From 7b8c6ca5d4de18933bf9b5f1a7f440729634a36c Mon Sep 17 00:00:00 2001 From: cetin Date: Mon, 2 Oct 2023 15:10:45 +0200 Subject: [PATCH] weiter --- B_rework.ipynb | 135 +++++++++++++++++++++++++++++++++++-------------- 1 file changed, 97 insertions(+), 38 deletions(-) diff --git a/B_rework.ipynb b/B_rework.ipynb index d7508d7..110c371 100644 --- a/B_rework.ipynb +++ b/B_rework.ipynb @@ -346,7 +346,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -374,12 +374,14 @@ "\n", "sf_energy_found = ak.to_numpy(scifi_found[\"energy\"])\n", "sf_eph_found = ak.to_numpy(ak.sum(scifi_found[\"brem_photons_pe\"], axis=-1, keepdims=False))\n", - "sf_vtx_type_found = ak.to_numpy(scifi_found[\"endvtx_type\"])\n", + "sf_vtx_type_found = scifi_found[\"all_endvtx_types\"]\n", + "\n", + "\n", "brem_vtx_type_found = scifi_found[scifi_found[\"endvtx_type\"]==101]\n", "\n", "sf_energy_lost = ak.to_numpy(scifi_lost[\"energy\"])\n", "sf_eph_lost = ak.to_numpy(ak.sum(scifi_lost[\"brem_photons_pe\"], axis=-1, keepdims=False))\n", - "sf_vtx_type_lost = ak.to_numpy(scifi_lost[\"endvtx_type\"])\n", + "sf_vtx_type_lost = scifi_lost[\"all_endvtx_types\"]\n", "brem_vtx_type_lost = scifi_lost[scifi_lost[\"endvtx_type\"]==101]\n", "\n", "\n", @@ -390,32 +392,48 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 17, "metadata": {}, "outputs": [ { "data": { + "text/html": [ + "
[101,\n",
+       " 101,\n",
+       " 101,\n",
+       " 101,\n",
+       " 101,\n",
+       " 101,\n",
+       " 101,\n",
+       " 101,\n",
+       " 101,\n",
+       " 101,\n",
+       " 0]\n",
+       "------------------\n",
+       "type: 11 * float32
" + ], "text/plain": [ - "9056" + "" ] }, - "execution_count": 12, + "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ak.num(scifi_found[\"energy\"], axis=0)\n", - "scifi_found[\"\"]" + "scifi_found[\"all_endvtx_types\"][1,:]" ] }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 48, "metadata": {}, "outputs": [], "source": [ "scifi_fitpars_found = ak.ArrayBuilder()\n", + "vtx_types_found = ak.ArrayBuilder()\n", "\n", "for i in range(0,ak.num(scifi_found, axis=0)):\n", " popt, pcov = curve_fit(scifi_track,ak.to_numpy(scifi_z_found[i,:]),ak.to_numpy(scifi_x_found[i,:]))\n", @@ -428,11 +446,16 @@ " scifi_fitpars_found.real(sf_energy_found[i])\n", " #[:,5] -> photon energy\n", " scifi_fitpars_found.real(sf_eph_found[i])\n", - " #[:,6] -> endvtx_type\n", - " scifi_fitpars_found.real(sf_vtx_type_found[i])\n", " scifi_fitpars_found.end_list()\n", + " \n", + " vtx_types_found.begin_list()\n", + " #[:,0] -> endvtx_type\n", + " vtx_types_found.extend(sf_vtx_type_found[i,:])\n", + " vtx_types_found.end_list()\n", + " \n", "\n", "scifi_fitpars_lost = ak.ArrayBuilder()\n", + "vtx_types_lost = ak.ArrayBuilder()\n", "\n", "for i in range(0,ak.num(scifi_lost, axis=0)):\n", " popt, pcov = curve_fit(scifi_track,ak.to_numpy(scifi_z_lost[i,:]),ak.to_numpy(scifi_x_lost[i,:]))\n", @@ -445,37 +468,71 @@ " scifi_fitpars_lost.real(sf_energy_lost[i])\n", " #[:,5] -> photon energy\n", " scifi_fitpars_lost.real(sf_eph_lost[i])\n", - " #[:,6] -> endvtx_type\n", - " scifi_fitpars_lost.real(sf_vtx_type_lost[i])\n", " scifi_fitpars_lost.end_list()\n", + " \n", + " vtx_types_lost.begin_list()\n", + " #[:,6] -> endvtx_type\n", + " vtx_types_lost.extend(sf_vtx_type_lost[i,:])\n", + " vtx_types_lost.end_list()\n", + " \n", "\n", "\n", - "scifi_fitpars_lost = scifi_fitpars_lost.to_numpy()\n", - "scifi_fitpars_found = scifi_fitpars_found.to_numpy()\n", + "scifi_fitpars_lost = ak.to_numpy(scifi_fitpars_lost)\n", + "scifi_fitpars_found = ak.to_numpy(scifi_fitpars_found)\n", + "\n", + "vtx_types_lost = ak.Array(vtx_types_lost)\n", + "vtx_types_found = ak.Array(vtx_types_found)\n", "\n" ] }, { "cell_type": "code", - "execution_count": 101, + "execution_count": 49, "metadata": {}, "outputs": [ { "data": { + "text/html": [ + "
[101,\n",
+       " 101,\n",
+       " 101,\n",
+       " 101,\n",
+       " 101,\n",
+       " 101,\n",
+       " 101,\n",
+       " 101,\n",
+       " 101,\n",
+       " 101,\n",
+       " 0]\n",
+       "------------------\n",
+       "type: 11 * float64
" + ], "text/plain": [ - "array(2)" + "" ] }, - "execution_count": 101, + "execution_count": 49, "metadata": {}, "output_type": "execute_result" } ], - "source": [] + "source": [ + "vtx_types_found[0]" + ] }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 35, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 50, "metadata": {}, "outputs": [ { @@ -502,8 +559,15 @@ "brem_energy_lost = scifi_fitpars_lost[:,5]\n", "\n", "\n", - "vtx_type_found = scifi_fitpars_found[:,6]\n", - "vtx_type_lost = scifi_fitpars_lost[:,6]\n", + "bs_found, vtx_types_found = ak.broadcast_arrays(b_found, vtx_types_found)\n", + "bs_found = ak.to_numpy(ak.ravel(bs_found))\n", + "vtx_types_found = ak.to_numpy(ak.ravel(vtx_types_found))\n", + "\n", + "bs_lost, vtx_types_lost = ak.broadcast_arrays(b_lost, vtx_types_lost)\n", + "bs_lost = ak.to_numpy(ak.ravel(bs_lost))\n", + "vtx_types_lost = ak.to_numpy(ak.ravel(vtx_types_lost))\n", + "\n", + "\n", "\n", "\n", "#Erste Annahme ist Bremsstrahlung\n", @@ -541,32 +605,27 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 52, "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "array([], dtype=float64)" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "0.08902698999847938 101.0\n" + ] } ], - "source": [ - "vtx_type_found[vtx_type_found!