiqVYnBwkFQqRT5frBu4b98+PB5PhYBZrdYFFbBqLZY7n1wwQpVMJrn55pv5sz/7M2666Sa+/vWvl/28811CqbSP+bSo5mN8h6BiFxRcJo1DcRmTKHA0ZR5NNhVZXuvg3f4UIsVE1Bl1rDgLlKoVaHqxX5bdLJIqaHzjpS68dglF1VFHrbdWr40v3rmCvKKRKSh8fGMzSwJ2fvr2AD6HieuXBZFEgb+9Yznd0RwP/sc+RpJ5mi9u4ovvWz3tPHb2xtnblyCZV/ijy1oxD/RwdCTD6hYboihwUYuH3miWnb1xfA4LeUXj6X3DfPLKdj4+Wvz2gxc3I4322corGn3RHIqms6LexeUdXpp8dvYPJovW6mgh3NXNHnb3RCcN4T5XGftJzALU2E1sXuxHkkRuWB48rTHHd84diyzLvPjii9TW1qKqKiMjI5w4cYJsNovJZJpgfblcLux2+wQBOTZSrOa+pHZi2srpUPqNV+Pa2XxywQjVH//xHwPQ19eHruuoqlohVPNt2p6NdvdnOn5pzS4UCjE0NMTL+1XcViuDcRENcNjMtPqdZJU0IymZPf0poGj9LHyi6eSoOuRGQ/F0IDpmEUcHjkeyfP7JA4RTMnlFZSRVoNVnpz3gYE9/ku+/0UeTx8qGNg8f3dCCWRKwmSV6whkG4jkaPVOvY+7uSzCSzqNqxeCSVwcEMtEu3n+xwkuHwly7LMB719RzIpxhVaOb7ceiXLu08oJpHxO15raZuH1tPW+ciJLKK7htTvYNJMkrOgG3BZOgk1M03umOUqiWu4Z5QNaL641tfgf/9Zpic8S5xmw2IwgCDQ0NFf30VFWtcCHGYjH6+vpIp9MVXXNLAvaTdyKYTGYeuKHztMPkx1L6jV9oFtWsj9zf/d3fsXHjRtxuN3V1dbz//e/n4MGDFdvcfffd5bv80mPTpk0V2+Tzee677z6CwSBOp5M777yT3t7eim2i0Shbt27F4/Hg8XjYunUrsVisYpvu7m7uuOOOcpHX+++/f0L4+VjMZnN5/+WDMEcllKajWrsIa5pGOBzmwIEDvPrqq+zevRtFUVi0ZBm3bVzKZ25azVAGdA1W1rtw24o/YI2ie+1c+Lko03y14bTMju4EJyJZBhIFZA26olk+eFE9HQE7B4dS/HpPiH/63XH+5hc72NhkZ2Wdg+MjabY++hbr/uZ3PPiz3aiTKPXHNjRjt5gIOK3csa6BNhf47GbsZolETubVw2H+/D/28tZocMVNK2vprHOxoyvKK4dH+NZLx/jH545UfK/HwxkkUcRqEnj58AjhZJ5L2rx84faV+FwWElmVrKxTOE/C/yaTIAGwmCTeOBHjiZ0DZAuVESSZvMKuvjiFSb74WEamK5yZ8PxkTLYWJEkSNTU1NDU1sXTpUi6++GKuuuoqbrrpJq644go6Oztxu91kMhmOHz+OJ9OPLXacbb9/lbfffptDhw7R19dHPB6f0MB1JpSuUxeaUM3aonrppZf49Kc/zcaNG1EUhc9//vPcfPPN7Nu3r6Iqwy233MKjjz5a/nt8UuwDDzzAk08+yeOPP04gEODBBx/k9ttvZ8eOHeUcpbvuuove3l6efvppoNiSfuvWrTz55JNA8e7mtttuo7a2lldffZVwOMwnPvEJdF2fsjFjaR5jQ9TnW0SguiwqVVUJh8PltvaSJFFbW1tR9unXe4Z49ViMbcdi6AJYTMU+UKmcSqPHiigULyJWs0DqPFoQEQC7WeJHb/ZzYiRNpqAVG/RJKnsGM9glOBBWsUgaKVmkoMFv9wxxeYOJLWubMFvtSJLEweEUaxpruGllHcmcjFkSWeGFe64uNsDsrHWRzit848WjiCK8eiSMx27ivjoXPdEsBVXj7e44OsW2KSWr4f0XNbJ/IMmOrjg2s4lrl9dyzdIgb3VFSWQULGaB3Hn0fTTXSPQk1LLrz28XEQWROpeF1Y1OopkCoVSeNn8xsvPwcIr//fsTOMwSt65p4LJFlaWTntw1QCwr8/GNLeU+VVMxm6CFsV1z6+tPrldu1nVyuRypVKpshUUikVMGckxVRGChXH/nXPX0kmiUePTRR6mrq2PHjh1cc8015eetVisNDQ2TjhGPx3nkkUf4/ve/z4033gjAY489RmtrK8899xxbtmxh//79PP3007z22mtcfvnlAHznO99h8+bNHDx4kOXLl/PMM8+wb98+enp6aGoqFlP92te+xt13383DDz9MTU3NhH1PJlRny/U3380Zp/sMYxOYw+EwNpuN2tpaLrrooknbjGxs83JgMMULh8LIGrR6LUiSxJFcluFkHk0vuvzk8+iiCKO5YXmVbcdj5eccZoGkrBONFRexswo4RRM1NgFZ1amxwOBImF++2Mcj+zV0RHx2ifet8vLJi4p5POiV333TaLPG//Wx9ei6zrZjkXJr9JtX1VNQVJo8Njx2M1azhKxqPLN3GJfNRDKv4rWbuOfqNlp9TkZSBX6zZ4iCphN0Wslbik0fc8p8V1aff7oTldbSooCDkXQxXeG/XddJPCvTOqbyvqZDrdOK32lhWd3EAIuLWr30RDJ4Z1BNfS6i6wRBwG63Y7fbZxXIYbFYKlyIJREbW03nQuKM16ji8ThQbB8/lhdffJG6ujq8Xi/XXnstDz/8MHV1xRydHTt2IMsyN998c3n7pqYm1qxZw7Zt29iyZQvbt2/H4/GURQpg06ZNeDwetm3bxvLly9m+fTtr1qwpixTAli1byOfz7Nixg+uvv37CfEtCNdY9eK4HU0w1fqlgbigUIhqN4nQ6qa2tZfHixVO2tS9RX2PlwRsWE83I/D6TY5HPxqbOOr758gni2ZMui7Fh5OcrybIYnyySlJc10gVo81m57/olyKrOt18+zlA2h9Ms0my10OIS2HHgBN/bnaHdpXJTs87evXvxer0Vd8+iKLK+2UNeUTk8nKLd7yCl6nSFs3gdCmubPaiaTlpWkSSBXb0x3jgeI6uorGv2cHQkjaJq+B1mZFXHYrKwptnD/oEkfYmp3eDnEqVK8qIo8tmbOllZ58brMCMKsKsvwapGN2ZJZHm9i84bO8sBKONZ21zD6kY3oVSeWpcVcYrtYH7DwE8VyDF2HSwcDtPV1UU2my17m/bu3VtxDp3q93yuc0ZCpes6n/3sZ7nqqqtYs2ZN+flbb72Vj3zkI7S3t3P8+HH+8i//kve85z3s2LEDq9XK4OAgFosFn6/SLK+vr2dwcBCAwcHBsrCNpa6urmKbsWY2gM/nw2KxlLcZjyiKSJJUIVTnk+svm80SCoUIhUIkEglqamqora1l+fLls+6BJQgCX7xjOX/7kzB9BY2fvtNPTlYxiSfXfc4PkZpd+w04GeHYHc3zZ/+xr+K1OreVH33qCgRB4PZvbuNwBHqzVryWPENDCn+4JlMuaKxpGnaHgydOiKQUgYtba1jfHiSviSytc9IecKBqOqIg8P71jUiiwONv9JBVNEKJPMmAQo3VxNWdQboiKQbjeQZiBU6EM+Vw+PMBj03CZBJ5z/Jabl190lPzRleUo6E0ZklgVWPRgzKVSJV4uyfO9mMRLlvk5fIO/6TbLGTQgtlsxuv14vV6K54vtRHasWMHNpuNeDxOf3//pIEcYxOaz4cIwTMSqs985jPs2rWLV199teL5j33sY+V/r1mzhksvvZT29naeeuopPvjBD0453vg7mMlOktPZZjzjyyidDYtqvsRQ13UymQyqqrJv3z5yuRw+n4+GhgbWrFmD1TqztttTIQgCNVaREQ00TafGZqbebSGUzjOUOP1ePwvPWHGa24vR8UiW3miWQ8NpuqPFRGRZ1Xl3RMDqlvA1L6bVZ8dhkchmsySTSVoT/aSyOczZCE+82s/bIwLr6sxsvcjH02HQRAubOmtx2h1ct6K2GIpuM3EklCKVV9B0nX39SS5p8/LJa9r5t5eO43WYGUrI53Cx2tFoLwHSsopF0zkwWrrKNVqAeH2zB4sk0hGYefh3Q40Vr900bcRmNUbXSZKE0+lEEASWLVtWfr5U/m2sFTY8PEw6nS7eCNntk66DzWfe6Fxz2jO97777+NWvfsXLL79MS0vLtNs2NjbS3t7O4cOHAWhoaKBQKBCNRiusquHhYa644oryNkNDQxPGCoVCZSuqoaGB119/veL1aDSKLMsTLK0SgiBgNpsXJJhirsRQ13WSyWTZcsrlckDR2mxraytHNs4VV7da+IPmJo5lrJhEgTVNbv7iiQMks1FysnYOWVXzJ07j+cP/8xYFRWdRwMFgPE88p7C3INAq5Pn+az20+u3sH0xgkyQKms5/2dTBulYvP3mrl3hyhPqAzPJWJ7JkQpdjRJMx/qOnG1EUuLjJwYcW21EkeKM/j6IKHAtliGZkhpMFmmvsBF1WAg4T0UyBrpEcs48vqw40oNFtRtVBUXX64nkG4jmWjq4/1bqt1LpndzPW4rOzdVPbtNtUo1DB5Mm+UwVy6GMCOUoi1tvbSyqVKgdyTJYPNh/NXc+UWQuVruvcd999/OIXv+DFF1+ko6PjlO8Jh8P09PTQ2NgIwIYNGzCbzTz77LN89KMfBWBgYIA9e/bw5S9/GYDNmzcTj8d54403uOyyywB4/fXXicfjZTHbvHkzDz/8MAMDA+Wxn3nmGaxWKxs2bJhyPuMrqJ8La1S6rhOLxcriVCoFtXjxYgKBAG+++SY+n2/ORQpOzj0nq3z9hWOsbHCDrmOSBCQV0KrZBXj2xGksQ8ni+RXNyjR7LMRzxZn0xvJE9w2h6Tr6aI6XpsOLB0N8+JJmfryjD0XVeM+KWlxuN//8xhCtPid/9+HL6A6nCCfS+M0qhWyao0MJzPkEpAuoeRFJF9ALKV7afZRYMs2bx/PogkCNXSSSrd5vqMjU7leX1cyfXr2Id3viOK0mlgSdFBQNi2n+XFrVKlSzWTc7VSBHSbxOFcjhdDpxu91n7J05E2YtVJ/+9Kf54Q9/yBNPPIHb7S6vBXk8Hux2O6lUii984Qt86EMforGxkRMnTvC5z32OYDDIBz7wgfK2n/zkJ3nwwQcJBAL4/X4eeugh1q5dW44CXLlyJbfccgv33HMP3/72t4FiePrtt9/O8uXLAbj55ptZtWoVW7du5Stf+QqRSISHHnqIe+65Z9KIvxLjhapa16hKfbCGh4c53Bfi1QG4crGPq1aswOfzVfiez0bk4qHhFNGMwvbjUZI5Bblqr30LI05T0Rcfc1NE0YVaGBWo0jeWlTV+9GZP+Zi2eG2srHfzkx39HBhMUVBUfvr2AH2xHJ21Ti5dFOSayxbTpXVjTuaQIym8qTyDKYVf7Q0XK9jLWrH/xbnj4QHG1XkU4OolAd67poGrlwaxmyUOh9L8/sgIVywJsKLBPd1Qp001C9WZrjmNDeQYHwQ3VSBHe3v7tNfU+WbWp/C3vvUtAK677rqK5x999FHuvvtuJEli9+7d/N//+3+JxWI0NjZy/fXX8+Mf/7giw/uf/umfMJlMfPSjHyWbzXLDDTfw3e9+t6LP0w9+8APuv//+cnTgnXfeyTe/+c3y65Ik8dRTT3Hvvfdy5ZVXYrfbueuuu/jqV786/YceU0Edzs5FfqZiqCgKkUiEUCjEyMgIJpOJ2tpa6lo78akZTJ6aCVFCMP8lmnRd5483t2GWRB5/qx9VKzYGdFok4jm1CipTVJc4TUaNGQJuCwMJBWVUpCThZB27kkiZRHi3J44oCFyxxM/+/gQ/fqsPWdXJKxoOi4TTIuGwSLT47CTzCmubfezqSzCSSyGZzCwL2HBbTSwLWjkaSrKnL87xRGkmKqMxdAtwFKai0qKySgJ5VafWZeLe6xdjkkR8jqJLqljCS8A8B5UeppzNBVo5fbJAjnOyKO2pJmy32/ntb397ynFsNhvf+MY3pkzMhWLI+2OPPTbtOG1tbfz6178+5f5KCIKAxWKpyAo/W66/qfZRynEKhUJEIpFyjtPFF19cznHSdZ3FTQUCzsn9x2dDqCwmkU9e0Qa6zhO7hrBbJGwmgT0DKQoLsmJf/eJUYkW9kyWWBCEsdEUKZUtK1WF9s5tdfUkAGmss3Lyqnga3hecPhdnbn0DRdYaSBe69dhG3rq6joGr8+K1ebl5VRySd56WDIWrsZlq8dlq8dqwmE9FsgaFkHlkHr93BLRf5+N72bjKyRjFVe7JzZeYddecTj10sVurXdK5bWotpjAURz8poOnxic/u8zqFaa+pdiAVp4ZxzCswN1eD6y+fz5fWmWCyGy+WitraWJUuWVFT4GPv+umkWjc+GUJW4tN3L/32jj+ORYhCHWRQQ0c/SOtW5I05jOTCU5gAiJiEFQvGHp45aVcdGMtjMIpIIn7luMcdHMqxp8SJrOu/2xLBZJG5YEeR727sZSuYxAZGswsGBBJ0NbrojGQRB5JqlAZYE7bxwOIyAgM0kMZzIUe+uIZEtkKvw1U527M68JfyZYhJAVuDSdh82i4mtl7dW1Dt84WCIcLqA0yLRME3UHsD+gSQuq0TraNWK2bDQFsRUXIi9qOACFarxUX9ny6IqFAp0d3dX5DjV1dWxYsWKWec4TTb+fLYR0fViy4neaI4tq4I0e+3k5DS6rmM3iyTn1f13borTZAgCNNbY+NglTXRFszyzbxiLJPL/vrcTSRTZ1RtnIJGn2Wuj1dfEb/cOYzEJdEeyRDMFklkFUSiWVdo3mCKr6tTYTYiCwK92DnB8JIsgwPXLAkQyMlm5WKQ2llXw2SVyqkZB1ssV5mfG2REwiWJVdItJ5I51DVza7ptQyHVts4eeaJaAa6JnIZwqcGg4xSWtHgqqzpO7B7GbRe67fslpz6naRGEhuvtWg2hfsEJ1NiwqXddJp9Nly0mWZfx+Pw0NDaxdu3ZOw0Dn8wdVGvvJ3cNkCiqbF/u4/7p2ROBPfrSHrDIffr/zR5zGImswnMixuz/B/++GTn6zZ4i8onBwIEV/Is/BoSROi8SX/vMgd66tp9lrI5qV2dsfL1oRzTY6/E5298fpj+cxSSIFBRRdRdGKq0/ocGg4jQbkZIVETkVRdfxOMx+7qIEXDoQ4Hi2e/xbhTHpXzZ2AmYAN7TVs3bSIgqJyYCjF0jr3BEFaUuucsmXG2z0xjo2k8drNrGhwsanDN6NSSZN+gjko/no0lOZnb/dx48o6NrR5T3uc8fOqNvE8G1yQQjWf4emlHKfh4WFCoRD5fJ5AIIDb7cZut5cjFuea+Q4IKQZTtDKczNMXzfBXTx1GVTWEUlAAzEFi6fkpTlD8NDYRFARkTee141HeH86wttHFO70J/s9rPQDYBKjzWhlI5NnTl0RWVVQd/E4Tl7T5cNnMDMSyWEwi13T6ebc7RixXXG9dXusgryjkFZ2srLGpw4fNLPH8gWESuWJS8IuHIqi6gDA6p5k2BDbBLHKxZidgTguYtWJLk+ho7b63e+L87O0+PrKhGf8U67LjubTdi89hZkltMSn2mqWn16eqxJkKQk5WkVWddH7ustgWyvW30OJ4wQrVXCb8appW7uMUCoVQVZVAIEBnZyd+v79YzPXIEVR1/iIOzsYa1eKgA5Mo8JVnjxBJFVDUYpEeswhmSSAzO3/SKOevOI1FB7Ia2ExFqypdUPmbpw4iClSE+ed0CDitCIKMJMBgQkZRddx2E81eG5mCyrP7Q+QUjaFEjnjm5Hl8PJLl0jYfLruJ7UejbDsWZn2zh0vbfRwPZ/A5zCRyMglVxyIW+1ul8gozOS3n5lJbKVJWYLFHJ17QkUzQYs6gJEJ0NDewqc1JT0JFmYU/2eewcGn73Hgp5kIQVjfVsDjorFhjO1MWwvVX4pyqnn4+MJlFVQrBnOmXoWlaRRg5QG1tLSsmyXEau4/54mwFUxRryAnYzRKyqJKWdRQN3FaRrKzOsLrchSFO47EKlBsaajqE03mskySt7ulLgABbVtYiqyo9sQI9kRxffe4oiwM2RFFHAGJZGXmMyEQyKl2RHB+4qJE3jsWIpGXeOBGl1m3lqk4/HruFnb1xFCWL06TjtorIqkhe1ab83kTAboKsMrdJ3QKwtMnFBy5qYm29jTfeepvnhnWe746gZhPUm3LUqzqHdvbS73LhdrtxOp0oko2mQM28X6znynKZS5ECI5jigmKyEkpw6pOglOM0PDxMOBzGbDZTW1vL2rVr8Xg80773XBWqgqJxMKKwxlq8TF3V6afZa0PTdL758gmGk3nSeY3L2mv46TtD0wjVhSlOYxF0HW30s9tNAorGuEi8IrJedKU+tTdUcTw1HXqiOZp9djQN+mPZCvGQKLajPzKcIqMUg1sKqkZvLMtzB0Koqo7ZJBLLyIgaxLIKaVnDaYa8woQAC5tYdA2m56H+klWCdc0eWn0OljZ6GHDBxpp69g6k2HzpcpbUOst1EEvVE7Yd7Gf3YJZOD6xuKFZLKJX/maoVfDwr86tdA6xqrJnVOlG1CoKxRnUBMT6YovTFa5o24U5tqhynSy65pKI/zKmo1g6/p+K5gyP87niOhCyxrBNEQSgvZg8mCvREsyzx23hqb2iSO25DnMaiCALoxSPREXSgaDojiTyR3ETf29i1I4miNWMSQRQFBuJ5TKKOrIEkwtKAjUhWIStrZPIK246NUFBUVEBTi+8Lp2QcFgm3TUIUZMwiFDQNRQNFmNxays1xEKkAdAbt1Lqt3LCilnBaZtuxCNZRo+P+6zoQJVM50s/hcOBwOMr16wJtWcxHRrikyU6NpJBKpUgkEuUK4qIolkv/lEQsrZnJ5FVCyfwUs5qcahWqap3XfHNBCtX4hN+xFhXMPsdpJix048TTZV2zm7cPSSwPTvT9b+rwMpjIcTySJ1XufW6I01Too5bSxg4v71ley7+/cpzoJCJVQgC8dglV00nkNWQNBEFHQCenFiuDmCURWYORtIJJhLwqg6Zjs4jIilb+NkRdR9BVQskceVXDbipaUC4zrG7yYBIF9g+mEAWdZE5Fnof6jVYT1NfYuHxxgJtWNfDEzn4EUWBJrYMdh4vn8Phw9IKiMRDP0eqz0+Kz8wcbWycdW9O0itp1sViM3t5e0uk0TZhwmxzs2ROqsMCsVuuUF/1qFYSFWqNa6GNxwQrVZBZVT08PkUiEZDKJx+MprzmdaY5TaR/zbVHNhxC2eO18eKULs7nS157P5/nwUjNrrGa6hlP8+yGJYnCTUMUFahcWleKaz96+BDtOxMpllKZCFCCRO7nuZxKg2WsjJ2sUFJV4VkVRNXpjOXSKPcJqrCLJvEoyf/JbKN1DZHMnGz8Oj+n+e3wkw2UdPm5ZUw+6zouHRwinZPIzDQkszZdKcfPZRFq9Do6E0+RkHYdFwmUzU+c2o+s6H9vQTDKv4rZNvY7zVleUQ0NpNi32TVvXTxRF3G53RZk2KPZwGitgkUiE7u5uMpkMJpNpgvuwJGDVKlSG6+8CwmKxkM/n6e7uRlVVhoeHAYjFYjQ1NREMBue81P25ukY1duySpTk8PEw8Hsfj8bCirYGoVeBGKcWevgT9iTyKqs847PlCQwOShZlJ+dhj6LaImCWBdE6h6EEU0IXiNjapKEZFsZpZu0QdHQEBHRhOyzy9dxiTBAICqxrdtHvt7BlMUFCKa2szcQOO36SgQihT4LrltYSSeeJZmVWNLmIZhW+8cJRatxW3zcSKuqKXYrILcEfQSTKn0HSKKhRTIUkSNTU1EwqqqqpaFq9UKsXIyAjHjx8nl8thNpux2WwoikJ3d3dZwKqh/UW1Cuh8c0EJlaZpvPnmm7zzzjv09/fz61//mkcffZT29nb27dvHypUr58R6moxzdY2q1A4gm83S09ODx+Ohrq6OrLsVwWYhUO/ijTcPYhJFvn/3xfzho+8wmMijqedTf9mFoVSsFqYXt+yY/pXpKUral0rQjnU0jv9+iulYOgeHUjjMAgWl2IpEEIrv1ce9R6Ro5U2WMCxQfF9OVnFaJJpavKxuqiGVU9h+LExvLEuD24rHZqbJY+XgFJ+t0WObtsHh6SJJEh6PB4/HU/G8ohTXvoaGhuju7mZoaIijR4+Sz+exWq0TrC+XyzUvrXWmwnD9nedEo1HWrl1LOp2mvr6eq6++mq9//etlV8GBAwfmfQ3pXFmjKhQKhEIhhoaGiMfjWCwW7HY7l156KVarFVnV+PqvijlAf/++FfzJFW1YzSKHhtNYTOKsXUYGkzOtW5Cp15BEwGUVcVhMRFMF8qMuxqlWwwSKpYtyskpB1VF1nXhOQ9WKFltxrUxE1QXiY9bURPGkWxGKorW01slAMo/PPpqjpRe7G9+4spaLW70cGEjw7P5i2ag6j40Pb2imUChwEJA1nePDKRYFHPNaGX06TCYTXq8XVVUZGhpi48aNQDGoaqwFNjg4SDKZpFAoYLPZJhWw+eiga1hU5zk+n48f/ehHbNq0ib/4i78gFotV+LPPVYtnrsYvidPw8DCxWKxch3D16tX09PSgaVq5cZpZEnn/unpMkoAgCKxocCGrGjVWU7niwfknVaWwhNInm/3FwiEWrQ9lDg6OJFCuraiNzqY0I0ksXvRDycIEcfLaisEZuqpR0IvJxk5zsYFjXtZx2aRRwSru4yQCyXGBH2Pvu4IOCZ/DwqeuXcRjr/cylMjT4rORV3ROhDN4RksZyRqsa6khk1dY2Vj8/ZXO23d7ErzbG2dDu4/LFvlYSMb/lsxmMz6fr6IjORR/N2MFrK+vr9xBt9QCfvxjbCuj2WKsUV0AXH311cDEPCo4tyye0xk/J6scHk6zstGNSSye6LIsly2nknDX19ezcuVKbLZKd8v4sa9cUtlw7Uu/PUI4XSCRkzFLoGrFCLfTryNXbZwqklGf5jWwiNDsggwmhpLFdSZFO31BH5/zNNYtp2lFoRqPVQJJErCbReJppWwNZWTQRu0zXdfKScQtHguJvIYkQCgzMZlq7K8lllPJq3l++e4gd29qZ9uxMDrQ6rOTycu8cjhMXzTL0joX7X4Hly3yTah+vrjWQTgjszh4stq5pukcGErSUGObcSmluWCmlovFYsHv91c0ICx10C2JVzKZpKenh1QqhaIoOByOCuEqJTPPxKW3kJUpFpJZf+K/+7u/Y+PGjbjdburq6nj/+9/PwYOVHmZd1/nCF75AU1MTdrud6667jr1791Zsk8/nue+++wgGgzidTu688056e3srtolGo2zdurXsS966dSuxWKxim+7ubu644w6cTifBYJD777+/IqJvMqxW6wShmm+LaqEttt/sHebHbw/wyqEQ/f39vPvuu7z66qv09/cTCATYvHkzl156Ka2trRNEaiYi67GZcFtNrGuuoc5tRRSF80ikZsJ0AlZ0kR1OQN9o00R5GpGyiUU32lwjCRBOKwwkZTLayR2MlWCLJCIKxVJPiq5TUFWavFamswHMEtTYTDgtJnb1xfm/b3RzVWeA4yNpYlmZj13Wxpsnovx692AxeKLBjc9xcl1nJJVnMAO/eGeARo+NoOtkO5uBRI43jkfZdjQytwfjFJyJi63UQTcQCNDe3s6aNWvYtGkTN9xwA9dddx2rVq3C7/eTz+fp6uritdde49lnn+WVV17hnXfe4fDhwwwMDJBKpSbcPBuuvxny0ksv8elPf5qNGzeiKAqf//znufnmm9m3b185x+jLX/4y//iP/8h3v/tdli1bxhe/+EVuuukmDh48WHa3PfDAAzz55JM8/vjjBAIBHnzwQW6//XZ27NhRNo3vuusuent7efrpp4FiK/qtW7fy5JNPAsXIndtuu43a2lpeffVVwuEwn/jEJ9B1fdqGjOM7/ML5YVFN15ixwZxDykaJneinP1i8yVi+fPmMgkdmMvcH3rOYN7ti9EYzHBpO4bKIRLML0k3xNJneIjp9imNaKtZzpncf5rRi2aJSqt9cuVIrjaKTn1cd80xO0Wn22dBUjb54scHjoeEMdTVmohmF3Di/pVmAOpcVQRRwmiVEQSdXUHjjRISCpuNzmLFIAnaLSKvPzrGRDHsHEuRklXUtHlI5hecPhtkfFWj26mTHdeCsd1tZ1VRDi3d+gpymY64FQRAEbDYbNpuNYPBkwVxd18nlchUWWCgUIpVKoet6OYnZ5XKRTCbLN71nS7DOyTYfJdEo8eijj1JXV8eOHTu45ppr0HWdf/7nf+bzn/88H/zgBwH43ve+R319PT/84Q/51Kc+RTwe55FHHuH73/8+N954IwCPPfYYra2tPPfcc2zZsoX9+/fz9NNP89prr3H55ZcD8J3vfIfNmzdz8OBBli9fzjPPPMO+ffvo6emhqakJgK997WvcfffdPPzwwxNCUkuML0oLZ8fiOZtCWKqoMTw8TCQSweVy8ceXN1JXVzfryMaZCJWi6Tz+Vh+vnYiRzKmYRKixSiTy1SxW85+cXAp6qAzaE8r/rTyqJ6uLZ+ehbNFMSBU00pFceV4iRfEaTsoEHGYUVUYZDbAwiyCJIjlZIeiysKzeic0ksbM3gazqvG9dI9csDRDLKqxurKHVZ2dRwEFWVlkUKLr37BaJRo+VvFdn69WLsIyrfWiSRC5b5ENWNWRVO2tBFmdzLUgQBOx2O3a7ndra2vLzuq6TzWbL4pVKpYhGo8iyzPDwcIWAlfLBJisjNVdzXEjOeI0qHo8DlH20x48fZ3BwkJtvvrm8jdVq5dprr2Xbtm186lOfYseOHciyXLFNU1MTa9asYdu2bWzZsoXt27fj8XjKIgWwadMmPB4P27ZtY/ny5Wzfvp01a9aURQpgy5Yt5PN5duzYwfXXXz/pnCcTqoVeQ5qL8VVVZWBgoEKc6urqWLZs2RmF3c9k7iZR4H3rGgCBd3sTNLgtHItkpo1OKzJflsxM9jf/+53drcnkF2H9LB+jivqCo/9X9WK+1dhtChp4LQACqg47uuLouk5HrRNtNNKwvqboRt602E+z147bZqoIlJBEgSs6vCg9YDVP7mDUdZ2f7ugD4A8ubUEUz56ALCSCIJTLSNXV1QGwf/9+ANra2srilUwmGRgYmLKMlMvlwmazLfjnORPOSKh0Xeezn/0sV111FWvWrAFgcHAQoFyfq0R9fT1dXV3lbSwWy4QImvr6+vL7BwcHy1/OWOrq6iq2Gb8fn8+HxWIpbzMZ4ytTwLnr+lMUpWw5pdMZkqkUDfX1LF26FIdj9i24z4Rrlga4ZmkAgHd64nzqR7vQKdaaUxa0XMXClXWqtJoq9z2Ts0GkeBMwMY2qFD4xtYVhE0/W63OYoKAU3XxzeRYKuk7QaWYkoxDLyFhNAvVuK/GsTHckg6rpWEzihKoSuq6PJhkLXNk+fc1MQRBwWU2j7q45nPw0VOtakK7rSJKE0+mcUM5N0zQymUxZvEplpDKZDKIoTgjgOFUZqWrijITqM5/5DLt27eLVV1+d8Nr4Dz+TL378NpNtfzrbjGd8UVo4t4IpxopTJBLB4XBgtVp5eVDEbannky2tE1woZ8LpiOzFrR62rKzjxUMjZOSFcP8tfM3B5bUOjkeyFFQduyRwZYPOjohANKuXZ3WqozrRbVhibEB6EbMAnW6VIwmp2Mxy9GUzJ0PZJWFU4vRiEETJM3tqy3dyonmdaChbnlGbz4HXYabWZeVDlzROeR5qOiRyMuLouXWqa8Od6xtPY3anT7UKlaZpU+ZnjRWjhoaGivek0+kK92FPT0+5jNRkAmaxWKrq85+2UN1333386le/4uWXX6alpaX8fOkADQ4O0th48uQaHh4uWz8NDQ0UCgWi0WiFVTU8PMwVV1xR3mZoaGjCfkOhUMU4r7/+esXrJR/ueEtrLFO5/qo54VdRFMLhcLnFiN1up66urlwot6urC1NPCFFgzu86ZytUmq4zEM/z6WvbaXBb+MFb/YioTFN/dR44+z+y8Rf74yOZcuSjSYIDEcoiBadv2ZSqqY9/v6zDkaREwCURzqikR493sYq6hoaIeXQ7nZMiZRKKwR4ZFaym0YoUY8adTbv6gUSO3+wZYm1zDTesqCWvQJ174kVPEgU+cFHRZS/ns7P6/KeiJ5KhJ5rlskW+CUVuZ0q1CtXphKdPVwdxbA5YOBymq6uLbDaL2WyuEK6Ojo65/BizZtZCpes69913H7/4xS948cUXJ3yAjo4OGhoaePbZZ7n44ouBYlLcSy+9xD/8wz8AsGHDBsxmM88++ywf/ehHARgYGGDPnj18+ctfBmDz5s3E43HeeOMNLrvsMgBef/114vF4Wcw2b97Mww8/zMDAQFkUn3nmGaxWKxs2bJjyMyxEePrpWCWqqpYtp7HitHjx4glmvyAI3LjIwtq1bfMSrTSbuf9mzzAvHg5z08paPn1dBzeuquWR33fz+2MREnPdOwI4++tckzOh1t2YQ5Ys6CTnaD9j9X68VabooCGi6Se3Ks6reHFzWSGeK42hjb5HJGCFTqeZSF5nKKWgaeC2gaIJeGwWVE0lXdDIFjSU0dGspmI9P00Ht0VA1kZLJpklImmZ77/Wg89p4eZVdSyrd5XnUxKBkrVVyM2tKLzTEyecKrAo4KTJW1wjUzUdaRZrW9UsVHM1r1OVkSo9SnEIC8msherTn/40P/zhD3niiSdwu93ltSCPx1OOOHnggQf40pe+xNKlS1m6dClf+tKXcDgc3HXXXeVtP/nJT/Lggw8SCATw+/089NBDrF27thwFuHLlSm655Rbuuecevv3tbwPF8PTbb7+d5cuXA3DzzTezatUqtm7dyle+8hUikQgPPfQQ99xzz5QRf1DdCb+qqpYtp5GREWw2G3V1dXR0dOByuaZ8X+nkPRsRP8PJPP3xHGubaib8+Pf2J3ly9xB5RaN19CKxvM5Fk8dGjdVEIjd9jtvMWXjX3mRIArT6bZwI587K/saeUabRIrXZvIymT+5ajOSK3ZjVgkZWF8tH0e8wE8rIJHLglDR8DpHBLBRUHYECLR4riBo6Mjm5WAPQbJLwOUQUDcyiyGAyj9smsmGRF7Mk4rZL5BWVoOtkom5B0Xhi5wA1NhNbVk/t9TgTruoMMJzM0+gp5mOFknl+uXOAFfUurl4aPMW7i1SrUJ2NaMRSGSmv11ve50Iza6H61re+BcB1111X8fyjjz7K3XffDcCf//mfk81muffee4lGo1x++eU888wzFabnP/3TP2EymfjoRz9KNpvlhhtu4Lvf/W5FeZEf/OAH3H///eXowDvvvJNvfvOb5dclSeKpp57i3nvv5corr8Rut3PXXXfx1a9+ddrPUG1rVFOJ06WXXorT6ZzRiXm2WtEDvNkVYyQlE3RZJuS3OKwSQZeFm1bUsqrx5Pf9wHsW0+6381dPHT6DmVSnOI1F1TlrIjWeUopTUp5+u5ysMfZUafRYwWSmoKuYTNARdBNK5siqxYGWeXS6EjnieQ1BFE/uJ6eSl1VcozcgVpPIjSvr+ex7OhFEgYKikS2o2MdF8+m6frL8k6bzuScPMzIicMMN+pxE9PmdlooqFqWfjziLC3y1CtWFWpnitFx/p0IQBL7whS/whS98YcptbDYb3/jGN6ZNzPX7/Tz22GPT7qutrY1f//rXp5zTWCZz/Z1ti0pVVSKRCENDQ4TDYSwWC/X19bMSp+nGB0jkFJwWaVYuj6kYO/bli3z0xXM01pysYDEQz/HCoTC3ranj4TtXTDpGTtGxjlnAn+GeqXZxOhcYW/28FDouCsVoQEkQCCVz5AoaGgJ7B5NYJRGrVAy6GJFtJOUcKuKEChWSrtFikxnWBTa12/mTdQ4