=0]" - ] + "source": [] }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 55, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABTkAAAIhCAYAAACFVb4YAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABsmElEQVR4nO3deXQUZdbH8V+TnZA0hJDEQNgUWWSRRSEoAgYCjrgrKBgQkQERnQiOwusCOAqCM8go4orisAjjCIjKsCkyIqDI4oKKMqKgEFEMCQhk6TzvH5gem3SSbqwmXZ3v55w6h1Tfevqp6op9vblV5TDGGAEAAAAAAACATdWo6gkAAAAAAAAAwO9BkRMAAAAAAACArVHkBAAAAAAAAGBrFDkBAAAAAAAA2BpFTgAAAAAAAAC2RpETAAAAAAAAgK1R5AQAAAAAAABgaxQ5AQAAAAAAANgaRU4AAAAAAAAAtkaRE9XaokWLdM455ygmJkYOh0Pbt2+v6il5NXHiRDkcjqqehgeHw6GJEyf6vd3y5ctPabvK9OjRQz169Kg07ptvvpHD4dCcOXMsn0NlZs2a5df7OhwOjR49OnATCnGBOtcAAKfXnDlz5HA49M033wRkfH+/n0+Xd955Rw6HQ++8847f2wZqn3zN/wL9mZXn6NGjmjhxos/HrPQY/+tf/wrsxEIAeRUAO6DIiWrrxx9/VFZWls4880ytWLFCGzdu1Nlnn13V0wp5y5cv16RJkywfd9asWZo1a5bl41opWP8nKlQF6lwDAISWUPx+DtQ+bdy4Ubfccovl41rl6NGjmjRp0ikVhlEx8ioAdhBe1RMAqsqXX36poqIi3XjjjerevXtVTwe/U6tWrap6CuU6evSoatasWdXTCIiioiI5HA6Fh1efr5NQ/jwBAKhIly5dqnoKXhljdPz48aqeRsCEcu4RyvsG4PSjkxPV0k033aQLL7xQkjRgwAA5HA6PS52XLVum9PR01axZU3Fxcerdu7c2btxYZozGjRuXGdvbpeWllx3PnTtXLVu2VM2aNdWuXTu98cYbZbZ/8803de655yoqKkpNmjTRX//6V7/2bc2aNcrIyFB8fLxq1qypCy64QG+99ZbXOe7YsUM33HCDnE6nkpOTdfPNNysvL88jNj8/X8OHD1fdunVVq1Yt9e3bV19++aVHzNKlS+VwOMq8jyQ99dRTcjgc+vjjj3XTTTfpySefdB+T0uWbb77RwoUL5XA4NHPmTI/tJ0yYoLCwMK1evbrC/fZ2ufq+ffvUv39/xcXFyel0asCAAcrJyalwnNJ9Dg8P16OPPupe99NPP6lGjRpyOp0qLi52r7/jjjtUr149GWPc82jdurX+85//qGvXrqpZs6ZuvvlmNW7cWDt27NC6devc++3t/PHmmWee0dlnn62oqCi1atVKCxcurHSb0svyp02bpocfflgNGzZUdHS0OnXqVOZz2rVrl4YOHapmzZqpZs2aql+/vi677DJ98sknHnGll3TNnTtXY8eOVf369RUVFaVdu3bpxx9/1KhRo9SqVSvVqlVLSUlJuvjii/Xuu+96ndejjz6qqVOnqnHjxoqJiVGPHj3cf3gYN26cUlNT5XQ6ddVVV+nAgQNl9m/RokVKT09XbGysatWqpT59+mjbtm3u1ys616QT/zM0a9YsnXvuuYqJiVGdOnV07bXX6uuvv/Z4n/I+TwBA1XvhhRfUrl07RUdHKyEhQVdddZU+//xzj5ivv/5a119/vVJTUxUVFaXk5GRlZGS4b1F0Kt/P/n6HbN68Wd26dVPNmjXVtGlTPfLIIyopKfGI/eKLL9S3b1/VrFlTiYmJGjlypA4fPuwRk52drdjYWOXn55eZ04ABA5ScnKyioqIK92nkyJGKjo7Wli1b3NuWlJQoIyNDycnJ2r9/f4X77u1y9U2bNumCCy5QdHS0UlNTNX78eBUVFVU4jnQi53U4HNq8ebN73auvviqHw6FLL73UI7Zt27a65pprPOYxevRoPf3002rZsqWioqL00ksvqV69epKkSZMmuff9pptuqnQux48f15gxY5SSkqKYmBh1797dI68oT+ll+atXr9bQoUOVkJCg2NhYXXbZZWXOh9WrV+uKK65QgwYNFB0drbPOOksjRozQTz/95BFXmqdv3bpV1157rerUqaMzzzxTkvThhx/q+uuvd+dPjRs31g033KBvv/3W67zWrl2rW2+9VYmJiapbt66uvvpq7du3r8x+kFcBCBkGqIZ27dplnnzySSPJTJ482WzcuNHs2LHDGGPM/PnzjSSTmZlpli5dahYtWmQ6duxoIiMjzbvvvuseY8iQIaZRo0Zlxp4wYYI5+VdLkmncuLE5//zzzT//+U+zfPly06NHDxMeHm7++9//uuPWrFljwsLCzIUXXmgWL15sXnnlFXPeeeeZhg0blhnTm7lz5xqHw2GuvPJKs3jxYvP666+bfv36mbCwMLNmzZoyc2zevLl54IEHzOrVq8306dNNVFSUGTp0qDuupKTE9OzZ00RFRZmHH37YrFq1ykyYMME0bdrUSDITJkwwxhhTVFRkkpKSzKBBg8rM6fzzzzcdOnRwH/drr73WSDIbN250L8ePHzfGGDNy5EgTGRlpNm/ebIwx5q233jI1atQw9913X6X73r17d9O9e3f3z0ePHjUtW7Y0TqfTPPHEE2blypXmjjvucB/LF198scLxunTpYjIzM90/L1y40ERHRxuHw2Hee+899/qWLVua/v37e8wjISHBpKWlmSeeeMKsXbvWrFu3zmzdutU0bdrUtG/f3r3fW7durXAOkkxaWppp1aqVefnll82yZctM3759jSTzyiuvVLjt7t273dtfeOGF5tVXX3WfTxEREWbDhg3u2HXr1pmxY8eaf/3rX2bdunVmyZIl5sorrzQxMTHmiy++cMetXbvWSDL169c31157rVm2bJl54403zMGDB80XX3xhbr31VrNw4ULzzjvvmDfeeMMMGzbM1KhRw6xdu7bMvBo1amQuu+wy88Ybb5h58+aZ5ORkc/bZZ5usrCxz8803m3//+9/m6aefNrVq1TKXXXaZx749/PDDxuFwmJtvvtm88cYbZvHixSY9Pd3Exsa6f48rO9eGDx9uIiIizNixY82KFSvMggULTIsWLUxycrLJycmp9PMEAJw+L774opFkdu/e7V43efJkI8nccMMN5s033zT/+Mc/TNOmTY3T6TRffvmlO6558+bmrLPOMnPnzjXr1q0zr776qhk7dqz7u+lUvp/9+Q6pW7euadasmXn66afN6tWrzahRo4wk89JLL7njcnJyTFJSkqlfv7558cUXzfLly82gQYPcOUvpXD/66CMjyTz33HMe88nNzTVRUVFmzJgxle7TsWPHzLnnnmuaNm1qcnNzjTHGPPDAA6ZGjRpm1apVlX4Wv83/jDFmx44dpmbNmu5c5bXXXjN9+vRxz/23n9nJDh8+bCIiIszkyZPd60aOHGliYmJMbGysKSwsNMYY88MPPxiHw2FmzZrlMY/69eubtm3bmgULFpi3337bbN++3axYscJIMsOGDXPv+65du8qdQ2luk5aWZq644grz+uuvm3nz5pmzzjrLxMfHe+Tp3pSem2lpae785dlnnzVJSUkmLS3NfYyNMeapp54yU6ZMMcuWLTPr1q0zL730kmnXrp1p3ry5e1+N+V+e3qhRI3PPPfeY1atXm6VLlxpjjHnllVfMAw88YJYsWWLWrVtnFi5caLp3727q1atnfvzxxzLzatq0qbn99tvNypUrzfPPP2/q1Kljevbs6bEP5FUAQglFTlRbpUnNb4tFLpfLpKammjZt2hiXy+Vef/jwYZOUlGS6du3qXudvkTM5Odnk5+e71+Xk5JgaNWqYKVOmuNd17tzZpKammmPHjrnX5efnm4SEhEqLnL/88otJSEgoUxByuVymXbt25vzzzy8zx2nTpnnEjho1ykRHR5uSkhJjjDH//ve/jSTz97//3SPu4YcfLpPkjhkzxsTExJhDhw6513322WdGknniiSfc62677bZy9+X48eOmffv2pkmTJuazzz4zycnJpnv37qa4uLjCfTembJHzqaeeMpLMa6+95hE3fPhwn4qc9913n4mJiXEnb7fccovp27evadu2rZk0aZIxxpjvv//eSDLPPvusxzwkmbfeeqvMmOecc47HHCsjycTExHgkh8XFxaZFixbmrLPOqnDb0mJieedTr169yt22uLjYFBYWmmbNmpk777zTvb70d+aiiy6qdO7FxcWmqKjIZGRkmKuuuqrMvNq1a+fxOzZjxgwjyVx++eUe42RnZxtJJi8vzxhjzJ49e0x4eLi5/fbbPeIOHz5sUlJSPArO5Z1rGzduNJLM3/72N4/1e/fuNTExMebuu+92r6vo8wQAnB4nFzlzc3NNTEyM+cMf/uARt2fPHhMVFWUGDhxojDHmp59+MpLMjBkzKhzfn+/nU/kOef/99z1iW7VqZfr06eP++Z577jEOh8Ns377dI653794eRU5jjOnQoYNHPmqMMbNmzTKSzCeffOLTPn311VcmPj7eXHnllWbNmjU+/0HZmLJFzgEDBpSbq1RW5DTGmAsvvNBcfPHF7p/POuss8+c//9nUqFHDXfwqbUD4bfFaknE6nebnn3/2GO/HH38sM8eKlOY2HTp0cOe/xhjzzTffmIiICHPLLbdUuH3pufnbXMcYY9577z0jyTz00ENetyspKTFFRUXm22+/LZOvlubpDzzwQKXzLy4uNkeOHDGxsbEe+XrpvEaNGuURP23aNCPJ7N+/3xhDXgUg9HC5OvAbO3fu1L59+5SVlaUaNf7361GrVi1dc8012rRpk44ePXpKY/fs2VNxcXHun5OTk5WUlOS+vOSXX37R5s2bdfXVVys6OtodFxcXp8suu6zS8Tds2KCff/5ZQ4YMUXFxsXspKSlR3759tXnzZv3yyy8e21x++eUeP7dt21bHjx93Xx68du1aSdKgQYM84gYOHFjm/W+++WYdO3ZMixYtcq978cUXFRUV5TXem6ioKP3zn//UwYMH1aFDBxlj9PLLLyssLMyn7X9r7dq1iouLK7OPvs4lIyNDx44d04YNGySduA1A79691atXL/el82vWrJEk9erVy2PbOnXq6OKLL/Z7zuXNIzk52f1zWFiYBgwYoF27dum7776rdPvyzqf//Oc/crlckqTi4mJNnjxZrVq1UmRkpMLDwxUZGamvvvqqzGV/kjwuF/utp59+Wh06dFB0dLTCw8MVERGht956y+sYf/jDHzx+x1q2bClJZS5PK12/Z88eSdLKlStVXFyswYMHe5zn0dHR6t69u08PGnjjjTfkcDh04403eoyRkpKidu3alRnDys8TAPD7bdy4UceOHStzGXJaWpouvvhi921ZEhISdOaZZ+rRRx/V9OnTtW3btjKXifvL3++QlJQUnX/++R7r2rZt63F58dq1a3XOOeeoXbt2HnHecpahQ4dqw4YN2rlzp3vdiy++qPPOO0+tW7f2aR/OOussPffcc1q6dKn69eunbt26nfJTs9euXVturuKLjIwMvffeezp27Ji+/fZb7dq1S9dff73OPfdcj3yrYcOGatasmce2F198serUqXNK8z7ZwIEDPW431ahRI3Xt2tWdC1fm5Fy5a9euatSokcf2Bw4c0MiRI5WWlubOkxo1aiRJPudbR44c0T333KOzzjpL4eHhCg8PV61atfTLL794HcNbri/Jff6RVwEINRQ5gd84ePCgJOmMM84o81pqaqpKSkqUm5t7SmPXrVu3zLqoqCgdO3ZMkpSbm6uSkhKlpKSUifO27mQ//PCDJOnaa69VRESExzJ16lQZY/Tzzz9XOKeoqChJcs/p4MGDCg8PLxPnbT7nnHOOzjvvPL344ouSJJfLpXnz5umKK65QQkJCpfMvddZZZ6lbt246fvy4Bg0a5PWz8MXBgwc9Eu6K5u5N6X2C1qxZo127dumbb75xFznff/99HTlyRGvWrFHTpk3VpEkTj21Pdc7eVHQ+lJ6vp7J9YWGhjhw5IkkaM2aM7r//fl155ZV6/fXX9f7772vz5s1q166d+1z4LW/7N336dN16663q3LmzXn31VW3atEmbN29W3759vY5x8jkRGRlZ4frShwmUnufnnXdemfN80aJFZe5r5c0PP/wgY4ySk5PLjLFp06YyY1j5eQIAfr/K8rXS10vvF96nTx9NmzZNHTp0UL169XTHHXeUud+lr/z9Dqks/yvdH1/zv0GDBikqKsr95PTPPvtMmzdv1tChQ/3aj0svvVTJycnue1Geyh+U/Z27N7169VJBQYHWr1+v1atXKzExUe3bt1evXr3cf0x+6623yvxBWTo9+ZYvuZYv25eUlCgzM1OLFy/W3XffrbfeeksffPCBNm3aJEk+51sDBw7UzJkzdcstt2jlypX64IMPtHnzZtWrV8/rGJXl+uRVAEJN9XkcLuCD0kTA203X9+3bpxo1arj/YhwdHa2CgoIycb4kA97UqVNHDofD64NxfHlYTmJioiTpiSeeKPfJl96KfhWpW7euiouLdfDgQY8kqbz5DB06VKNGjdLnn3+ur7/+Wvv37/c76X7++ef15ptv6vzzz9fMmTM1YMAAde7c2a8xSuf+wQcflFnvy7GUThTXLrzwQq1Zs0YNGjRQSkqK2rRpo6ZNm0o68RCet956S/369Suz7ckPnvo9KjofvP2Pk6/bR0ZGqlatWpKkefPmafDgwZo8ebJH3E8//aTatWuX2d7b/s2bN089evTQU0895bH+VP8nsjyl5/m//vUvd/fDqYzhcDj07rvvupP93zp5nZWfJwDg96ssXyv9rpBOdOTNnj1bkvTll1/qn//8pyZOnKjCwkI9/fTTfr+3v98hvqhbt67P+V+dOnV0xRVX6B//+Iceeughvfjii4qOjtYNN9zg13uWPtjonHPO0R133KFu3bqdUlekP3P3pnPnzqpVq5bWrFmjb775RhkZGXI4HMrIyNDf/vY3bd68WXv27PFa5Dwd+ZYvuVZF25911lmSpE8//VQfffSR5syZoyFDhrhjdu3aVe6YJ+9fXl6e3njjDU2YMEHjxo1zry8oKCjTyOAr8ioAoYZOTuA3mjdvrvr162vBggXup2VLJy4lf/XVV91PXJdOPI3zwIED7r+ASlJhYaFWrlx5Su8dGxur888/X4sXL3Z3rUknikSvv/56pdtfcMEFql27tj777DN16tTJ61LaFeernj17SpLmz5/vsX7BggVe42+44QZFR0drzpw5mjNnjurXr6/MzEyPmJP/gvxbn3zyie644w4NHjxY7777rtq2basBAwacUvdsz549dfjwYS1btsynuXvTq1cvbdmyRa+++qo7uY6NjVWXLl30xBNPaN++fV6T7vKc3Lnhi7feesvjHHO5XFq0aJHOPPNMNWjQoNLtyzufunXr5u7acDgcZRLQN998U99//73P8/Q2xscff6yNGzf6PIYv+vTpo/DwcP33v/8t9zwvVd651q9fPxlj9P3333vdvk2bNpbOGQBgrfT0dMXExGjevHke67/77ju9/fbbysjI8Lrd2Wefrfvuu09t2rTR1q1b3ev9+X4OxHdIz549tWPHDn300Uce68vLWYYOHap9+/Zp+fLlmjdvnq666qoyf5SsaJ+ef/55zZs3TzNnztSyZct06NAhv/8o/du5l5er+CIiIkIXXXSRVq9erbffflu9e/eWJHXr1k3h4eG677773EVPX1SUZ1bk5Zdf9sj9v/32W23YsEE9evTwafuTc+UNGzbo22+/dW9fWtg7OVd65plnfJ6jw+GQMabMGM8//7z7FkT+Iq8CEGro5AR+o0aNGpo2bZoGDRqkfv36acSIESooKNCjjz6qQ4cO6ZFHHnHHDhgwQA888ICuv/56/fnPf9bx48f1+OOPn3KSIUl/+ctf1LdvX/Xu3Vtjx46Vy+XS1KlTFRsbW+lfaGvVqqUnnnhCQ4YM0c8//6xrr71WSUlJ+vHHH/XRRx/pxx9/LNNlV5nMzExddNFFuvvuu/XLL7+oU6dOeu+99zR37lyv8bVr19ZVV12lOXPm6NChQ7rrrrs87rsoyZ3oTJ06VZdcconCwsLUtm1bFRUVqX///mrSpIlmzZqlyMhI/fOf/1SHDh00dOhQLV261K+5Dx48WI899pgGDx6shx9+WM2aNdPy5cv9KkJnZGTI5XLprbfe0ksvveRe36tXL02YMEEOh8Ovewq1adNGCxcu1KJFi9S0aVNFR0dXmvglJibq4osv1v3336/Y2FjNmjVLX3zxhRYuXOjTe4aFhal3794aM2aMSkpKNHXqVOXn52vSpEnumH79+mnOnDlq0aKF2rZtqy1btujRRx/1qYj62zH+8pe/aMKECerevbt27typBx98UE2aNFFxcbHP41SmcePGevDBB3Xvvffq66+/Vt++fVWnTh398MMP+uCDDxQbG+vet/LOtQsuuEB//OMfNXToUH344Ye66KKLFBsbq/3792v9+vVq06aNbr31VsvmDACwVu3atXX//ffr//7v/zR48GDdcMMNOnjwoCZNmqTo6GhNmDBB0ok/to0ePVrXXXedmjVrpsjISL399tv6+OOPPTrh/Pl+DsR3SHZ2tl544