opHC53YQVeO1ElLrRjr4AFpPIhy9prlhHjWZkRvKQKai4bLNfNh9K5Ctys8YTdFn55BXtsxLBahaqsz2vczLh93ygFEwx9ks/Wwm/pcKvIyMjWCwW6urqZt3Wfqrxx86/L5bj/2zvYXHQwR9ubD7juY8dO+iyVLhzAJ45MMK7PXH8Tgu3rKqteG0gnuN3B0e4YrGP29Y08MKh0CmqVhjiNNeUUol1Tva5sgrgspnIyirhtDLqJhwt+aRqWKViqaeuWNFCFAGf04RVkkjmVcyiztI6H001JqJdMYJOM5FIhK6uLnK5HKLJQjJnpQEPfX2Fck27/UNpElmZTR1+RFHgwxfV8eaeBPGcfFpC9dKhEfKKRp3bisMyeS7WbC01Q6iqiwtWqM5WHpWmaUQiEQYGBgA4fPgw9fX1cyJOYxkvJnaziNMiUec680KeM3Er3ra6Dr/DzNVLfOi6TiKnlCtmf/+NPt7pidMfy5FTVO5c10BPNMfLh8NTVBK/8H6IZ4PxZ3deg4GkgsTkEYhjLd+SyOVlnfeuqeXmlXUMJQosrS8G9TQHQlzdGWRtc3FtuNQWY3Eszq6eKPuPdUM+jaqq7IxZES1WPEqQWp+HixusFAahyWMjlVNmLVYb2r0kc8qUInU6VIMVMRlG9fQLiKmCKebq5CyJ0/DwMKFQCLPZXK7tdfnll59Rmf+pGD9/v9PCZ29YPC9jT0bQZeGOtcXF8V/sHOSnO/pZXOvkr25dyjWdfmRV42OXNnFwKM1Sn4lIeIRMHHqSOn2ZC++HV02cyhMrAh67CZMIeVXn17uHODqc4cOXNFHrsuF1mFlaVxn6XGqLcSQOPbLKxkVtrGhwI6gFlsaTROJJlFyGQ4eG6I+mQdf53m+2EZJNXN0ZYFmTH7fbPaOmhEtqnafcZrZUq+WyEGtUgiAs+LG4IIVqMovqTF1/Y8VpZGQEk8lEXV0dF198MW63G0VRJlSHPxN0XeeHb/WjqBrXdPqJJOR5DaaYDbUuC8mCSjQjk8gpbOrwcVGjnaGhIbzJIbqGMgQCAT6yoYW/eaZ7XuZsMHdoQJvPis9pJZaRGUjm6E/kGEjk+MEb3dy0sr4i/HwsfbEsqq7hd1j47d5hvA4zt65pZHFrMZ1E1XQeefEgvX293HxRA+neGJl4hF0jveRyOaxWazkHqPSYaUuMM2GmQpUpqJwIp1lR7z4rpZ2qVUDnmwtWqOYimELTNKLRaNlykiSJuro6LrroItxu96QVNDRNmzOLKpwqoGg6v9g5RC6b4Ya6+QkGma21edUSP2ub3ERTWfLxEDsODpJIJPD5fLS2thIIBtEFiUUFmYve7uKVwVKzv3mZvsEcsKs/TWedzic2tfPS4RGyssqR4RS9sTwNNfYKoYpnC/zs7X7WNdVweYefZfUuFtc66IlmqfdYK8aVRIFl9U5MSZGr1i7hqrUnX5NlmWQyWX50d3eTTCbRNA2n01lORi0J2FzWs5upIDy9d4gDQyluXa1xcat3TvY9HYbr7wJiqurpMxGqqcRp/fr11NTUTHkSlZ6fK6tHEAQ+dXU7uq6zsy9BLCYiFDJzMvZkzHTepfJOQ0NDRCIR3G43DQ0NdCxbyb7hHCtrvfzbq110R7Jc0lrD5XU6ktvH610J5EI1V1o/35hlcAFwfDjDa8fD5GWVREYmU1BYUe/mskXeim0PDKbYP5BEEgQ2dvhpHG2QeNOqibU7AdY3uZAHBX53IES7305nXVH0zGbzpE0Jx1YUTyaT9Pf3k8lkkCSpQrhKQjYT9+GEzztDoVrf4iFTUOgIzL37cTLOtutP1/WqWK+7YIVKVVVUVS3XzZrOotI0jVgsxtDQECMjI4iiOCNxGstcCxWAdTSz//JFPkZGVI4enVhyai44lUVVcnsODQ0RCoWw2+3U19dXVG1//K1+dvTESRdUXBaJvKLxxokY+biI2a2TmUKkTMACdbw4z5l9NQ+FYgPO9U01rGx00Vnr4oOXNOGyVgrBigY3711Tz7pmz+QDjZ+JrpNRIJPIo+t6WagmY7KK4lBM9yjVs0smkwwNDXH06FHy+Tw2m61CuGbqPpzJ73pJrXNe1simwnD9XUBYLMVIuEKhUBaq8WtUJXEqWU6CIFBXV8fatWvxeDynlecE8xdNdDYTfqH4OUriPTw8jCRJ0+aBbV7sI5lXyBVUQmmZL7x3GTt6YuzaPUyfIFDrMjOcmpipaohUdaFpcDSU5rplQf7w8rZJc/Q8djPvWTG59TQVXpvIphW1eOynd0mSJImampoJFWkKhUJZvFKpFF1dXeXOuWMLsZYepWri1epiq9Z5zTcXvFCVWmGU+jmV3HrDw8NnLE5jKUXOzFdS8XwLFRTFKZVKMTQ0xNDQEJqmUVdXx7p16055fNr9du65so1vvdxFJF0gmpW5cXkQoQ9W1Ab47I2dPPL7Ln6+c3hePoPBmWMRi/lIdpPAOz0xhhI5mk6z825B0dB0HZtZKlsJ9TXWU79xllgsFgKBAIFAoPxcyX1YErB4PF5uh1EqxqooCmazmWg0itvtnrJi+dnmgq1MMdnF5brrruOFF15YgOmcHUpCpShK2TIIh8Mkk0mi0Sh1dXWsWbMGr9c7p3cvZ9vqmSsKhQKFQoHXX3+dfD5PMBhk+fLl+P1+8qqO1STO6Di93RPn+mV+nNY6Wn32Ym8dEW5c7sdms/GF21ewtM7Fv758gkTeiKyoNjqCdpbVuREFAbvFhN8x+7WfEv+5d4i8rPL+i5pOvfEcM9Z9OLbLQqmaeClwI5PJ8M4771AoFLDb7RPchw6H46yLxkK4/qoiPL2UiArwq1/9iv/6X/8r99577wJOaf4xmUzU19fz2c9+lmuuuYbly5fjcDhwuVxs2LBh3r6U+ax+Mddj5/N5hoeHGRoaIplMIggCy5YtIxgMlqMWQ8k8X/3dMRb5Hfy3a9qnHS+SLvDDN/uwmSW+eEexqPBkx/kPL2uh0WPjH393jHC6gKrpZCfPCl4ASvM4H1wvs/8MmYJGi8/B2hYPa5pqsFkqrYy3uqIAXNrum+ztFfidFjJ5BZM4s35UZ4Ox1cRL5/yKFSvI5/MVwRuhUIhUKgUwwX04380Iq+VYnW1Mpf5R+/fv58/+7M/43Oc+x0c+8pEFntb8sHv3br7zne/ws5/9jHA4jKIorFu3jksvvZT+/n7C4fC8ngTVblEpilIWp1gshsfjobGxkfb29nJFjbGYJRGrSaRmBusKXoeZKxb7aJjEvTN+3ld3+tF1WNng5HO/OsCOnrlqkHE6zLScU3W0GplPltQ62dThI5qVMUuVn1XTdN44URSqS1q9p8wpWt3oxm0zIYrz95s4E8a62KxWK1ardYL7MJPJlMUrFouVmxGazeYJkYcul2tO3Ieapl2Yrj+AWCzG+9//fq699lr+9m//dqHnNG/s27ePXC7Hd7/7Xe644w7++q//mqVLlwIzD08/E6pRqEqV20vFcZ1OJ/X19axcuRKbrRhWHIvFJh3b6zDzN7cvn9F+REHggxdN7NI62byfOzDCf+4LoVPPn1zZzqFf7Cc5u0q2Z8jp1BqcbLvx4nXuilm7z8o3/2A9h4bT9CXyRNKFigrloihwx9qG8r+nYyiR56ndgzR5bdwy2uqj2qyEU1kugiCU28GP7aZb6uVUCt7o7+8nmUwiyzIOh2NC7pfD4ZjVZ79gLSpN07jrrruQJInHHnvsvD4IH/vYx/jYxz6GpmkTKqjPp4iM3Uc1BFOUIhoHBwcJhULlyu2TNWSc7dizZbLzrc5tQVE1Ak4zF7d6+NV/3ci3XjnBb/eHiE9bzHbOZjWP45xb7kOLALU1Fu5c34zZJLGywU2jx4ZvkvWpVv/k1cvH47JKeB3mclPDarz4nu6cxvdyKo11KvfheAvMap08sKQaj9XZQPzc5z7H9u3beeKJJ6ZtNjiel19+mTvuuIOmpiYEQeCXv/xlxet33313eRGu9Ni0aVPFNvl8nvvuu49gMIjT6eTOO++cUGYoGo2ydevWsu9469atxGKxim26u7u54447cDqdBINB7r///gklksYiCMKEnlTzXT29tN+Fsqh0XScej3Po0CG2bdvGvn37MJvNXHzxxWzatGlKkSqNPZ+MnXcqr/DEriE0XacrUmxRHnRZ+J83d/L/3bqMppozL7I7bu9zPN50CGMeCzmPmSEAkgnWt3r50CXFoAdRFPA7J7aWnw1Oq4kPXtw04zyrhWAuf6eCIGCz2QgGg3R0dLBu3TquuOIKbrzxRq644go6OjqwWq1EIhH27NnDCy+8wPPPP8+bb77J/v376e3tJR6Po6rqhRue/tWvfpWnnnqq7AKbKel0mvXr1/Nf/st/4UMf+tCk29xyyy08+uij5b9L0XYlHnjgAZ588kkef/xxAoEADz74ILfffjs7duwoL9jfdddd9Pb28vTTTwPFLr9bt27lySefBIquq9tuu43a2lpeffVVwuEwn/jEJ9B1fdpeV+Pr/c13PyqYXzGcSqjS6TRDQ0MMDg6iKAq1tbWsWrUKn8834xN+NgL76PYekjmFT1+7aMo+WPsGklhNIktqneRVgV/uDnHtCpEWr51dfUmGEnmiWYXnDozwwzf7+OD6Bl7rirGmwcW6lhr6943MaC5TU41tRGbiOjy76EBWhlWjVtS87acKrYSzEQYuimJ5/aqx8aRbXFGUsuswmUzS19dHKpUqe4AOHDiA1+stW2ClzurnM6a///u/Z8uWLbN+46233sqtt9467TZWq7XCfzuWeDzOI488wve///1y+/nHHnuM1tZWnnvuObZs2cL+/ft5+umnee2117j88ssB+M53vsPmzZs5ePAgy5cv55lnnmHfvn309PTQ1FS86/va177G3XffzcMPPzyllWgymc5biyqXy5VznTKZYgHYpUuX/v/b+/Lwpsq0/Tt7kzZJ1yRNulKgFFoKlK2gIi4siriN4KAM+PNjRFREZdTRcf0GxlEQZ1zRccQd5xv3ZRhgVFRaFgsoS1nbpkmTNF2z73l/f3TO8SRNS9ombQrnvq5eSnOanJycvPf7PM/93A/S09P77TMY7XnXtznh8QfhCwTB43Z/LZcvgDf26MHjAE9dU4IzVuBUuxXuIA+3zshFkoCL9GQh7ppVgE3f1MPi9sPhC8DjD8DtD8LtCyJdzIeAx4GAx4HeEu1o+0Qkp7Ohp/OMP4FJ+MBIpQxJfA5+PSWn2+OBIInJQM5ExVAKPPh8PtLS0pCW9ot6khACt9uNXbt2QSqV0htQu91OE154/Ss8MBgIhpoI+TfffDNMJlPIL3k8HrKysnr4k+jx7bffQqFQIDU1FbNmzcK6deto25Oamhr4fD56zDwAqNVqlJaWoqqqCnPnzkV1dTXkcjlNUgAwffp0yOVyVFVVobi4GNXV1SgtLaVJCgDmzp0Lj8eDmpoazJ49O+K5hfv9DUZEFc/XoHrCampqQgxgs7KyBqw26gvB3n95EfyBrkZOoGtBO2l24HCTFQvHK5HE5+LConR6dtDoVA6UUjkuGN11X3xzsq2rGRTAuoVjwEEX+W071oLv6zrwP5U5qDXakZeehIfnjcJNWw7C4Y3mmp5Li2osoq+ej+dxgJmjMvHcDePB5/0SVVhdPnxzogXeAAGfx8Gk3FTk9zBVlwlde9fmpSdrpESNqBLpnDgcDl23ys/Pp4VOwWCQto6y2+1oa2tDQ0MD7Twfqf41HFWDfGbISSE/Px8NDQ0DeuL58+fjhhtuQH5+Purr6/HII4/gkksuQU1NDUQiEUwmE4RCYciuAQCUSiVNnCaTKcTPi4JCoQg5Jlw2nZaWBqFQ2I2AKXA4nG5ENRwjqnADWAC0k0asd1PRnneK6BdSDBKCddtO47DBihEZEoxRpWC8RoaF47s+r1e+12L/aeBP18txssWB16oacf0EFdodPpSquxpLAeDv1TroO93ISRXhrb1NsHr8aGhz4n//dRIObxAcAJnJfLQ4KMOl4auu6z9iKNwggJDHxVGjDeU5v9SR/EECXYcLrQ4vVDIRog2o9jZ0wB8gyEuXQMgfHotkohEV8EuUxyQaLpdLkxAT1OBKSryh0+lgt9sRCARo9SGTvBI9fciP1+K8ePFi+v9LS0sxefJk5Ofn48svv8R1113X49+F3yCRLl5/jglHuJhiuNSoejKALSwsxI8//giNRhPzHVN/b2AOAD6Pg2JlCi4tzsDY7NAvU4vdC3egy07nRLMDFpcfgSAwsyg95DiJkIcZhamYMSIdm76ug9cfhJMDur8qRQi0O3w4W2qPg0SULMQTvaUOe0YQwOEmCz4+aMC4bCkdVaUnC7F4cg5OtzgwRpmCtOToNkPTCtPh9Qd7JKloScHrD4LH5QxayjHRFm5q7YjmvKjBlZHSh0zvQ6PRCIfDEUJ4zCgsUayjBu0smI2jAKBSqeD1etHR0RFyMc1mM2bMmEEf09zc3RG8paWFjqJUKhX27t0b8nhHRwd8Pl+3SIuJ4RRRRWMAS72XeLyH/p43h8PB7+cUwekNwOMPgh+2wDw4pwi7vjdBlsTHb6ZpYLJ6kJvW3TvurosLEAh2vf7rVTq4fEEIOEGIuIA/CNi8QKRFmf9fgZ3/v/uP84ukekMkyg4C4IADDsZk8CGT8CDkdKnMwEj/ZUlFyJL2zZMv0mfKRDRE5fIG8MkhA+RiAa4oi1z3jiUSUV3XF6KKBA6HA7FYDLFYHJKpYqYPKel8XV0dPB4PRCIRSkpKkJeXF5P30F8MGlG1tbVBp9PR6paKigoIBALs2LEDixYtAgAYjUYcOXIETz/9NACgsrISFosF+/btw9SpUwEAe/fuhcViocmssrIS69atg9FopJ97+/btEIlEqKio6PF8IkVUidRH1VcD2Hi7s/f3eTkcDl7YpYXF7cMDlxdBLv6l/0bA4yKJ33Xd2xw+vFGtwyXFmbggLKLiANi8qw66VguS4QYJEiTxeRiRmYQjRicCYZeUWob9pIusFozLxPbjbfAGWKrqGV1kpErh4cELM8DxOmGzmfD1f/T0kEKZTNbNZXywwONyIBLw6NrmYCDRiIpaO2KdMekpfej1emG1Wmnj7qFEv4nKbrfj9OnT9L/r6+tx6NAhetDZ448/juuvvx7Z2dloaGjAQw89hMzMTFx77bUAALlcjltvvRX33XcfMjIykJ6ejrVr16KsrIxWAZaUlGDevHlYsWIFNm/eDKBLnr5gwQIUF3c5IsyZMwdjx47F0qVL8cwzz6C9vR1r167FihUreu0LGyoxxdkWfKfTSZNTuAFsbzdoPImK+dz9+fIWZIhhsHAgFnRfZKhrYrZ7YHX7cbrFQRMVZemkNxjxXa0NzS4ectPEKBRwQADweAJE+sSYVyBIgPp2F/hcDrggcLOzGXtFizOAVFU+xmTL6EZVq9UKm80Gq9VKu4wLhUJ6caMIrL8j4qO5r4R8Lq6bOHgGtolcoxqs8xIKhSFDK4cS/SaqH3/8MURRd++99wIAli1bhpdffhmHDx/GW2+9hc7OTmRnZ2P27Nn44IMPQlh706ZN4PP5WLRoEVwuFy699FJs2bIlREL97rvvYvXq1bQ6cOHChXjhhRfox3k8Hr788kusWrUKM2fOhFgsxpIlS7Bhw4Zez38oGn57eo1wA9iMjAwUFhaGGMCeDYlMVIsrel5gKKIar5HhnktGIDOZj7a2Nto1QyKRIDs7G09eW4S3fjThgqJ0jFYko7HdhXJNCpZuOYQmqxfBCG+bByBFxAWfy4U0iQ+7xw+ZgAMry1YRkcQDbrsgD8Wqru8o1aialJQUkiqibIIoAmOOiGcW6SkSO9uE3UT1+jvfiYpCIlyHfhPVxRdf3OsN9u9///usz5GUlITnn3++18bc9PR0vPPOO70+T15eHr744ouzvh4TQx1R9WQAW15e3q/R2YNFVPGAzR3Axk+PoiDZjzFJXQIJlUqFyZMnIyUlBZ8fbsbx5jY8fsVouiA/8r9TVe+6ZAT+tO00OlzdRywGAEhFAmy8bix8gQC2H2/DhweN4HM5cHr8bHTFQBKfg6/vuQAZKb3Xn9odXvxttxYLx6swhlG3CDdpZcqkqQm7zNRhuMddIiyGTCQiUQ1l3Wyor0ViSDqGAJEiKiD+N6jNZsPhw4d7NIDtL6hzjgfZDvR6BAmhpeZMeDwe+P1+1Bw9gTqDH740MWbNHIW3DnViqlyKkSldfTfV9R2wuPz45GcTjhntuGGiClaPH25vEAe0nRDxf6lL8TgAVYoS8TkYq5ZCKRPhle+1ON3igEIqhMcfhFjIg8cVYAUW/0VmihBiIR9tdi8yUnpW8+0+046f9Bb4A0E8NP8XQ+KeTFqZE3ZtNhvMZjPdpEqRlt/vh8/ng9/vTxiVWSIS1fk6NBE4j4kqUkQFdC30/XVviASmAWxrayt4PB5ycnJ69dbrL+IlCBlIRPVjYyf+UWPEdRNUmF6YhkAggNbWVphMJrS3t4PD4aA0PxsVE7ORJRPDaPHA4W2Dts2JfxwwIDdNjLWXjkC704edx1vR5vBiw3/q8XOTFRwQcLkcuH0EXA5ACOgUoJgH3DhZg9suyMNBnQU7j7eAz+UiPVmA0YpkFGVJ8MmhZnS62WH3HABqeRK2VGnhDxIsq8wLEb0wMackC/5gEDOLMiI+Ho5IE3YplRmVOmxvb4fT6cTOnTshkUhCIi8XR4TstBQI+YMnogASl6gS7ZwGCyxR/RfMiGqgIITAarXScnKgq5E5PT0dUqkUI0aMGPBrREK8lYv9k9Z3/ddms6O21gSz2QyRSAQrPw2nOfko4TcjPT0dGRld0dOITAkemjsSbl8Af9p+BhIBD89cV4L0ZCHy08Votnrwfo0B2nYn/MEgeBwuOAjAHwiCw+VAnSoCF0HMUftxwGTH36t12FHbAn2nB0WZYlxTrsRoRQoKMiS4abIGj31xHFUN1lhepmEHAkCaJMAoRTLanb6IohcKIgEP1w5wKm+4ykwikcBsNqO0tJQWbdhsNhw8rcdBoxvqFB6m5MlCCCzeDguJSApDlfpLhOtwXhNVuDwdGFjq7GwGsMePHx/wefeGeN1Q/Y2onE4nMgLtuCqrHbC0gqdUYuLEiZBKpXjxOy10HS7IJUAZIXD7AuDzuOBzOchMEYIQgl9PVkPB6NkR8LjISRPjd5cVYc3sQrQ7fEgW8XDcZMfvPq5Fu8MHhycAjUyA/zvhRbuvEyfNdlxfrsK3p9sxIisZH9QYccesAhRkAClJfPzcdH6TFNCVLr2hQoPZxQO3TesvmMINyr6tyO2H+JQZ+VIu5Dwf7bBACTeoxlQmgcXKkSURiYpN/Z2HCCeq/kZUfTGAjXfEkwipP5/PB7PZDKPRCJvNhszMTIwpHo2MjIyQL9nNUzQ41eJAwGSFwxvAhi9PITNFgLWXFdGvScnUfYEgvjhsxmhlMsb9191iyx49Gttd+P3ckZicn4pHrxiFp3ecwYzCdGQlBfF+mxPC/06hbbZ58fFvJ2PV1sM40+qEuatDGCkiPpQyMextrthdrGGIR64YNaQk1RMpSJP4uLKse/RGCIHL5QpJHYYLN5gE1tfhhL2d01AiEc9psHDeEhWfz++xRnU2UItxc3MzLBZL1Aaw8VYWxpuoekIwGKQl5a2trZBKpVCpVL0qGFMlAkzJT8W+Zg64HEAi5PZYF9G2u1Bd34HjzXaaqFrtXmjbXThqtGFKfipmj85EZWEaRHwu2traMErQjgmTKvBBjQF56V3OCPPHKaCUiTBjxC9OKH9fOh6f/WzGPw4YoOv09OfyDFtIBcDGX43DrDHd/T4HE329ZzkcDiQSCSQSSYhww+fzhaQO6+rqYLfbweFwkJKSEhJ5nc0eiJXMJxbOW6ISiUT0hE0KvfVShRvASqVSKJVKlJaWRp1uOJciKkIIbDYbTCYTmpubwePxoFKpUFRU1KdOdg6HgyQ+F49eMbrHY0ZkSjB/nAKFGWLs13bi88PNuGq8EgaLBx8eMmFKfioA0I7tHA4HyQIOMpKFWHVRAf08V5UpcVVZqK1WerIIyytz4fb58eL3uqjPe7hDAoIfHrgYSYLEWAJisQALBALacIBCuD1Qc3MzTp8+Da/XS5uzMgksKSmJ/h4lGimwNarzEAKBICSiArov9D0ZwI4ePRpice/+ZZHA5XLh98dPZTYY867cbjdMJhNMJhM8Hg8UCgVKS0uRmpra7xv6bOfM5XAwe3SXauzHRgsc3gC8viDmjs2EMoLvXH/OY1ll3nlFVCIBB9o2F93cO5SIJylQwg0nEUKZmoViSVfUznTcsNlsMBgMcDgcEAgEkEql8Hg8aGtro0dlJEJtiK1RnYcQiUTdxtVzOBwEAgF0dHT0agDbXwxGRBWP1CI16+ro0aOw2WxIS0tDQUEBsrKyBizl7+s1ubZchRkj0pAt+8Vrzur2IxgkSJX03ijtCwTx3Nf1yJaLcPPU0GGAYgEPO1ZPwrUvH4DbB/S+nRjeY0RGZYoxUWrDqB7mQ/UVLTYPPjlkxEWjM1GsjM1zxhIubwBfHjYhScDFkqm5ALq+/1lZWSFz9wKBAO24YbFY0NraCr1ej0AgEOIoTkVgsRylEw0SMcobLJy3RMVs+KUMYIPBIH766ScA6NUAtr8YTjUqQgg6OjpgNBrR0tICAEhNTUVZWRk9wC0W6Ou15XE5UDPGohNC8L//OoVAkODP14yBgMft8To4vQHUt7lgtntxc4TnVklTUH3/RWhsc+Dv35/B50c74UUQlGEr46wj/PXwIK9LR2fimWtG4fvvvwc3RuMydB0umO0eHDfZ+kVUA12AfYEgBLyeI40kARdFWRJIk3rfyPB4PMjlcsjlcpw5c4ZW7LpcLrr21dHRgcbGRrhcLohEom51r4FuZntDIjq6DxbOa6Ly+Xx4/vnnMWXKFHg8XYX0vLw85ObmxiXEHg41KrvdTqf2gK7+r4qKChw4cAAqlSqmJEWht3MmhODftS3ISBbStSgmOBwORmSI4f7vrCIA+PhIGw6d8WPi5ABdtwIAuViAh+YVQRKhT4iquRmNRhxpaIbdxkVBOh8n26NN1SY+eU3WSPDSTRPgdDpj+rwTc+WQiwVnHecRD7TZvdh2rBkjs5IxrTCygSqHw8Gs0X1TNVLkyRRuMMcGUcIN6qe+vj5EuBFe+4qF4wYbUZ1HMJlM+Mc//oGXX34ZTU1N6OjowPXXXw+lUol9+/ZBJpPFLQ8cb+Pb/hKV1+ul+78cDgeysrJQUlKCtLQ0+lrEs0ert3O2uPzYXtsKIZ8bkagA4HaGYAIA6trc6PQCdk8oUQFATmroYur1emEymWA0GuF2u6FUKnHZ9HIsTJFCwOOi0+nFr17dj2ZHf4wBw69ZPyfuxgg/G504YrBiRCo/pp8nh8NBUVb/XVYGsgBzuQCPw4nL5ODezqkn4YbT6aRrX2azuZtwg0lglHAjWgxFjSpR1I/nFVERQjB9+nQUFBRgxowZaG5uxqeffko/PpxScwN9/kAggLa2NhiNRrS3t0Mul0Oj0UChUETc/Q3GvK5ISJUI8KuJKqT2IF2PhFUzsnHoqAVObwDNVg+UstAokBLJGI1GtLa2Qi6XIy8vDwqFolvNLVUihEwi6CdRheNsE3fjS2AzRmbA4fGjv197XYcL/zneghsmqZEsSoylI00ixI1Tcs5+YB/RH/LkcrlISUlBSkpo+tPj8YTI5qkNIY/H6xZ5SaXSHsmIVf2dJ+BwODh69CiSk5Px6quv4r333gt5PFEjnlg9PyEEFosFJlOXlZFAIIBKpYpaxdg14NCLn/RWXDgyvde6QKzOGQBmjOie0qmq68DOE61YPCkbuWnikIF6EiEPIi7By99rwedy8L9XdZmnOhwOGI1GmEwmcDgcZGdnRyWnL82W4VSLux/vLlr0RmADXySykvl4+5bJUMnFEAt5/U79/X23FsdMNqRJBLi6PHa9V4mY0orlOYlEIohEImRmZtK/o4QbFIE1NTXBZrMhEAj0OKgyEa/TYOG8IioAtBFsNPL0WGOoIjan00nXnfx+P5RKJcrLyyGTyaK+8ann3vqjAafMDgh4XFw4cuBD1fr7xTtmsqHF6sHTO+qQn54U0oel6/TizeNBaFRARa4UBoMhxCmjpKQE6enpUb/2g3NHYX5pFjrsXrywqxE6y2A1Bg+s7iXkAtMK0rD55gkxMVq+eVou/nW0GbNHZ5794D4gERfgeJ8TU7jBfE1KuGGz2dDZ2Rki3ODz+QgGgzAajXEXbiQa+r0l/u6773DVVVdBrVaDw+Hgk08+CXmcEILHH38carUaYrEYF198MY4ePRpyjMfjwV133YXMzEwkJydj4cKF0Ov1Icd0dHRg6dKl9Ie6dOlSdHZ2hhzT2NiIq666CsnJycjMzMTq1au7Sc/DIRKJIhLVuZL68/l8aGpqQk1NDfbu3Qu73Y6RI0figgsuQHFxcZ/VjNRzX16ShVK1FOM1seu/6c81+c3UHKyeXYhRWRKMyAyNiJw+P/xBIJPrQJrlFPR6PRQKBWbOnInS0lJkZGT06b1LhDxUFmbgyvFq7Lz3Qrxy03gokvn9//IMCJHOO/SezZRwMXOEHEum5mLZzIJuJNXfe7AoKxl3XjwCsj6kYYcrhoI8KeGGUqnEyJEjMXHiRMyaNQuXXXYZJkyYgJSUFBBC0NDQgKqqKuzYsQPV1dU4cuQItFotOjo64tqnOZTod0TlcDhQXl6OW265Bddff323x59++mk8++yz2LJlC0aPHo0//vGPuPzyy3HixAnaNXnNmjX4/PPPsXXrVmRkZOC+++7DggULUFNTQ3+5lixZAr1ej23btgHoGkW/dOlSfP755wC6Qugrr7wSWVlZ+OGHH9DW1oZly5aBENLrQMbweVRAV+ovnkQ1GFOErVYrWltb0draiuTkZGRnZ6OsrGzAPR8UUY1WJGO0InbjSfpL3kI+F6MUyXhw7kj6dx6PB0ajEX5zE24u8qMoPwVq9eiQqdKxABdcPHTFGBxusiFLKsC7e3SDGGVFPiMAUEuAPDkfPE4AV2a0QcKzQNRuwYkTrThh4SJNloILirssh+K1CLt9AdS1OjAyKyVqgcP5GFH1BXw+H2lpafQGfeLEibRwg0odtrS0oK6uDh6PB2KxuFvdSywW9+v9UMrHoUa/iWr+/PmYP39+xMcIIXjuuefw8MMP47rrrgMAvPnmm1AqlXjvvfdw2223wWKx4PXXX8fbb7+Nyy67DADwzjvvIDc3Fzt37sTcuXNRW1uLbdu2Yc+ePZg2bRoA4LXXXkNlZSVOnDiB4uJibN++HceOHYNOp4Na3WVguXHjRixfvhzr1q2DTCaLeI7hYz6Aoa8h9QdUD5jRaITVaoXD4YBGo8GUKVNiOu8q3s7s/UUwGERraystCklLS4NGo0FQp0NxcfHZn6CP8PqDeKNaC5+fYGKuDEkCHnLSkmiieua6cdC1dcmUt+7XxUiE0TNS+MC9l4/CUaMdSUIexAIeri7PRlGmmF7E2jos2FXbBr/XC7fuCJKTkxEMBqHX6yGTyWLqvLCvoQNHDVa4fUFMykuN6m8SRVnGRCIRFQXmOTGFG9nZv9QLKeEG9RMu3GDWvlJSUmI6ey+eiEuNqr6+HiaTCXPmzKF/JxKJMGvWLFRVVeG2225DTU0NfD5fyDFqtRqlpaWoqqrC3LlzUV1dDblcTpMUAEyfPh1yuRxVVVUoLi5GdXU1SktLaZICgLlz58Lj8aCmpgazZ8+OeI6RalSDIaaIVcTm8XjoupPb7UZWVhZ90+bkxF4FFU8S7+l5CSGwuv0RzWopcjaZTODxeMjOzkZxcTGSkpLocRBng83th77TjREZYrzwnRajFcndvACBLjIMBoMghEAkEuGmKTk43eJAdV0HxqllUMt/URWWaWR48otauHxBTMqRIyPZhxNmJ+JBV8kCDq6dqMH1FTm42OHFW3sakS7pmivF4XCQmpqK1NRU5OUBqRoHeBwgTRiE2WymC/i1tbUIBoP0Akb9SKXSfi1iY1RSuH3BPsvVE5EUEg3RyNMjCTeCwSDtuEHZRVmt1hDhBpPE4tErOVDEhaiYzaJMKJVKaLVa+hihUIi0tLRux1B/bzKZoFAouj2/QqEIOSb8ddLS0iAUCuljIoGyUGLuUhK9RhUIBNDS0gKj0YjOzk6kpaUhPz+ftjKiXDXihf6c+ymzA0eNNlxQlI7MCCPOe1ugPv25Gd+fbsfNUzWYmCuHz+dDc3MzjEYjHA7HgH0GN//QCH2nC9eVq6Btd6HD6aOJiiIm6r9UCiQQCODiUekQ8znYU98OQoJ4cuFYfH2yHclCHnJSk+AJdN1Dl5Rk4e29OnC4gIgDeGLMVm4fQX2bEwaLG7IkPqQiPkarpBGvRX66hHai4HA4OHPmDKZNmwZCCN37Qw37PHXqFHw+X0jjKvXTkxs+BYVUhDlju39ne0OikQJ1Ponmq9dfeTqXy6U/PwqUbycVdVssFuj1ejidTgiFwpDIKzc3N5Zvo1+Iq+ov/KJGE06HHxPp+P4cE45Iqb94R1T9eX7KyshkMqGlpQVJSUlQqVQYO3Zst53PYJjS9hWB/86Gp/4bCT09b2aKEEI+F0GPA0eP6tHS0oKUlBSo1WoolcoBj2mYXpiKqjqC8hwZNKlJSJMI0OnwIln4y3vlcDjg8Xjg8/khC9f0EemYUpAGLqdrAdl25zT8cKYdxk4nvlg1FZ1OH8ZpUtHU6cJBnQUOTwCN7a6YRFZqGR88Dg+5GRIsKFMBBBDxebhzdlHE4w/pLPjPcTOuLFNhzH9NaJmbs+TkZLqeCXRdO8q0lbIN0mq1cLvddP2DWsRkMhmSkpIivm5fkEgRVaIRJ4VYpiM5HA7EYjHEYnFIMOD3++m0IVXvPmeJipoRYzKZQvKnZrOZjn5UKhW8Xi86OjpCoiqz2YwZM2bQxzQ3N3d7/paWlpDn2bt3b8jjHR0d8Pl83SItJnqqUSVKROVwOOjUXjAYhEqlwqRJk5CSktLjzZqIRDVGlYJRimTa3ija53W5XNBwLbgqqx1OYwtkKhUmT55MN1N+dMiIQBC4YVL3fp5ov8wXFKXjgqL0rmmxwiTUGq14e78RE3JkuGGiCnx+l4OD20+wv74Tk/Lk9Jh2DocDPu+X12lod+CE2QF/ELiyVIGMZBHONNuQmSzAw/NG4Z81OjS0D3xAoyyJh5LsVASCBJePVWBqYRq27tcjI0WE5ZV5A35+IHTaLnMR83q9dPrIYrHQjuNCoTAk6pLJZH0q3icaMTA3KYmEwXCmoIQb1JocCMS3xhot4kJUhYWFUKlU2LFjByZOnAig6ybftWsX/vznPwMAKioqIBAIsGPHDixatAgAunzWjhzB008/DQCorKyExWLBvn37MHXqVADA3r17YbFYaDKrrKzEunXrYDQaaVLcvn07RCIRKioqejzHnlR/Q1mj8nq99HRch8OBzMxMFBcXIz09PaobNN5E1V/0RFLhzxue2qSmJYdPBw4Sgu9Pd4CAYO7YTOxrsGBKvjyklhXNdaBqT9RnIk3iI0nIQ3aqOCRa3V5rxA+n29Hm8GLheFXE5xqjSoE/SFCUJQE4HLy1V49mqxtNbVZ8e1QHtciHPCkPWlv/Ph8OAGkSD5eOzoCPcKCUinBFqQo8Tldab2QvTugTcuUYr5EN2IRWKBQiMzMzpP5B7cCp6OvMmTOw2+0hrgvUT3Jyco/3cSKRQqISFWtK2w/Y7XacPn2a/nd9fT0OHTqE9PR05OXlYc2aNVi/fj1GjRqFUaNGYf369ZBIJFiyZAkAQC6X49Zbb8V9992HjIwMpKenY+3atSgrK6NVgCUlJZg3bx5WrFiBzZs3A+iSpy9YsIBWdM2ZMwdjx47F0qVL8cwzz6C9vR1r167FihUrelT8AYkTUVGqNZPJhLa2NshkMqjVaigUirPWA6J5/lghXs9N5cpPnDiB5uZmCIVCZGdnR0xtUuByOFg9uwCEANX1nfj3sRaYrB7cPFVDn2tPoGpO1E6RSu3xeDwUZInwx4Wp3f5mSn4aWmxeTO7BaxAABDwuJuZ2NW9arVa4rW0IdFjhdgKtHj5swWSY3R78YpfUNyQLeXD7Avi+rgMXj86CXCKg3Th+VaE5698zSSqWn2P4DhzousbM9JFOp4PNZgMhpBt5Ub1BiVQPSlSiGorrNOzl6T/++GOIou7ee+8FACxbtgxbtmzB/fffD5fLhVWrVqGjowPTpk3D9u3bQ3paNm3aBD6fj0WLFsHlcuHSSy/Fli1bQtRG7777LlavXk2rAxcuXIgXXniBfpzH4+HLL7/EqlWrMHPmTIjFYixZsgQbNmzo9fyHskZFCIHVaqWn4/L5fGRnZ2PkyJF9mo4bjnjL62P53JQRbnt7OwKBAD26Plq3jMKMruuUKubDZPFg1qjeXTKCwSACgUBIoZzL5YLH4531y69JTcKKC/J7PSYQCMBkMtFWOJfmK5ExZTzWflEPu80FiQjIThGirqPvVkx8DnDFuEzsb7RCIuBibkkW7B7/gGoW8Vx8uFxuRNcFh8NBR14mkwknT56E3+8Hn8+n1WoUgcXCbby/YIkq8cAhiZYgHiQ0NDSgsLAQnZ2d9Id/6tQpAMCoUaPi8pqtra04cuQI7YqhUCigUqliNvOqtrYWIpEII0aMiMHZhqKmpgYajYauP/YHhBC0t7fDYDDQZrCEEKSmpqKoKLIQoD9wOBzYv38/LrroopDUHofDockpVv0jlMzbZDIhKSkJGo0G2dnZEAgE+EdNE179oQEtNi+ypELIkwSob3XAE4g+rkridR0rEfIQCBJcWaZERrIIbl8QKy7Ip10imOKIs8Fms2Hv3r105mKoQEXTR44cQSAQgEAggNVqhcfjgUQiCRFsDKZs2uv14uuvv8bll1+eUH1G1NoRr/UpEoLBIIRC4ZBfh/PO648CddP7fD76/yn5cSzh9/thNpthMplgsVgAAEVFRcjIyIj5hx/PiHAg0ZrT6aR7ngghyM7OxrRp0yCRSFBbWxuznWtjuwvHTDZMyRbRUatYLKajpmiip2jg9/thMpmg1+vhcDhooUt4NFisTMGUgjRUnWmHwxNAq90LQR/fqjsAiHgcuH1BuP0E1Wc68PKSMvgCQLKQS1vmMImK+cN8LNHAVJ4JhUKMHt3l18hUHNpsNjQ1NcHpdIZEXNRPX0dlRAPmxiaRMNg1Kir7kwg4b4mKqv94PB6aqLhcbrd0YH8QDAbp6biUlZFKpcKIESNw6NChiL1hsUAi1aj8fj9aWlro5sLMzEyMGTOmmxlsX754W2sMaLV7sfLCfPDDhAHBYBD/PtaMpk43ssQZkEqlOHToEDgcTre6iEQi6fMXniI+KnqSSCTIycmBSqXqMU1VniPHOLUUz39Thx21rfBYPQiAgPSxTlWmToHFHUBTpxt+EsSO2jZMzJPD6gkgVSygPxdqYQlfaJluBvFOD/cXzM8j0ph4alAhs9/L4XCAz+dHFG3EYkFPNKJKRLeMwcJ5S1SU9x2TmAb6JaYsS5qbm8HhcKBUKkMk1U6nc9hZNDGf+2ygFnODwQCz2QyxWByV12C053zcZIfLF4DHFwBfxO8mjJhbkonTLU6U5aZDNKJrM8CsizQ2NtJTWMN7gXoiL5/PR0dPLpcLqv/K5HsT6jBxSGfFyKwUNNu8KHB50djuQl1b9HUqmYgLAZ+HGSOk0La7IRbx4AsEUXWmHUaLBwvKlBEjp3DyogiMMivmcDjw+/00eVEYioUwmgU40qBCalQG9flqtVrYbLZum5OzzXli4mSzHS0WO4DEJKrztUbFEhWDqPqTOvN4PPR0XKfTCYVCgbFjxyItLa3bjc4UU8TjSxBP1WJvJEjZORmNRni9XiiVyrP2fEXzvOG455JCeP1BiAVdKS9m5MDj8ZCfKUKhQh7yN9QipdF0KeOCwWBE8uJyuSHd+ADQ1taG5uZmSKVS5OXlnbXJ+EyLA/saOjBvnAJpEiEIIaiu74DbF0Bumhg/O7xw+YJIF3PQ7jr7e+YAcPsJdB0utDm8EPG4uDQ3CwvHK/HefgNGKXoW3jDJi9pA6HQ6mM1myGQyjBs3rlv9LjzyCn+uREOkURnhny9zzlNKSko3m6jwz/OjgwY43F5M6muOdhDARlTnIajUH7OXKtqFnur3MZlM6OjoQGpqKnJzc5GVldXrQhbvm2wwVX/BYJCeENzW1obU1FQUFhYiMzOzT7W3aK9JV1MuFwEegd/vD5GVUyKJaEARUiTyamtrg9lshk6no+sBUqkUqamp4PF48Hq99OtFwplWB1rtXhgtHnDAQY2uE5cVZ0Is5OGro80wWjzISBZBwBWivcl+9msDQMgl8Hn9UGeK0Wz3IUgIDups4HIAo8WDYmXPzvB+vx9GoxF6vR5ut5uuDTIn0DI/U2b0FW4tRl3feNS9YrkAR/p8Cema80SRV0tLC86cOQOv10t73cnlckilUswdk4EWmwvEYIjJ+cQSQ9FHNezl6cMdHA6nm0S9t4iKEILOzk56Oq5IJIJKpcKYMWOitpChPvBgMBg3FU28a1SRzGBHjRoV1YTgntDbOYfLypkEFYs0CPW5NjU10dFGSUkJsrKyQha3hoYGupE1PG1IuTBcPDoTY5RS5KYl4Ycz7ThmsEEi4KEkW4qCdDEqR6ShRCXF1ydawIUdZ9sScQA4fIDTH4DPYIcsSYCjBhsUKUmoLExHqToySdlsNuj1ehiNRkgkEuTl5UGlUkW853qKnJipw94iL+bf9XdBi3fNjMPpmvMkkUhCVKtut5sWbIQPKfSQIE6fPh2iOBzqBZtN/Z2nCHeniBRRhVsZKZVKTJw4EVJpZPPP3kAdnyiCh2jh9/vhdrvR2NiIM2fOICsrC+PGjYuY3uwrIv19uGMEtaOnLI1i8WX1er0wGAxoamqCz+eLGG0IBIKQWhTThbon8pLJZHC5ukaAiAU8jFNLYXP7carFiYIMCVrtXnS6vJCKuLB4zh69EwAcAiikQqjlYlw2JgszizK6GfwGg0E0NzdDr9fDarVCpVKhoqKiT1OcmThb3QtAiOJwoOQ1FCQQySaKqknW1tbS33273U7fCwMV5QwEbOrvPASHw+k26oNa6CmXbpPJRI8vHz16dDcrn76C+tvhQFRUpGE0GmE2m8HlcpGWloYxY8b02TEjmtcCulKqlEAC6FtTbrSv097eTkdPqampGDFiBBQKRVQRbiQX6nDyqq+vDyEvvVcGoTgFVqcHunYXDjV2os3hhT+KUiKHAwg5gCo1CeUaOS4r6SIpJlwuF/R6PZqamiAQCJCTk4MJEybE/DPqOp+zizaY6ameZPLhi20iLcACgQByuRw8Hg/l5eUAuu5LpuKwvr4eNpst5H6goutYzvYKB2uhdJ5CKBTSERW14NhsNvzwww+QyWTIzs5GeXl5zL70wyGicrvdMBqNMBqNtGPE5MmTodVqkZKSEpcFMBgM0p8DldoLdysfCDweDx09BQIBqNVqVFZWxmSwZE/kRS1sNpsNbW1a8DodqNJxYfFG3+zL4wIiPhdCHgdm+y/kRghBa2srdDod2tvbkZWVhbKysm7S/3jjmNGG+jYnrhinCPmswtOG4enFcPJKNLl8+PnweDx6theF8A0KNduLEBJRtBGLVD+b+jtPwefz8dNPP6GtrY22LuJyuZg8efKArIx6QryJqr8Nv4FAgJ6S29HRgfT09IhmsLE6b6asnMvlwmAwwOl0QiaT0SqugRIitZg3NTWhtbWVfk9ZWVlx/7JHshBKyenAV+8fhoAbQCCI/477CIIaIx8JHA4wLluKVLEAHC4HAb8XJ06dgdlkACEEGo0GY8eOjcmYjf7gj/86CbcviGJlCkYyBiVGE3lR/9/R0QGbzYbU1NQe+78GG9EQQk8znmI52yvSebER1XmExsZGvP3227BarXj44Ydx3333YcWKFfB6vdBqtXEhKSBUTBGv5+8LmdhsNloYQZnBlpSURLSqicXON1LtKT8/HwqFgt6d1tfXw+FwRKwJRGOh43a70dTUBIPBgGAwCI1GAx0yoQUPk3oZ+xJvlKhTMU4lxe76ToaIItJi+At5uf1AdYOFfqS2rhkXFQhxy6xiZGZmDvnu+v/NyEOt0YaCjLMLaZjkEwgEYDQa0djYCK/XC7VaDZVK1a3mFU3aMB7o733O4USe7cUcUNjTbC8q8upt08ES1XmEL7/8Etdeey0uv/xyyOVyPPPMM1iwYAGALi++eLqnA0Nvc0QVi41GI1wuFxQKBcaPH39Wv8H+ElVvbuWUMEIkEoWkVcJrApQLAWWhI5fLQ3allAN9U1MT2trakJGRgeLiXxbzTVt/RpAA88Yp6HlSg4nTZjtu/vuPsHqjuX7h5PPL/Vjv4sJ8yo9bZnWJQYZaiXbZmCxcNibr7Af+F06nEzqdDgaDAWKxGPn5+d3UiJEalYGeXTaYv4sVYkkIHE7kAYXUbC9m6pCyiQqPvChVaTAYHJLNSSKQ43lHVBdffDEaGxuhUqlQWloa8sHH2z0dGBqbI0pEQFk6SaVS5OTkQKFQRO1S3dfzHoisPFJNwO/3d/tiu1wu8Pl8+guclZWF6dOnhyj3AOCOWYXw+INDQlIAcFBviZKkmKAiq9BrFSSgZz71FHUmwsJCgbr3Ghsb0dbWBoVCgQkTJiA1NTXieUaTNowk2gBiR16DEbn0dbaXTCaD2+1Ge3s7kpKSep3tdS7ivCMqKjQHuo/6iKezA/M1BouonE4nHT1RZrBTp07tV2ozmi9upOgpVrJyPp+P9PR0pKamoqWlhZbMJycnQyKRwOfz0WScnJwcsngXK2JTzO4vri5T4LEvTkZ5dGSCAoBkLrDj3plIFQu7RZ0tLS2w2+30tN1w1/HBJi+/3w+DwQCdTgefz4ecnByUlJT0q54WK/IKf46eMFQptt5me1Gfs9lshlarBYCIs72G2uU8XogpUT3++ON44oknQn6nVCphMpkAdN0ATzzxBF599VV6RtWLL76IcePG0cd7PB6sXbsW77//Pj2j6qWXXkJOTg59TEdHB1avXo3PPvsMQNeMqueffz5kBx4NwvuoBiuiimeNKhgM0qo9i8XS5ynBvT13T9dmILOeooXD4YDBYIDBYACXy0VOTk5EIQHTebu1tRV1dXXw+/1ITk4OSRnGU0YcDqPVhywJHy1OfxRH93xOq2bnI1Xc1T8VKeoMJy+z2RxxVPzZaiEDgcPhoNN7ycnJ9LTvWF/rvpAXdVy05JVItSCmMOfMmTN0/yLTJspoNNKzvcI3aUM92ytWiPk7GDduHHbu3En/m8nwTz/9NJ599lls2bIFo0ePxh//+EdcfvnlOHHiBO2vtmbNGnz++efYunUrMjIycN9992HBggWoqamhn2vJkiXQ6/XYtm0bgK6pv0uXLsXnn3/ep3NlytOB4RtRUV5u1Ah3qoG1tLS0VzPY/rwOhUjCCCq1F6tdXTAYhNlshl6vR2dnJ7KyslBaWtqrDDvceZsqZocrsYLBIFJSUkLIK1au2+HISRPjlpn5+Mc+LRosTLLqXfXHxGcrJ2FkmI9hOKIhL6reF05eA5n3xJTLd3R0QKFQoKKiIkT1OBjojbyo/4/GIiqRiIoJSo3I4XCQkpKClJQUqNVq+jGXy0V/1m1tbaivrw+Z7cWMtKP5rBOpbSDmRMXn8yMO1yOE4LnnnsPDDz+M6667DgDw5ptvQqlU4r333sNtt90Gi8WC119/HW+//TY91O2dd95Bbm4udu7ciblz56K2thbbtm3Dnj17MG3aNADAa6+9hsrKSpw4cYIeUR8Nwht+ByOiiuVreL1emEwmGAwGeL1eSKVSJCcnY+rUqTH/olEkzmzKpb7g8YieKAsggUAAjUaD8ePH94t0mcVs5X9Vf+EyYqoHhsOJzUiQcPC4HNw4UYFJqW7c9H9N+GXiWXTX66s7pqIgo389Xz3V+5ij4vtLXj6fj07vBQIB5OTkYNy4cYM24DAa9BQ59WQRRUnmge5zqYaavHojUA7nF5soJUPdyswwWCwW6PX6QZ3tFSvEnKhOnToFtVoNkUiEadOmYf369RgxYgTq6+thMpnokfJA1+531qxZqKqqwm233Yaamhr4fL6QY9RqNUpLS1FVVYW5c+eiuroacrmcJikAmD59OuRyOaqqqvpEVJFqVIme+otkBltQUICsrCy0tbWhsbEx5jcbRUxOpxN2u50eRhjLptxAIIDm5mY0NTXBarXSasRY2DSFoycZMZVOsVgsaGxshM1m62aP1JcvNCUk0Ov1aGlpQUZGBq4skeOzWstZ/5bCRE1yv0mqJ0SqhYQX8sOVlkwC9/l80Ol0MBqNSElJQVFREZRK5bAq7oeTj9frhU6ng16vB5/Px8iRI2NqERUL9CfS6+tsL+ZnLZVK49aq01fElKimTZuGt956C6NHj0ZzczP++Mc/YsaMGTh69Chdp1KG9bIolUq6OEj18zC/QNQx1N+bTKaIgwcVCgV9TLQYTqk/h8NB9zxxOJyIZrCxJNpwYURqaiosFgsOHjxINzsy02b9rXlQE1yNRiNEIhE0Gg3Ky8tjmrKMBpHSKeHuA3V1dfQXmvnewyMPKtLQ6/Xw+XzQaDSYOXMmxGIxysYHUff6fhwxOaM6rwtHZZ79oBjgbORF7cap74tIJEJ2djYyMzMhk8mGFUkxYbfb0djYCKPRiNTUVIwdOxaZmZndmvMHYhEVK8RKnt7TbC+mmwo126u8vBx5eXkDfs2BIqZENX/+fPr/y8rKUFlZiaKiIrz55puYPn06gP4VLsOPiXR8f3YbPYkp4pmj7guZUGPsDQYD7HY7srKyepx11dfn7gk91Z6USiWys7PpxdtiscBqteL06dP0zjt88e6p8z4QCMBkMtGzgiij37P1cg02IrkP9FbzkUgk9DA/mUyGESNGdIs0+DwuHltQgmVv1MAZiPSqvyA1iYOF47un0QcLfD4fKSkpsFgssFgs4HA4KCwshFQqpet+J0+e7DGVNNibjWhBRbparRYdHR1QqVSYOnUqXSdn4myijWgsosL/fiDnHa/vR08p4kT5PsZVDpKcnIyysjKcOnUK11xzDYCuiIhKtwCA2WymoyyVSgWv14uOjo6QnZ3ZbMaMGTPoY5qbm7u9VktLS7do7WyIlPoD4ntDnK1GFW4GS6WnlErlWS1X4tmUyzz/8MU7vMeJmn8kkUho8pLL5SCE0IpEsVgMjUaDiRMnxsU/MF4I/0IHAgE0NTVBp9PBarVCJBJBKBTCYrHA6/WipaWlmwJrnFqGRxcU48FPT/T6Wp/cXgmFdGjqPTabjU7vyWQyjB49ukf7qfBUktFohNPpRFJSUrea31CSF7VB0mq18Hq9yM3N7VdNLRrFYfjxsSCvwRZ5hKsjhxJxJSqPx4Pa2lpceOGFtEx1x44dmDhxIoCuvPCuXbvw5z//GQBQUVEBgUCAHTt2YNGiRQAAo9GII0eO4OmnnwYAVFZWwmKxYN++fZg6dSoAYO/evbBYLDSZRYtI86iA+KpdeiITt9tN9zz5/X4olUpUVFRE3OX19bl7Qqxk5VSPEzOV4PV6YbFY0NnZCb1ej5MnT4IQAoFAgIyMDGRmZkIulw9b6azdbqcFH0lJSbTLAvV+fD4fvXBTs448Hg8tHy5M6j33n8zDoJNUMBhES0sLdDodLBZLr5EGE5FSSeHkZTAY4HK5kJSU1E2BFm/y8ng80Ov10Ol0EAqFER0xBopo5fLUMX0lL+rvh2uKdaCI6Sqxdu1aXHXVVcjLy4PZbMYf//hHWK1WLFu2DBwOB2vWrMH69esxatQojBo1CuvXr4dEIsGSJUsAAHK5HLfeeivuu+8+ZGRkID09HWvXrkVZWRmtAiwpKcG8efOwYsUKbN68GUCXPH3BggV9ElIAPUdU8RxsyKyDUdY/BoOBNoMtKirqt49bNDW2wZCVU1JZs9mM5uZmSCQSFBcXQy6Xw+l0wmKxwGAw4Pjx4+BwOBHrXYmyk2OCKZe3WCy9piwpQs7I+GUsR6gCqxO3jwFePh5Zor7/4dnxfjs0vF4vmpqaoNfrAQC5ubn9VllSiIa8KHcRJnlRBBYL8rLZbGhsbITJZEJaWtqgO8z3lbyY/w132Qg/brCQKN/DmBKVXq/Hr3/9a7S2ttJ2Nnv27EF+fj4A4P7774fL5cKqVavoht/t27eH7Ng2bdoEPp+PRYsW0Q2/W7ZsCVlE3333XaxevZpWBy5cuBAvvPBCn883Uo0KiH9E5XK5cPLkSZhMJggEgl7NYPv63D2de7xnPQFdC5HRaKQXoOzsbEyePDkkTSiTyej2BWoEPFXvosQKlDUQM204lOlBl8uFpqYmNDU1gcfjIScnp18LebgCa+JEgtFHdLjn4zMhx12SGcTevXtDrkE8erysVit0Oh1MJhNSU1NRXFyMrKysuC1OPZEXVcDvjbyidRsnhKCtrQ1arRadnZ0RB2IOJfrSqMw8llIgUsclCoEMFjgkkbq6Bhlr1qyBy+XChg0bAHTdAN988w1mzJgR8859ahjjmTNn6EnBarU6pgICi8WCw4cP44ILLgDQ+6TcWJETIYRWhDU3N0MqlUKj0fQ7tUKJFSjyslgscLlcEIvFIcQVqxk/PYFa8HQ6Hdra2pCZmYmcnBxkZGTEfJEY++Q3If/ee8/kELWh1WoFgG4Ld396vKiokKqpqdVq5ObmJsxCDoSmTSkCo+6BnkZlMB3ZfT4fcnNzkZOTk7CCjrOBWpapaFen00EkEmHy5Mkh0VZ/LKKiBaUyTIS+uOFZIIgRBAIBvQgAv+SOY8XdVPOgwWCgzWCTkpLoxSHWoM49EAh089ujIqdYEZTX66WjJ4/HQ/sI9qWmFgmR1EdMp+n29nY0NDTQM36oBUsul8fEqJNaGKghixqNpt8edf2FVCqFVCqNaY+Xx+Oh03tcLhe5ublxmwQ8UERKm3q93pC0ISXYSUpKAo/Hg8vlgkgkQn5+PjQazbCv5Xg8HjQ2NkKv10MqlWLs2LH0JmmgFlHDEec1UYXXqIDY9FK5XC5a3UYIgUqlwpQpU5CcnIyff/45LjcOFTlRKjQq1x/r6Kmjo4Me5S6TyVBQUAClUhnX6CbcaTrcFslkMtFiDSZxMUcknO19UaIPakT9YA1ZBIBPlxfh6i1d6b9Pl47o9vhAerwAoLm5Gc3NzUhLS0NJSUlInxAAtDm8kCXxIeAl7uIuFApDyMtms6G+vh5ms5me6+RyuXD8+HFotdpuNa9EJORIsNvtaGhoQHNzMzIzMzFp0qRuHqaR0obU/0djERX+HL0hUUjuvCYqkUgUUqMCBjYlt6WlBQaDARaLhZ6JFG4GG8um4nBZeVJSEjQaDVpbW1FfXw8A9KJNLV79iQy8Xi89yp3yERzKvD+HE9kWiRl1UA2LVLc9M21IpYP8fj+MRiO9O1er1Zg+fXpMRtT3BcKUTMwc0Y5StQyjCvOj+pveerw6OzthNpvR0NBAp2/kcjnS0tLA5XLh8/noa9DQ5sSm/5zBiMxk3H1Jd5JMJFCeglqtFhaLBWq1GpWVlSGfFzPyslgs0Ol0PQ4pTBTyojZKDQ0NaG9vR3Z2dtT3YU+RU08WUYnistFXnNdExefzI0ZU0RIVIQQ2mw0GgwHNzc1ISko6qxlsrJpye5r1NGbMGPoYSqhgsVjo2TZUYy6TvCJFQ+H2P6mpqSgqKoJCoUjItEqkqINqvqXqXSaTCU6nE0KhEDwej17A8vLyoFarh2xEgoDHBZfDQUrSwF7f5/PRAyT5fD5GjRoFhULRzdeQqvfIZDIEBckQIIDctKGvQ/SEQCAAg8GAxsZG+P1+5OXl9ShmCY+8gNDUMZO8JBJJt5rXYLZLEELosR0Oh4OeCBCLmtDZRBsAorKIShSc12KKDRs2YNeuXXjvvffo3/3www8oKyvr1fmZMoM1Go1wu920a4NMJjvrB3zs2DFIJBIUFBT06VwjCSM4HA74fH7UCyzVmMsUKni9XnoEhlwuh1gsRmdnJwwGAwKBANRqNdRq9aBHGbFGIBCA2Wym6zvU7B6XywWPx9Ot3jWYY0AGAkrM0tjYCLPZjIyMDOTm5vYq+mCKFah7gdnjxYw6hnK+kdvtpv33qInAsfIUDJ+wS10DymmcSWCxJi9K+KHVahEIBOi62lD0FEZqVOZwOGhubsaLL76IrKws/P73vx/08wrHeR1RiUSibhFVT6m/YDAYMiVXLpcjLy8PCoWiT1/mvqb+Yikrj9SY63a70dnZiebmZnqmDdDlKqJQKIZ1Uy7QNTySEkcIBALk5ORg0qRJIWkfZr3LbDbj9OnTCAaD9GJFRZ6xcFKPFSgT38bGRrhcLqjVasyYMSMqE9Gz9Xi1tbUN6RwvinipOk15eXnMzYkjTdhlkhezSZs5JoNZ++0rfD4f9Ho9GhsbIRAI4jarqy8I79XSarV47rnn8M4772DWrFm4/vrrh+zcmBi+K1AMEN5HBXQnkkhmsCNHjgwxg+0Lokn99dSUG0thBNC1QDc1NcFgMCAYDCI3N5f286NShpSXH9XXcraUYSKAEIKWlhbo9Xq0t7cjKyurVyf2pKQkJCUl0WbHzDEgVKrIZrN1M+OVy+WDLt2looympiYIhUL6MxvoZqKvc7xi3eNFfWZUbbEvxBsrRCIvJoF3dHRAq9XS0Scz6uqNvNxuN7RaLS1yCje+HWoQQlBbW4tNmzbhww8/xMKFC/H9999j0qRJCXOO5z1RRYqoqDHaRqMRNpsNmZmZKCkpiUlXe09E1dMY91jLyik3jKamJrS1tdGij3A3DKlUSk9VZqYMOzs7odVq4fP5QlKGlDx8KG9sSoLd1NQEQki/5yNxON3HgERjxkv1d8W6SE+pLXU6HVpaWpCZmRl3l4WeBCvh9a7jx4+HqC372uNFfdcaGxsRDAaRl5eXULL5SGMymORFmdsyU6cUgXE4HOj1ephMJmRlZQ3JMMneQAhBTU0NNmzYgO3bt2PJkiU4dOgQiouLE4agKJzXRMUc80Hl+j0eD11HUqvVGD9+fEy/NOGpxcFoygVC3RW4XC7UanXU/UHhKUNCCDweDx11Me2QmIv2YEQc1CJOScvT09MjEu9AcTYzXqrp2e12h9R6KPLqz7lQtQyq+M8cFzIUiETgTLWl1WqNusfL5XLRkaFEIsHIkSMTVqgTjt7Iy2Kx0NEnIQR8Ph+ZmZlIS0ujN6JDnYkIBoP4/vvvsWHDBuzZswe33norTpw4QTsIJSLOazHFP/7xD2zatAmXXHIJLrroIvj9froZMl4f2unTpxEIBDBy5MiI0VO4W/lAQJmMNjU1ob29Pa7uCuEqQ4vFEteUIWXXRM1IUqvVyMnJGfJBb+ETVa1WK/x+f7d6V2/RJ3MRT0pKotN7Q73ARYvwHi/qXuDz+RCLxQgEAnA6ncjIyEBhYWHCjXfpDygFX0NDA5xOJ3Jzc6FQKELuB6vVSouXhkK0EgwG8dVXX2Hjxo04efIkbr/9dqxZsybifL9Ew3lJVF6vF59//jnWr1+Pn376CRUVFXjllVdQWFiIQ4cO0RZAsUYwGMSZM2dgtVqRn59Pp4li6bcHdNXVDAYDDAYDeDweNBoNPXV5MMFMGVI/TEeJ/qQMmf50VHoy3g3HAwFl0MskLqvVGtGM1+l0QqfT0V6Zubm5cZlwPNgIBoNobm5GfX09nE4nJBIJgsEg7SYRHn0OJ9sjKuptaGgAIQR5eXk9KvioTES4PVS8ycvn8+HDDz/Epk2bYDabsWbNGtx+++3dGokTGeclUc2ZMwdnzpzBjBkzsGfPHhw4cIB+7MCBA8jOzg6ZmTUQhNeeqDk/NpsNfr8/ZMGWy+X9dg6nFoOmpiZ0dnZCoVBAo9EMqlv02cAs0FPERS3avaUMqTlCer0eDocDKpUKubm5A7ZrGiowo8/Ozk60t7fD4/EAAMRiMRQKBTIyMqI2Yk1UUJOOGxsbAYDuV6PeU/gcM6anX3jaMNGUpz6fDzqdjh4dQjm09HXDGU5e1A9zQ8ccDd8X8nK73Xj33XexadMmBINB3Hfffbj11luHPOvQH5yXREWNs//Pf/6D2267DYcOHaIX80OHDiErKwsajWZAr3G2WU/UTptasDs7O2G32yEQCJCamhp1qsxut9Oj3AUCAR09DZddaW8pw+TkZNptgZkCS7RFqz+goieDwQCxWEynLZmGvENhxhsLuFwuNDY2oqmpCSkpKcjPz4/ajirRe7yY742yEIt1Kr0n8qLaBZjXINJ1sNls+Pvf/47nn38ecrkcDzzwAJYsWTJs1oRIOC+JisKuXbtw88034+jRo/SN9tNPPyEjI4NWvPUFPQkjop31FAgEQqKNzs5OemfFjLpEIhHMZjOamppgtVrp6OlcSROZTCa6KC8SiRAIBLrVeRJBZdhXhDuyKxQK5OXl9VijCXdUCN9pM+tdQy1CoMRIWq0WLS0t9HuLRXopfNG2WCwhizZ1HeLZ42Wz2aDVaulNbn5+/qAq+KhsBNOYlyIviUSCV155BSNHjkRLSws++ugjFBUV4cEHH8S1116b8BubaJBQRPXSSy/hmWeegdFoxLhx4/Dcc8/hwgsvjNvrVVdX49prr8XJkyfpheLw4cNITU2N2t2cSu1R/6UcI2Ix64m6OSniam9vh91uB/CLyziV3hvOKSLgl54uyt07JycHGo0GQqGwx5RhIvQ1RQNKgq3T6eD3+6HRaJCTk9Nn38Xw60AtVuFmvANJIfcV1NgQrVYLp9MJjUaD3NzcuCoTw3u8qJ9AIBDS2zTQzQylKG1oaEBHRwfUajXy8/MTJnVGXYeTJ0/i0UcfRX19PS3zLy0txZQpU7B58+Yh38TEAgmTQ/nggw+wZs0avPTSS5g5cyY2b96M+fPn49ixY8jLy4vLa0bT8NsTBqMpl8PhQCAQIBAIwGKxwOl0Ijs7G6mpqfTvTp48SUui5XI5nTYcDtEG5SdICQgyMjIiNkNG6unpqa8pKSkphLiGsjHZ4XDQ6b3k5GSMGDFiQBZA0ZjxNjQ0wG6392rGGwv4fD40NTWhsbERXC6Xrj8NRlo2mh4vg8GAEydO9KvHK5KCrzf/zqEAIQR1dXV47rnn8N5779EDZmfMmIHGxkbU1NTgzJkz5wRJAQkUUU2bNg2TJk3Cyy+/TP+upKQE11xzDf70pz/F5TV//vlnzJw5E01NTfSN25sXX6SmXMpvL5aycgD0zB2TyUTXMFQqVcTIidnTRP0wow3qJ1G+aJQbu16vp/0Ec3JyBrwLD69vMFWGzJpfPEmccvjW6XTo6OiAUqlEbm7uoKaJws14qU1OOIn3xwrI6XSisbERBoMBUqmUrj8l4qYovMfLYrH02uMVDAZhMBig1WpBCEF+fv6gkW+0IITg6NGj2LhxIz755BNcd911eOCBB1BeXp6Qn0GskBCfgNfrRU1NDR588MGQ38+ZMwdVVVVxe11mwy+FSBFVT9FTrGXlfr+fVrc5nU4olUpUVFSc1exWJBJBoVDQ/RCUQKGzs5NuQKRkwUziGkzj1fBJwDKZLOZNnuEeduGp06amJtTW1nYjcZlMNuCUIaVw0+l0CAQCyM3N7ZcrRizA4/Ho98Y8v0g+duH1rkj3BDWGQqvVorW1lb4vE8llIRKineNlt9tpgZNAIEB2dnbc05d9BSEE+/btw8aNG/Gf//wHS5cuxZEjRzBy5MhzmqAoJARRtba2IhAI0GE8BaVSCZPJFLfXpQYnMoeMUTdspOiJIqdYRk+EkJDoKTk5mY6e+ruT43K5tCKIqrVRhXlqVhFlvCqTyUJUhrFeWJnk63K5BnWWFTNFRPXFMVOGFosFZrM5JGVI/USrKrPb7XR6TyqVJqzDQiQjWma9i+nlx5RD+3w+mEwmuFwu5OTkYMyYMYM67TjWYDqMuFwuurZGEbbf76dnXiVCj1cwGMS3336LZ555BjU1NVixYgVefvnluEwIT2QkBFFRCN8ZMAkkHhCJRDQZMRcWv99Pu4gPxK28N1DOCtR8oOzsbEyZMiXEoieWiDQlN9K8qvAFWyaT9et92+126PV6GI3GkNTlUKdRmAsV9WWnog1KsMIcdc+8FlRtgzJQ1el06OzspCc4x+uzixd6MuOlpgTo9XoQQujBixwOh+57S0TRSrSw2Wz0FF2FQhHxswvv8TIYDIPa4xUIBPDFF19g48aNqKurwx133IEPP/wwxDD3fEJCEFVmZiZ4PF636MlsNneLsmIJanfkdrvplJ9QKER9fT06OjroqaiUOGGgoFIoTU1NaG5uhlQqRV5eHlQq1aAX/JlpEapnzO/3hygM6+vr+9SUTCnAdDodrFYrlEolJk6cmPAWOWdLGer1etTW1oLD4dBROIfDQU5ODsrKyhKm9jdQMOtPcrkc5eXlSE9Ppzc0g23GG0tQwh2tVouOjg5oNJpe3dkjjcTpKX0ayx4vn8+Hf/zjH3j22WfR2dmJe+65BytXrhx2m6BYI6HEFBUVFXjppZfo340dOxZXX3113MQUHR0dSE9Px6effopp06ZBKBSCy+WG9DN1dnbSUmimqq4vc5q8Xi8dPXk8HmRnZ0Oj0SS8s0K0TckCgQBGo5G2bMrJyRlWTcdng81mQ2NjI0wmE0QiEUQiEbxeb4hAoa8pw0QBJcHWarVob2+HUqlEXl5erwtjuBmv1WoNMeOlCKy/ZryxBLV5amhogNvtRm5uLnJzc2N2b8aqx8vlcuGtt97CX//6V3A4HPzud7/D8uXLE6pONpRIGKL64IMPsHTpUrzyyiuorKzEq6++itdeew1Hjx6Nm0Fsa2srxowZA6/Xi2AwiIqKCkydOhXTpk3DtGnTaPuhYDBIOwZQAgW3242UlBR6wU5NTYVYLKYjB2oBaGpqgtlshkwmg0ajSWhfumhAkXhnZydaWlroPh4+n4/U1FQoFAqkpqYm1JDB/oAy9G1sbITVaqUL7MzNBTNlSP34/f4eU4aJBKqxmhpRkZOT06/eLgpM93BmM2pfzHhjCWp8PVPBp9Fo4v7di7bHq7OzE8XFxXA6nfjb3/6GF154ARkZGXjwwQdx4403JnR0OhRIGKICuhp+n376aRiNRpSWlmLTpk246KKL4v66gUAAR48exe7du1FdXY09e/bg9OnTGDVqFE1a06ZNQ3FxMX2jU6khirisVisEAgG9kNntdgSDQTp6GgzxwGDA6/XSjbnBYBAajQZZWVkhkZfVagWfz+9W6xoOXz7q/el0OnA4HOTm5kKj0UR17uEpQ0oOnUitAl6vF3q9HjqdDgKBAHl5eXFxZo/WjJcS8MSKvLxeL+3Bl5SUhIKCgiEXt4T3eHV2duLaa6+F2+2GQCBAcnIyfv3rX+O2225LyFlQiYCEIqpEAdXwV11djaqqKuzZswc//vgjhEJhSMQ1efJkSKVSBINBHDhwABwOB52dneDz+bTXH1NVl5qaOiwVU1RtjZr5lJqaipycnB7923qKQBO5KZmapdTc3Ew7k8SiPyhcZUj1NFFF+cFKGdrtdjQ2NsJoNCI1NRV5eXmDPmWW6evIHP8hEAi6NWn3dVNDKfiampqQmpqKgoKChDJkpqDX6/HXv/6Vbs4tLy+Hw+FATU0NfvrpJxiNRqSlpQ31aSYcWKKKAoQQeL1eHDp0CFVVVXTUpdfroVQqEQgEIJFI8MYbb2DcuHFISUmhd9fUQk3Vd4RCYQhxJUIevyf4/X5a/eV2u+nG3P4ISxKxKZlynNfpdLDb7XR6L97R72ClDMMFBCqVCnl5eQlVG6VMh5nRONOMl1nvikTkVqsVDQ0NMJvNUCgUKCgoSDjhASEEp0+fxqZNm7B161bMmzcPDz74IKZNmxby+fp8vmGRdRgKsETVDwQCASxevBifffYZSkpKMHr0aGi1Whw6dAhpaWmYOnUqpk+fjmnTpmHixIm0So6yPWJGGlTUxYw0hlr6S40iofq6cnNzY15bC29KpiKNwWhK9ng80Ov10Ov14PF4yM3NDRk/MdjoLWUYPv4kGiKnxqJotVp4vV7k5uYiJydnyO+raEH1/DFThkwzXplMRmc9Ojs7odFokJ+fn3DCA0IIDh8+jA0bNuCLL77Ar371KzzwwAMoLS1NuEgv0cESVT/x9ttv48ILL6Stlqg89I8//hgSdVksFpSXl4fUutRqNd2P43Q6Q4jLbrfTu0mKuAbDQSIQCKC5uRl6vR42m42e+TSYu1PmAkX9xLIp2WKx0Om99PR05ObmDnr6K1pQ6VPm9ThbypAiYGpGUn5+/pC0PsQaTCI3Go3o6OhAIBAAh8OBVCpFWloafU0Gy4z3bOdbXV2NDRs24LvvvsNvfvMb/O53v8OIESOG/NyGK1iiiiOCwSBOnz5NE1d1dTWOHj2KnJwcutY1ffp0lJWV0X6BVFqIGWlQxprMxTpWKTKn0wm9Xg+DwQChUIicnBxkZ2cnRAoivCmZIvK+NCVT6jadTgeHwwG1Wo3c3NyY9MUNNnw+X0h9h0oZUr1ATqcTcrkchYWFMZ+RNJQIBAJoamqCVqsFh8NBfn4+srOzafKirgdlxkvdE/Ew4+0NwWAQO3fuxMaNG/HTTz/ht7/9Le65554Bz7ZjwRLVoILyu9u7dy9NXvv27YPP50NFRQUdcU2dOpVeaKjFmlnrolJkzFpXX4QJwWAQra2t0Ov1aG9vh0KhQE5OzrCYZ8VsSmYu1uG1LgBoampCU1MT+Hw+nd4bameMWIEyv62vr4fVaqXrWU6ns98pw0RDXxV88TTj7Q2BQACffvopNmzYAL1ej7vuugt33XVXSLMwi4GBJaohBiWNZ0Zdp0+fxsiRI2nimj59eog03uv1dqt1UYsTM2UY/mX0eDy0tJzD4UCj0UCj0Qyb2kUkMJuSOzs70dbWBpfLBeAX26js7GzI5fJhnwIDuu4Xo9GIxsZG+Hw+uv5EERFTcclcrKMVJyQCnE4ntFotDAYD0tLSUFBQ0O9NVE8Tg6Mx4z0bvF4vtm7dik2bNsHhcODee+/FihUrEkqscq6AJaoEA+UjFy6NFwgEmDJlCk1clDSeaki22+0hURfVkExJfe12O9rb25Geno6cnBxkZmYmrNqwr6DEAzqdjvZNlMvltNKwp0nJidiI2xM8Hg90Oh30ej1EIhFdf4p2vDtTVUdFoVKpNCTSGOrrwVTwKZVKFBQUxGXRjzR8kjLjZaYNe7oeTqcTW7ZswV//+leIRCL87ne/w7Jly4b1hi/RwRLVMIDH48GhQ4foiIuSxo8bNy6k1lVYWEgvXC0tLWhubkZLSwsCgUCIewSz1pWou+po4HK5oNfr0dTUBKFQ2GPzKiEkhLSGU1MyNQKdEoDk5+cPOEUbbo1FLdbM8SCDVd8hhKCtrQ1arRYWi4WeojuYCj6mqInpJkFdD0rAMXHiRHz55Zd46aWXoFKp8OCDD2LRokXnTDo5kcES1TAEIQQ6nS5EXXjw4EGkpaVh9OjRIITg4MGDeOedd1BWVgalUkk7XzMXa6/X280GKhFUU72BsqbS6XRoaWlBZmYm8vLy+rx4M1NkzCiUakruT+0vVqDqT8zFOy8vL64CkGhThv1104/0es3NzWhoaIDH40FeXl5ICnOowWzUfuedd/DGG2/AYDBAIBCgoqICV111FebNm4eJEycO9al2w7p16/Dll1/i0KFDEAqF6Ozs7HZMY2Mj7rjjDnz99dcQi8VYsmQJNmzYEHL9Dx8+jDvvvBP79u1Deno6brvtNjzyyCMh34ddu3bh3nvvxdGjR6FWq3H//fdj5cqVIa/14Ycf4pFHHsGZM2dQVFSEdevW4dprr+3Te2K3AsMQHA4HeXl5yMvLw4033ghCCN5991388Y9/xL59+zBq1Cjk5eVh8eLFIdL46dOnIy8vD/n5+SGSX8oJ+ujRoyGGs1RDciJEXVRtRqfTwePxQKPRYObMmf3eeTNrehSYTckmkwknTpwY1KZkyp+usbERfr8feXl5GD9+/KAs3pGuBzNl2Nrairq6upCUIUVefUkZRlLwqdXqhLjHmOBwOOjo6MBf/vIXvPXWW7jwwguxefNmSCQS7N+/H/v374dIJEpIovJ6vbjhhhtQWVmJ119/vdvjgUAAV155JbKysvDDDz+gra0Ny5YtAyEEzz//PICuNOzll1+O2bNnY//+/Th58iSWL1+O5ORk3HfffQCA+vp6XHHFFVixYgXeeecd7N69G6tWrUJWVhauv/56AEB1dTUWL16M//3f/8W1116Ljz/+GIsWLcIPP/yAadOmRf2e2IjqHMHLL78MQghuvvlmyGQyBINBnDlzJsS/8MiRI9BoNN2k8QKBgG5IZkrjOzs7QxR1FIENpg2Uy+WCTqdDU1MTkpKSBnUsymA1Jbvdbrr+JBaLkZ+fD6VSmXA1xJ5Shnw+v5t/Xzi5er1eNDY20u+RUvAlWvROCMGJEyewadMm/N///R+uvPJKPPjgg5g8eXLCnevZsGXLFqxZs6ZbRPWvf/0LCxYsgE6noycfb926FcuXL6cNtF9++WX8/ve/R3NzM117e+qpp/D888/TYqwHHngAn332GWpra+nnXrlyJX766SdUV1cDABYvXgyr1Yp//etf9DHz5s1DWloa3n///ajfCxtRnSO4/fbbQ/7N5XIxatQojBo1CsuXL6cnCe/duxe7d+/Gzp07sX79eni9XkyaNCmEvAoKCmhpvMvlohdqamw3JfeliCvWNlCU9U9jYyPa2tqgUCgwYcIEpKamDupi0dukZIvFgpaWlgFNSmY2IGdmZqK8vDyhWwQ4HA4kEgkkEgmys7MBdE+hGo3GEAsksVgMh8OB1tZWpKWlYfz48Qn5Hql0+YYNG7Bt2zbceOONOHDgAEpKShLuXAeK6upqlJaW0iQFAHPnzoXH40FNTQ1mz56N6upqzJo1K+Q+njt3Ln7/+9+joaEBhYWFqK6uxpw5c0Kee+7cuXj99ddpO6jq6mrcc8893Y557rnn+nTOLFGdJ+BwOJDL5ZgzZw59cwUCARw7dgy7d+/Gnj178Mgjj+DUqVMYOXJkCHGNGTOGvqmZfUytra04c+ZMt4U6NTW1X+kqyltQp9PB6/UiJycHJSUlCWXkO9BJyZSqU6vVwmazQa1W9zrAL9ERKWXInL9mMpnoTY/P54PZbIbH4+lzyjBeIITghx9+wIYNG7B7927ccsstqK2tpTdr5yJMJlO3gbRpaWkQCoX08FqTyUS77lCg/sZkMqGwsDDi8yiVSvj9frS2tiI7O7vHY8KH5J4NLFGdx+DxeCgrK0NZWRlWrlzZTRr/z3/+Ew8++CAtjac8DKdMmYLCwsKQhmQqVUhNgBWLxSHElZKS0uMX3+FwQKfT0WPrCwoKhs3crp4mJVMpVGpSss/nQ1JSEvx+P93DVl5enjDigViAUvA1NDTAarVCo9HQXpfMlGFjYyNsNltIypAi88F0kdi2bRs2btyI2tparFy5Eu+8805cJ4oPBI8//jieeOKJXo/Zv38/Jk+eHNXzRfouEkJCfh9+DFUlisUxfd0EsETFggaHw4FCocDVV1+Nq6++GgC6uca/++670Ol0GDduXEhf14gRI+iFmirCd3Z2wmw249SpUwAQoqaTyWT0aA1qsuxwGFsfDZhjzKkaG5XXp/q7qIZWZgpVJpMNC3IOB1PBR5nglpeXh0j9+5oyZHoZxjKt7Pf78fHHH2Pjxo0wmUxYvXo1vvrqq4QfrXHnnXfixhtv7PWY8AioJ6hUKuzduzfkdx0dHfD5fDRRq1SqblGP2WwGgLMew+fzkZGR0esxfd0QsETFoldQM7imTp2KNWvWgBACvV6PqqoqVFVV4e9//zvuuusuyOXykFldkyZNCrGBohqSOzo6oNfr4fP56Ghk5MiRyMrKSohUUKxgsVig1WphNpuRlZWFSZMmhZAwJVxhRhlUu8BwaUr2+/1oampCY2MjOBwOCgoKoh7C2FPKkBJpUGllajIu85owJ2lHC4/Hg/feew+bNm2C1+vFfffdh//5n/8ZNp6PzHTzQFFZWYl169bBaDTSG4ft27dDJBKhoqKCPuahhx6C1+ulo9zt27dDrVbThFhZWYnPP/885Lm3b9+OyZMn05uUyspK7NixI6ROtX37dsyYMaNP58yq/lgMCJTgItw1vqOjA+Xl5TR5paam4t1338UVV1xBm4oKBALYbDZ0dnbCarWCy+WGpAtlMtmwaqakxtdrtVrY7XZoNBrk5eVFJaGP1JRss9lCmnATpSmZcsnQ6XSQSCRxU/AxJ+Myx5+EpwzlcnmP18Rut+ONN97A888/j+TkZNx///1YunTpOZVyDQeVpfjss8/wzDPP4PvvvwcAjBw5EikpKQgEApgwYQKUSiWeeeYZtLe3Y/ny5bjmmmtoebrFYkFxcTEuueQSPPTQQzh16hSWL1+ORx99NESeXlpaittuuw0rVqxAdXU1Vq5ciffff5+Wp1dVVeGiiy7CunXrcPXVV+PTTz/FH/7wB1aezmLoEQwGUVdXh++//x4ffPABdu/eDafTibFjx6KsrAwTJkzA9OnTMX78eFoa39NUYGo3TRFYf3bT8YbP56P7nwAgLy8vJvOtwtNjFosFLpdryJqSHQ4HtFotjEZjzFwy+gpq0CKTvJgpw7q6OqSmpmLUqFF488038dJLLyE/Px8PPvggrr/++mGZWu0rli9fjjfffLPb77/55htcfPHFALrIbNWqVd0afpkqv8OHD+OOO+7Avn37kJaWhpUrV+LRRx/t1vB7zz330A2/DzzwQLeG33/+85/4wx/+gLq6Orrh97rrruvTe2KJikXc8Oyzz2Ljxo1YuXIlbrzxRjQ0NNApw3379sHj8aCioiIkZcicD8VsSKZSQtTY8kSo67hcLjQ2NqKpqQkpKSnIz89HVlZWXPufhmJSssViQUNDA1pbW6FUKpGfn59QxqvMlOG6devwxRdfwO12QyKR4JJLLsENN9yASy65hE5zDQcUFBRAq9WG/O6BBx7AU089Rf97MN0lhhosUbGIGxwOB4RCYcTIIhAIoLa2lm5Irq6uxqlTp1BUVESPOpk+fTpKSkpoIqJ208yGZJ/PB6lU2s0GKl6gRrVotVq0tLRAoVAgLy8PqampcXvN3hCvpmSmjROl4MvPz0+oVgEKhBA0NDTgueeewzvvvIOLL74YN910E4LBIPbv34+9e/di1apVWL58+VCfatQoKCjArbfeihUrVtC/o9SlAOj0XVZWFjZu3Ei7S1x33XUh7hKjR4/G7Nmz8fDDD9PuEo899li39N2KFStw22230e4SzPRdIoAlKhYJAWphpKTx1dXVqKmpAZ/Px+TJk0Ok8TKZjBZpuN3uEOKy2+0QCoXdbKAGGuUEg0GYzWZotVo4nU5oNBrk5uYm3PhzINT6qK+TkqlBk9QYe8qDb6jrYpFACEFtbS2effZZfPTRR1i4cCEeeOABTJo0KeHSw31FQUEB1qxZgzVr1kR8fDDdJRIBLFGxSFh4vV789NNPISINnU6HsWPH0krE6dOno6ioiCYiqoeJmTIMBALdbKCiHcng8/loZRuXy6XrT8NJ5BHNpOSUlBTYbDY0NjaCx+PRgpdErOkQQvDjjz9iw4YN2LFjB2666Sbcf//9GD169LAnKAoFBQXweDy03P+GG27A7373Ozqt9+ijj+LTTz/FTz/9RP9NR0cH0tPT8fXXX2P27Nn4zW9+A4vFgk8//ZQ+5uDBg5g0aRLq6upQWFiIiy66CBMnTsRf/vIX+hjKj8/pdCbMBiWxzMRihHXr1tHd/j2lZBobG3HVVVchOTkZmZmZWL16Nbxeb8gxhw8fxqxZsyAWi6HRaPDkk08inNd37dqFiooKJCUlYcSIEXjllVe6vdaHH36IsWPHQiQSYezYsfj4449j9l7PZQiFQkyZMgV33303tm7divr6emi1WjzyyCOQSqV44403MHXqVBQWFmLRokXYuHEjqqur6WmwEydOxKxZszB9+nSo1Wr4/X6cPn0a3333HX744QccPnwYOp2OnkfEhNPpxPHjx/H999+jpaUFY8aMwcyZM5GXlzesSAr4pSlZo9Fg7NixqKysxOzZszFu3DiIxWLodDocOHAAp06dAo/HQ0ZGBvh8Prxeb7f7fSgRDAbx7bffYsGCBbjyyisxYsQInDx5Eq+//jqKi4vPGZICQN/z33zzDe68804899xzWLVqFf14tO4SkVwhqMd6O4Zyl0gUDK9vXJQ4F92DWXQtuDk5OVi0aBEWLVpEp/6Y0vgXX3wRbW1tIa7x06ZNQ05OTreGZIvFArPZjNOnT4MQAqlUiqSkJDidTthsNiiVSlRUVIT0+pwr8Hg8MJlMtIKP2khR0Shl8USJV5gtA4MdZQUCAfzrX//Chg0bcOrUKaxatQoffPABFArFoJ7HQNEXdwlm3xHlj/irX/0Kf/7zn+lm2sF0lxhqnNOpv3PJPZhFdKCk8ZS6cM+ePTh8+DDUanWIupByTuBwOHC73XRzrsfjAY/Hg9/vpyPyoZxNFWt0dnZCq9WitbUVKpUK+fn5dIE+HOFNycwZZoPRlOzz+fDPf/4Tzz77LNra2nD33Xdj1apVw3bj0NraetYopaCgIKJgpampCTk5OdizZw+mTZt23qX+zsmI6mwYju7BLKIDl8vFyJEjMXLkSPzmN78BIQQ2mw379u1DVVUVvv76azz11FNwu90oKyuDXC7HgQMHsGzZMqxYsYKuP1GS587OzpDZVMzoQi6XD4s0ICVUaWhogM1mQ05ODmbOnHlWBR+Px0NaWlqIvRCzZUCv16O2tjbmTclutxvvvPMONm3aBEII1q5di//3//7fsDXupTAQd4mDBw8CAC2xH0x3iURA4n/L4oDh6B7Mon/gcDiQyWS47LLLcNlllwEAtFotHnzwQXz00UfIzMzEyJEjsWnTJnz66ach6cKSkhJkZWUB+GXiKyXQMBgMcLvddHRBEVciWR5RCr6Ghgb4fD7k5eVhwoQJA1qAkpKSkJSURN/T4U3JBoOh303JNpsNr7/+Op5//nmkpaXh8ccfx5IlSxJqwRwMUMKh2bNnQy6XY//+/bjnnnuwcOFC5OXlAQDmzJmDsWPHYunSpbS7xNq1a7FixQrIZDIAwJIlS/DEE09g+fLltLvE+vXrQ5p2V65ciRdeeAH33nsv7S7x+uuvJ1y2Z9gQ1fnuHswidnC73eDz+aiursakSZNo129KGv/RRx/hoYceAo/Hw+TJk2nj3SlTpiA3N5deLDweD01cer0ex44dA5/PDyEuuVw+6DUdv98PvV5PK/goD754NCJHMyn55MmT9IaBaTZLRXStra14+eWXsXnzZhQVFeGFF17ANddck5CKw8GASCTCBx98gCeeeAIejwf5+flYsWIF7r//fvoYHo+HL7/8EqtWraInXVMNvxTkcjl27NiBO+64A5MnT0ZaWhruvfde3HvvvfQxhYWF+Oqrr3DPPffgxRdfhFqtxl//+teE6qEChhFRne/uwSxih+LiYrz99tv0vzkcDjIzM3HVVVfhqquuAvCLNJ5qRn7//feh1WppaTxFXkVFRSHRBVMa39jYCJ/Ph5SUlG4NyfHYqHg8HnqKbnJyMsaMGYOsrKxB3xSJRCIoFApa7EA1JVPkdfLkSbz66quoqqpCdnY2Dh8+jLKyMrzzzjuYN29ewk02jhVeeuklPPPMMzAajRg3bhyee+45XHjhhd2OmzRpEvbs2XPW58vLy8MXX3zR6zFlZWX47rvvej1m1qxZOHDgwFlfbygxbIjqfHcPZjG4oKTxU6ZMwerVq0EIQVNTE60u3LJlC1avXg2pVBqSLqyoqEBeXh7y8/NpVSKTuI4ePQqBQNDNfHcgi7PD4UBDQwNMJhPS09MxYcKEhBpbwZyUrNFoUFdXh+TkZNqGacKECThx4gR+9atfYe3atXjyySeH+Ixjjw8++ABr1qzBSy+9hJkzZ2Lz5s2YP38+jh07RkfoLHoBOQeh1WrJwYMHyRNPPEFSUlLIwYMHycGDB4nNZiOEEOL3+0lpaSm59NJLyYEDB8jOnTtJTk4OufPOO+nn6OzsJEqlkvz6178mhw8fJh999BGRyWRkw4YN9DF1dXVEIpGQe+65hxw7doy8/vrrRCAQkH/+85/0Mbt37yY8Ho889dRTpLa2ljz11FOEz+cTlUpFAIT8PPDAA93ex4IFC4hEIiEZGRnkrrvuIh6PJ+SYn3/+mVx00UUkKSmJqNVq8sQTT5BgMBhyzLfffksmTZpERCIRKSwsJC+//HLMrvX5imAwSJxOJ/nuu+/IU089Ra655hqiVCoJn88nkyZNIrfffjvZsmULOX78OLHb7cThcBCHw0GsVivR6/XkyJEj5IcffiBffvkl+fTTT8k333xDDhw4QOrq6khbWxt9fG8/TU1NZPfu3eSzzz4j+/btI83NzVH93VD82O12smfPHnLDDTcQoVBIfv3rX5NDhw7R92ogECDHjh0jR44cGeJPNj6YOnUqWblyZcjvxowZQx588MEhOqPhhXOSqJYtW9aNBACQb775hj5Gq9WSK6+8kojFYpKenk7uvPNO4na7Q57n559/JhdeeCERiUREpVKRxx9/PCIJTJw4kQiFQlJQUBCRBP7v//6PFBcXE4FAQMaMGUM+/PBDkp+fT5588kliNBrpH4pICfmFTGfPnk0OHDhAduzYQdRqdQiZWiwWolQqyY033kgOHz5MPvzwQyKVSiOS6d13302OHTtGXnvttW5kyiI2CAQC5PTp0+TNN98kK1euJBMmTCA8Ho9oNBpy7bXXkqeeeop8++23pKOjgyYvu91OzGYzOXXqFNm/fz/ZuXMn+eSTT8i2bdtIdXU1qa2tJQaDgdhsNvr4+vp68u2335IvvviCHDp0KGpiGyqC+s9//kPmz59PkpKSyIoVK8jJkye7fY/OZXg8HsLj8chHH30U8vvVq1eTiy66aIjOanjhnO6jSmSwXl7nPghDGk8JNfbu3QuXy4VJkybRFlBTp04Nmefk9/tDLKAoGyixWAyfzwdCCHJzc5Gfn5+wirhgMIhvvvkGzzzzDA4ePIgVK1bg3nvvRU5OzlCf2qDDYDBAo9Fg9+7dISn/9evX480338SJEyeG8OyGB87NquUwAdVlPmHCBKxbty7EwulsvV7UMZF6vQwGAxoaGuhjIvV6/fjjj/D5fHF8dyyY0vhHHnkE//rXv9DS0oIff/wRy5cvh8ViweOPP46ioiKMHz8e//M//4PXXnsNtbW1kMvlKCoqogcv8vl8+P1+JCcnQygUor6+Hvv27cORI0eg1+ths9kSwu4oEAjgk08+waxZs7Bs2TJcfPHFqK+vx7PPPntekhQTrPq3/xg2YopzDXfffTcmTZqEtLQ07Nu3D7///e9RX1+Pv/3tbwAGt9eLxeCBx+Nh3LhxGDduHFasWAFCCNrb22knjU8++QQPP/wwACAnJ4f2pHzssceQl5dHiy58Ph8dcTU3N+PkyZMA0E0aP1gRl9frxT/+8Q9s2rQJFosF99xzD2677Ta6p+d8RmZmJng8Hqv+HQBYooohWC8vFn0Fh8NBRkYGLY23WCy4++678f7770MoFOKKK67A/v37UVpaipKSkhBp/MiRI0MakplzqYxGI914y1QYxroh2el04q233sJf/vIX8Pl8rF27FrfccktCzq0aKgiFQlRUVGDHjh249tpr6d/v2LEDV1999RCe2fABS1QxxEB6vaZPnw4AOH36NDIyMga114tF4iAlJQVKpRI//fQTxowZA6BrY2EwGOio66233sKaNWuQkpIS4l9YUVGBnJwc5ObmAghtvDUYDDh+/HiI3RElje+PDZTFYsHf/vY3vPDCC8jKysK6deuwePHihK2ZDTXuvfdeLF26FJMnT0ZlZSVeffVVNDY2Jtwk3UQFS1QxBOvlxWKg4PF4+POf/xzyOw6HA41GgxtuuAE33HAD3Z9VU1NDG+++8soraG1tRVlZGU1c06dPR25ubkjjLWV3RHn1eTweSKXSkJShWCzuMepqaWnBiy++iNdeew3FxcXYvHkzFi5ceM426cYKixcvRltbG5588kkYjUaUlpbiq6++Qn5+/lCf2rAAq/obAvTk5TV58mTa6ZgaNa1UKmkvr+XLl+Oaa66hR5FYLBYUFxfjkksuob28li9fjkcffbTbqOnbbruN9vJauXJlwo2aZjEwBINBNDQ0YPfu3bS68Oeff4ZKpcKUKVNo4iovL4dQKKSJKHxCMnO0h0wmw+nTpzFjxgx0dHTgr3/9K7Zs2UJvkC6++GKWoFgMDoZCE3++o6amhkybNo3I5XKSlJREiouLyWOPPUYcDkfIcYPZ69UXvPjii6SgoICIRCIyadIk8t133w3o+VjEHsFgkFitVrJz507y5JNPknnz5pG0tDSSlJREKisryd13303ef/99UldXF7Eh+ejRo+STTz4hqamphM/nE6FQSIqKisi6detIY2PjUL+9qPDYY49166VUKpX048FgkDz22GMkOzubJCUlkVmzZnVrOHa73eTOO+8kGRkZRCKRkKuuuorodLqQY9rb28nNN99MZDIZkclk5OabbyYdHR2D8RbPG7BExaJP2Lp1KxEIBOS1114jx44dI3fffTdJTk4mWq12qE+NxVkQCATI0aNHyWuvvUZuueUWUlJSQjgcDhkxYgS58cYbyaZNm0h1dTWxWCxk9+7d5LrrrqNdJP70pz+RVatWkYkTJxIej0fMZvNQv52z4rHHHiPjxo0LaapnnvdTTz1FpFIp+fDDD8nhw4fJ4sWLSXZ2NrFarfQxK1euJBqNhuzYsYMcOHCAzJ49m5SXlxO/308fM2/ePFJaWkqqqqpIVVUVKS0tJQsWLBjU93qugyUqFn0CawVz7iAYDJLW1lby+eefk9///vfk4osvJikpKUQgEBCBQEBWrlxJzpw50y1CD4/8ExWPPfYYKS8vj/hYMBgkKpWKPPXUU/Tv3G43kcvl5JVXXiGEdNmoCQQCsnXrVvqYpqYmwuVyybZt2wghhBw7dowAIHv27KGPqa6uJgDI8ePH4/Cuzk+wCWYWUcPr9aKmpqZbA/GcOXNQVVU1RGfFor+gpPELFizA+vXr8c0336C9vR1vv/02du3ahZdffhkjRozoJqwYTgMMT506BbVajcLCQtx4442oq6sD0FW7NZlMIfeySCTCrFmz6Hu5pqYGPp8v5Bi1Wo3S0lL6mOrqasjlckybNo0+Zvr06ZDL5ex3IoZgiYpF1GhtbUUgEGAHQZ7DEAgEWLx4MSorK4f6VAaMadOm4a233sK///1vvPbaazCZTJgxYwba2tro+7W3e9lkMkEoFHZzog8/hlJVMqFQKGL+nQgEApgxY0Y3EZTFYkFubi7+8Ic/xPT1EgmsPJ1Fn8FawbAYDpg/fz79/2VlZaisrERRURHefPNNum+xP/dy+DHRNObHAjweD2+++SYmTJiAd999FzfddBMA4K677kJ6ejoeffTRmL5eIoGNqFhEDdYKhsVwRnJyMsrKynDq1CmoVCoA6PVeVqlU8Hq96Ojo6PWY5ubmbq/V0tISl+/EqFGj8Kc//Ql33XUXDAYDPv30U2zduhVvvvkm3Ut5LoIlKhZRg2kFw8SOHTvYQZAsEh4ejwe1tbXIzs5GYWEhVCpVyL3s9Xqxa9cu+l6uqKiAQCAIOcZoNOLIkSP0MZWVlbBYLNi3bx99zN69e2GxWOL2nbjrrrtQXl6O3/zmN/jtb3+LRx99FBMmTIjLayUMhlbLwWK4gZKnv/766+TYsWNkzZo1JDk5mTQ0NAz1qbFgEYL77ruPfPvtt6Suro7s2bOHLFiwgEilUvpefeqpp4hcLicfffQROXz4MPn1r38dUZ6ek5NDdu7cSQ4cOEAuueSSiPL08ePHk+rqalJdXU3KysriLk+vra0lAEhZWRnx+Xxxfa1EAEtULPqMF198keTn5xOhUEgmTZpEdu3aFbPnZps0WcQKVF+UQCAgarWaXHfddeTo0aP049S9pFKpiEgkIhdddBE5fPhwyHO4XC5y5513kvT0dCIWi8mCBQu6NTy3tbWRm266iUilUiKVSslNN90U93vpd7/7HZFIJCQlJYXU19fH9bUSASxRsUgosE2a5z527dpFFixYQLKzswkA8vHHH4c8PpibEa1WSxYsWEAkEgnJyMggd911F/F4PPF42zFDVVUV4fP5ZMeOHeTyyy8nl1xyyTk/MZklKhYJBbZJ89zHV199RR5++GHy4YcfRiSqwdqM+P1+UlpaSmbPnk0OHDhAduzYQdRqNbnzzjvjfg36C6fTSUaNGkXuuOMOQkgX0Uql0gHboiU6WKJikVB47LHHiEQiIdnZ2aSgoIAsXryYnDlzhhBCyJkzZwgAcuDAgZC/WbhwIfnNb35DCCHkP//5DwFA2tvbQ44ZP348efTRRwkhhLz++utELpd3e225XE7+/ve/x+FdsegJ4UQ1mJuRr776inC5XNLU1EQf8/777xORSEQsFktc3u9AsXr1alJUVETsdjv9u1dfffWcTwGyqj8WCYVzrUmTRd8wmI4R1dXVKC0thVqtpo+ZO3cuPB4Pampq4vo++4Ndu3bhxRdfxJYtW5CcnEz/fsWKFZgxYwZuvfVWeijquQa24ZdFQuFca9Jk0Tf0thnRarX0MbHYjJhMpm6vk5aWBqFQmJAbllmzZsHv90d87N///vcgn83ggo2oWCQ0zoUmTRZ9x2BtRtgNy/AAS1QsEhrnSpMmi+gwmJsRlUrV7XU6Ojrg8/nYDUuiYejKYyxYdMe53KTJojvQg5jiz3/+M/07j8cTUUzxwQcf0McYDIaIYoq9e/fSx+zZsyeimMJgMNDHbN26NaHFFOcrWKJiQYLBILn00kvJnDlzuj324osvEplMNmiDEROpSZPt94kPbDYbOXjwIDl48CABQJ599lly8OBB+h4brM0IJU+/9NJLyYEDB8jOnTtJTk5OQsvTz1ewRMWCEEJIY2NjyK6VEELq6upISkoKeeONN4buxIYQbL9PfPDNN990cx8BQJYtW0YIGdzNiFarJVdeeSURi8UkPT2d3HnnncTtdsfz7bPoB1iiYkFjy5YtJCUlhdTV1ZFgMEhmz55Nrr766qE+rYRATykqtt+HBYv4gxVTsKCxbNkyXHrppbjlllvwwgsv4MiRI3j11VeH+rQSEudDv893332Hq666Cmq1GhwOB5988knI48uXLweHwwn5oVoIKHg8Htx1113IzMxEcnIyFi5cCL1eH3JMR0cHli5dCrlcDrlcjqVLl6KzszPkmMbGRlx11VVITk5GZmYmVq9eDa/XG4+3zSIBwRIVixC8+uqrOHbsGNasWYPNmzdH7EVh0Xu/T6ybj4eq38fhcKC8vBwvvPBCj8fMmzcPRqOR/vnqq69CHl+zZg0+/vhjbN26FT/88APsdjsWLFiAQCBAH7NkyRIcOnQI27Ztw7Zt23Do0CEsXbqUfjwQCODKK6+Ew+HADz/8gK1bt+LDDz/EfffdF/s3zSIhwTb8sgiBQqHAb3/7W3zyySe49tprh/p0Eh7ncr/P/PnzQxqwI0EkEtGS8nBYLBa8/vrrePvtt3HZZZcBAN555x3k5uZi586dmDt3Lmpra7Ft2zbs2bOHjipfe+01VFZW4sSJEyguLsb27dtx7Ngx6HQ6OqrcuHEjli9fjnXr1kEmk8XwXbNIRLARFYtu4PP54PPZPUxvYPt9uvDtt99CoVBg9OjRWLFiBcxmM/3YcE99skgcsETFgkU/MJjNx5WVlThy5AiMRiN9zPbt2yESiVBRURHX99kb5s+fj3fffRdff/01Nm7ciP379+OSSy6Bx+MBMPxTnywSB+y2mQWLHmC323H69Gn63/X19Th06BDS09ORl5eHNWvWYP369Rg1ahRGjRqF9evXQyKRYMmSJQAAuVyOW2+9Fffddx8yMjKQnp6OtWvXoqysjE6FlZSUYN68eVixYgU2b94MAPjtb3+LBQsWoLi4GAAwZ84cjB07FkuXLsUzzzyD9vZ2rF27FitWrBjStNfixYvp/y8tLcXkyZORn5+PL7/8Etddd12PfzdcUp8sEgcsUbFg0QN+/PFHzJ49m/73vffeC6BLHbllyxbcf//9cLlcWLVqFTo6OjBt2jRs374dUqmU/ptNmzaBz+dj0aJFcLlcuPTSS7FlyxbweDz6mHfffRerV6+mU2QLFy4METDweDx8+eWXWLVqFWbOnAmxWIwlS5Zgw4YN8b4EfUJ2djby8/Nx6tQpAKGpT2ZUZTab6Wgx2tTn3r17Qx5PlNQni0HCEErjWbBgMUyACA3P4WhtbSUikYi8+eabhBDW6ohF7MAh5BwdYMKCBYsBgZn6nDhxIp599lnMnj0b6enpSE9Px+OPP47rr78e2dnZaGhowEMPPYTGxkbU1tbSUeXtt9+OL774Alu2bKFTn21tbaipqaGjyvnz58NgMISkPvPz8/H5558D6JKnT5gwAUqlkk59Ll++HNdccw2ef/75IbgyLAYdQ82ULFiwSEz0ZnXkdDrJnDlzSFZWFhEIBCQvL48sW7asm40Ra3XEIhZgIyoWLFiwYJHQYOXpLFiwYMEiocESFQsWLFiwSGiwRMWCBQsWLBIaLFGxYMGCBYuEBktULFiwYMEiocESFQsWLFiwSGiwRMWCBQsWLBIaLFGxYMGCBYuEBktULFiwYMEiocESFQsWLFiwSGiwRMWCBQsWLBIaLFGxYMGCBYuEBktULFiwYMEiocESFQsWLFiwSGiwRMWCBQsWLBIaLFGxYMGCBYuEBktULFiwYMEiocESFQsWLFiwSGiwRMWCBQsWLBIaLFGxYMGCBYuEBktULFiwYMEiocESFQsWLFiwSGiwRMWCBQsWLBIaLFGxYMGCBYuEBktULFiwYMEiocESFQsWLFiwSGiwRMWCBQsWLBIaLFGxYMGCBYuEBktULFiwYMEiocESFQsWLFiwSGiwRMWCBQsWLBIaLFGxYMGCBYuExv8HCx616Ha2mAkAAAAASUVORK5CYII=",
"text/plain": [
"