QVdeumleuihh5ScnKz58+friy++8BqfmZmpBg0aaNSoUcrJyfFaoCxvn0r/oDxkyBD3drNnz9a1116rGTNmKDs726+533fffVq2bJkuvvhiPfDAA6pZs6aefPLJMveBr0hGRobGjh0r6X/3OY+JiVHXrl21atUqtW3bVklJST6NFRcXp0aNGum1115TRkaGEhISlJiYqMaNG1e43YEDB3TVVVdp+PDhysvL04QJExQdHa3x48f79L4ffvihbrnlFl133XXau3ev7r33XtWvX1+jRo2SJLVo0UJnnnmmxo0bJ2OMEhIS9Prrr7vvO+qL+Ph4XXTRRXr00Ufd+7Ru3TrNnj3b65U3viCvAhByquZ5R0DV8/Z09VJLly41nTt3NtHR0SY2NtZkZGSY9957r0zc8uXLzbnnnmtiYmJM06ZNzcyZM8t9uvptt91WZvtGjRqZIUOGeKxbtmyZadu2rYmMjDQNGzY0jzzyiNcxy7Nu3Tpz6aWXmoSEBBMREWHq169vLr30Uo/9LB3vxx9/9Nj25KeXGmPMoUOHzM0332xq165tatasaXr37m2++OKLcp9cuWrVKiOpzFMwSxUUFJhbbrnF1KtXzzgcDvf73XjjjaZmzZpmx44dHvGvvPKKkWQee+yxCvf75KerG2PMd999Z6655hpTq1YtExcXZ6655hqzYcMGn56ubsyJJ18mJiYaSeb77793ry99YmaHDh28zuOcc87xOt4333xjMjMzTVxcnJFkGjVqVOH7l543s2bNMmeeeaaJiIgwLVq0MPPnz6907qVPMZ86daqZNGmSadCggYmMjDTt27c3K1eu9IjNzc01w4YNM0lJSaZmzZrmwgsvNO+++26ZY1rR70xBQYG56667TP369U10dLTp0KGDWbp0qRkyZIjHfpbO69FHH/XYvryxS8/JzZs3e6xfunSp6dmzp4mPjzdRUVGmUaNG5tprrzVr1qzxmJO3c63UCy+8YDp37mxiY2NNTEyMOfPMM83gwYPNhx9+6I6p6PMEAJwe3vITY4x5/vnn3TmT0+k0V1xxhUce8cMPP5ibbrrJtGjRwsTGxppatWqZtm3bmscee8wUFxe74/z9fjbm932HnPzdaIwxn332mendu7eJjo42CQkJZtiwYea1114r83T1Uv/3f/9nJJm0tDTjcrnKvO5tn44cOWJatGhhWrVqZX755ReP+Ntuu81ERESUeRL8ybzlf++9957p0qWLiYqKMikpKebPf/6zefbZZ316uroxxnz00UdGkmnWrJnH+ocffthIMmPGjPE6D2+5tTHGrFmzxrRv395ERUUZSWVy7d8qzT/mzp1r7rjjDlOvXj0TFRVlunXr5vFZlqf03Fy1apXJysoytWvXNjExMeYPf/iD+eqrrzxiSz/juLg4U6dOHXPdddeZPXv2lDmm5eXpxvwvt61Tp46Ji4szffv2NZ9++mmZ/6coL38q3d+TzynyKgChwmHMb/ryAQAh4ZtvvlGTJk306KOP6q677qrq6QAAAIScOXPmaOjQodq8ebPHpd0AgKrBPTkBAAAAAAAA2BpFTgAAAAAAAAC2xuXqAAAAAAAAAGyNTk4AAAAAAAAAtkaREwAAAAAAAICtUeQEAAAAAAAAYGvhVT2BYFdSUqJ9+/YpLi5ODoejqqcDAAAsZozR4cOHlZqaqho1+PtvsCAHAwAgtJGDle/48eMqLCwMyNiRkZGKjo4OyNhVjSJnJfbt26e0tLSqngYAAAiwvXv3qkGDBlU9DfyKHAwAgOqBHMzT8ePHVS8mRkcCNH5KSop2794dkoVOipyViIuLk3Tily4+Pr6KZwMAAKyWn5+vtLQ093c+ggM5GAAAoY0czLvCwkIdkXSnpCiLxy6Q9FhOjgoLCylyVkell0fFx8eTYAMAEMK4JDq4kIMBAFA9kIN5FyvJ6jJkqBcBQ33/AAAAAAAAAFuJ+HWxksvi8YINd3YFAAAAAAAAYGt0cgIAAAAAAABBJFzWF+1CvQhIJycAAAAAAAAAWwv1Ii4AAAAAAABgK+Gy/p6cxRaPF2zo5AQAAAAAAABga3RyAgAAAAAAAEGEe3L6j05OAAAAAAAAALYW6kVcAAAAAAAAwFYixD05/UWREwAAAAAAAAgiXK7uPy5XBwAAAAAAAGBroV7EBQAAAAAAAGwlXNZfrl5k8XjBhk5OAAAAAAAAALZGJycAAAAAAAAQRLgnp//o5AQAAAAAAABga6FexAUAAAAAAABsJULW35PT6vGCDZ2cAAAAAAAAAGyNTk4AAAAAAAAgiNDJ6T+KnAAAAAAAAEAQ4cFD/uNydQAAAAAAAAC2FupFXAAAAAAAAMBWwmX95eWhXgSkkxMAAAAAAACArYV6ERcAAAAAAACwFe7J6T86OQEAAAAAAADYWqgXcQEAAAAAAABbiZD19+S0erxgQycnAAAAAAAAAFujkxMAAAAAAAAIItyT03+hvn8AAAAAAACArYTL+svLQ70IyOXqAAAAAAAAAGwt1Iu4AAAAAAAAgK1wubr/6OQEAAAAAAAAYGuhXsQFAAAAAAAAbCVC1t+T0+rxgg2dnAAAAAAAAABsjU5OAAAAAAAAIIhwT07/0ckJAAAAAAAAwNZCvYgLAAAAAAAA2Eq4rL+HZqgXAUN9/wAAAAAAAABb4cFD/uNydQAAAAAAAAC2RicnAAAAAAAAEER48JD/bNfJOWvWLDVp0kTR0dHq2LGj3n33XZ+2e++99xQeHq5zzz03sBMEAAAIQeRgAAAACGa2KnIuWrRI2dnZuvfee7Vt2zZ169ZNl1xyifbs2VPhdnl5eRo8eLAyMjJO00wBAABCBzkYAADA6RUeJkWEW7uEh1X1XgWWrYqc06dP17Bhw3TLLbeoZcuWmjFjhtLS0vTUU09VuN2IESM0cOBApaenn6aZAgAAhA5yMAAAAAQ72xQ5CwsLtWXLFmVmZnqsz8zM1IYNG8rd7sUXX9R///tfTZgwwaf3KSgoUH5+vscCAABQXZGDAQAAnH7h4YFZQpltipw//fSTXC6XkpOTPdYnJycrJyfH6zZfffWVxo0bp/nz5yvcx09yypQpcjqd7iUtLe13zx0AAMCuyMEAAABgB7YpcpZyOBwePxtjyqyTJJfLpYEDB2rSpEk6++yzfR5//PjxysvLcy979+793XMGAACwO3IwAACA0yciLDBLKLNNo2piYqLCwsLKdAwcOHCgTGeBJB0+fFgffvihtm3bptGjR0uSSkpKZIxReHi4Vq1apYsvvrjMdlFRUYqKigrMTgAAANgMORgAAMDpFx4uhZf9e/LvG9NYO16wsU0nZ2RkpDp27KjVq1d7rF+9erW6du1aJj4+Pl6ffPKJtm/f7l5Gjhyp5s2ba/v27ercufPpmjoAAIBtkYMBAABUT//5z3902WWXKTU1VQ6HQ0uXLvV43RijiRMnKjU1VTExMerRo4d27NjhEVNQUKDbb79diYmJio2N1eWXX67vvvvOIyY3N1dZWVnu2xZlZWXp0KFDfs/XNp2ckjRmzBhlZWWpU6dOSk9P17PPPqs9e/Zo5MiRkk5c5vT999/rH//4h2rUqKHWrVt7bJ+UlKTo6Ogy6wEAAFA+cjAAAIDTKyJMirC4NTGixL/4X375Re3atdPQoUN1zTXXlHl92rRpmj59uubMmaOzzz5bDz30kHr37q2dO3cqLi5OkpSdna3XX39dCxcuVN26dTV27Fj169dPW7ZsUVjYievnBw4cqO+++04rVqyQJP3xj39UVlaWXn/9db/ma6si54ABA3Tw4EE9+OCD2r9/v1q3bq3ly5erUaNGkqT9+/drz549VTxLAACA0EIOBgAAUP1ccskluuSSS7y+ZozRjBkzdO+99+rqq6+WJL300ktKTk7WggULNGLECOXl5Wn27NmaO3euevXqJUmaN2+e0tLStGbNGvXp00eff/65VqxYoU2bNrmv+HnuueeUnp6unTt3qnnz5j7P12GMCfEr8n+f/Px8OZ1O5eXlKT4+vqqnAwAALMZ3fXDicwEAILTxXe+d+7gkSvEWd3Lml0jOn6S9e/d6HHNf7o3ucDi0ZMkSXXnllZKkr7/+Wmeeeaa2bt2q9u3bu+OuuOIK1a5dWy+99JLefvttZWRk6Oeff1adOnXcMe3atdOVV16pSZMm6YUXXtCYMWPKXJ5eu3ZtPfbYYxo6dKjP+2ebe3ICAAAAAAAA+H3S0tLc9790Op2aMmWK32OUPpTy5AdRJicnu1/LyclRZGSkR4HTW0xSUlKZ8ZOSkso8+LIytrpcHQAAAAAAAAh54bK+NfHXe3J66+Q8VQ6H5yPgjTFl1p3s5Bhv8b6MczI6OQEAAAAAAIBqIj4+3mM5lSJnSkqKJJXptjxw4IC7uzMlJUWFhYXKzc2tMOaHH34oM/6PP/5Ypku0MhQ5AQAAAAAAgGASHqDFIk2aNFFKSopWr17tXldYWKh169apa9eukqSOHTsqIiLCI2b//v369NNP3THp6enKy8vTBx984I55//33lZeX547xFZerAwAAAAAAAMEkgJer++rIkSPatWuX++fdu3dr+/btSkhIUMOGDZWdna3JkyerWbNmatasmSZPnqyaNWtq4MCBkiSn06lhw4Zp7Nixqlu3rhISEnTXXXepTZs27qett2zZUn379tXw4cP1zDPPSJL++Mc/ql+/fn49WV2iyAkAAAAAAADgJB9++KF69uzp/nnMmDGSpCFDhmjOnDm6++67dezYMY0aNUq5ubnq3LmzVq1apbi4OPc2jz32mMLDw9W/f38dO3ZMGRkZmjNnjsLCwtwx8+fP1x133KHMzExJ0uWXX66ZM2f6PV+HMcac6s5WB/n5+XI6ncrLy/O4KSsAAAgNfNcHJz4XAABCG9/13rmPS1MpPqzyeL/GdknOrxWyx5x7cgIAAAAAAACwNS5XBwAAAAAAAIJJuCSLOznlsHi8IEMnJwAAAAAAAABbo5MTAAAAAAAACCZ0cvqNTk4AAAAAAAAAtkYnJwAAAAAAABBMwmR9J2eIo8gJAAAAAAAABBMuV/cbl6sDAAAAAAAAsDU6OQEAAAAAAIBgEiaqdn6ikxMAAAAAAACArVETBgAAAAAAAIJJIB48ZCweL8jQyQkAAAAAAADA1ujkBAAAAAAAAIJJuKja+YlOTgAAAAAAAAC2Rk0YAAAAAAAACCZ0cvqNTk4AAAAAAAAAtkZNGAAAAAAAAAgmdHL6jcMFAAAAAAAABJMaksIsHrPE4vGCDJerAwAAAAAAALA1OjkBAAAAAACAYBKIy9WNxeMFGTo5AQAAAAAAANganZwAAAAAAABAMKGT0290cgIAAAAAAACwNTo5AQAAAAAAgGASJp6u7ic6OQEAAAAAAADYGp2cAAAAAAAAQDDhnpx+o8gJAAAAAAAABJMwWV+143J1AAAAAAAAAAhedHICAAAAAAAAwSQQDx6yerwgQycnAAAAAAAAAFujkxMAAAAAAAAIJoF48BD35AQAAAAAAACA4EUnJwAAAAAAABBM6OT0G52cAAAAAAAAAGyNTk4AAAAAAAAgmNDJ6TeKnAAAAAAAAEAwqSEpLABjhrAQ3z0AAAAAAAAAoY5OTgAAAAAAACCYBOJydZfF4wUZOjkBAAAAAAAA2BqdnAAAAAAAAEAwoZPTb3RyAgAAAAAAALA1OjkBAAAAAACAYBIm65+ubvV4QYZOTgAAAAAAAAC2RicnAAAAAAAAEEy4J6ffKHICAAAAAAAAwSRM1lftii0eL8hwuToAAAAAAAAAW6OTEwAAAAAAAAgmgbhcPcSrgHRyAgAAAAAAALC1EK/hAgAAAAAAADYT9uti9ZghjE5OAAAAAAAAALZGJycAAAAAAAAQTLgnp9/o5AQAAAAAAABgayFewwUAAAAAAABshk5Ov4X47gEAAAAAAAA2U0PWPygoxK/nDvHdAwAAAAAAABDq6OQEAAAAAAAAggmXq/uNTk4AAAAAAAAAthbiNVwAAAAAAADAZujk9BudnAAAAAAAAABsLcRruAAAAAAAAIDNhMn6p6tbPV6QoZMTAAAAAAAAgK3RyQkAAAAAAAAEE+7J6bcQ3z0AAAAAAADAZsJkfdWOy9UBAAAAAAAAIHjRyQkAAAAAAAAEEy5X9xudnAAAAAAAAABsLcRruAAAAAAAAIDNhMn6e2hyT04AAAAAAAAACF50cgIAAAAAAADBhHty+o1OTgAAAAAAAAC2FuI1XAAAAAAAAMBm6OT0G52cAAAAAAAAQDCpof89fMiqxc8qYHFxse677z41adJEMTExatq0qR588EGVlJS4Y4wxmjhxolJTUxUTE6MePXpox44dHuMUFBTo9ttvV2JiomJjY3X55Zfru+++8/OAVI4iJwAAAAAAAAAPU6dO1dNPP62ZM2fq888/17Rp0/Too4/qiSeecMdMmzZN06dP18yZM7V582alpKSod+/eOnz4sDsmOztbS5Ys0cKFC7V+/XodOXJE/fr1k8vlsnS+Id6oCgAAAAAAANhMAC9Xz8/P91gdFRWlqKioMuEbN27UFVdcoUsvvVSS1LhxY7388sv68MMPJZ3o4pwxY4buvfdeXX311ZKkl156ScnJyVqwYIFGjBihvLw8zZ49W3PnzlWvXr0kSfPmzVNaWprWrFmjPn36WLZ7tuvknDVrlpo0aaLo6Gh17NhR7777brmxixcvVu/evVWvXj3Fx8crPT1dK1euPI2zBQAACA3kYAAAAKEhLS1NTqfTvUyZMsVr3IUXXqi33npLX375pSTpo48+0vr16/WHP/xBkrR7927l5OQoMzPTvU1UVJS6d++uDRs2SJK2bNmioqIij5jU1FS1bt3aHWMVWxU5Fy1apOzsbN17773atm2bunXrpksuuUR79uzxGv+f//xHvXv31vLly7Vlyxb17NlTl112mbZt23aaZw4AAGBf5GAAAACnWXiAFkl79+5VXl6eexk/frzXKdxzzz264YYb1KJFC0VERKh9+/bKzs7WDTfcIEnKycmRJCUnJ3tsl5yc7H4tJydHkZGRqlOnTrkxVrHV5erTp0/XsGHDdMstt0iSZsyYoZUrV+qpp57yWnWeMWOGx8+TJ0/Wa6+9ptdff13t27c/HVMGAACwPXIwAACA0BEfH6/4+PhK4xYtWqR58+ZpwYIFOuecc7R9+3ZlZ2crNTVVQ4YMccc5HA6P7YwxZdadzJcYf9mmk7OwsFBbtmzxaG+VpMzMTJ/bW0tKSnT48GElJCSUG1NQUKD8/HyPBQAAoLoiBwMAAKgCVj9ZvXTxw5///GeNGzdO119/vdq0aaOsrCzdeeed7j9yp6SkSFKZjswDBw64uztTUlJUWFio3NzccmOsYpsi508//SSXy1VhC2xl/va3v+mXX35R//79y42ZMmWKx30J0tLSfte8AQAA7IwcDAAAoHo6evSoatTwLB2GhYWppKREktSkSROlpKRo9erV7tcLCwu1bt06de3aVZLUsWNHRUREeMTs379fn376qTvGKra6XF06tRZYSXr55Zc1ceJEvfbaa0pKSio3bvz48RozZoz75/z8fJJsAABQ7ZGDAQAAnEYBfLq6ry677DI9/PDDatiwoc455xxt27ZN06dP18033yzpRH6YnZ2tyZMnq1mzZmrWrJkmT56smjVrauDAgZIkp9OpYcOGaezYsapbt64SEhJ01113qU2bNu6nrVfR7lWdxMREhYWFVdgCW55FixZp2LBheuWVVyo9gFFRUYqKivrd8wUAAAgF5GAAAABVIEzWV+38vFz9iSee0P33369Ro0bpwIEDSk1N1YgRI/TAAw+4Y+6++24dO3ZMo0aNUm5urjp37qxVq1YpLi7OHfPYY48pPDxc/fv317Fjx5SRkaE5c+YoLMzPCVXCYYwxlo4YQJ07d1bHjh01a9Ys97pWrVrpiiuuKPdx9y+//LJuvvlmvfzyy7ryyiv9fs/8/Hw5nU7l5eX5dFNWAABgL3zXV44cDAAAWI3veu/cx+UdKb6WxWMfkZw9FLLH3DadnJI0ZswYZWVlqVOnTkpPT9ezzz6rPXv2aOTIkZJOXOb0/fff6x//+IekE8n14MGD9fe//11dunRxdyDExMTI6XRW2X4AAADYCTkYAADAaRYEl6vbja12b8CAATp48KAefPBB7d+/X61bt9by5cvVqFEjSSduXLpnzx53/DPPPKPi4mLddtttuu2229zrhwwZojlz5pzu6QMAANgSORgAAACCna0uV68KtE8DABDa+K4PTnwuAACENr7rvXMfl40Bulw9PXQvV69ReQgAAAAAAAAABC9bXa4OAAAAAAAAhDzuyek3OjkBAAAAAAAA2FqI13ABAAAAAAAAmwmT9VW7MIvHCzJ0cgIAAAAAAACwNTo5AQAAAAAAgGASJus7L0O8k5MiJwAAAAAAABBMePCQ37hcHQAAAAAAAICthXgNFwAAAAAAALAZOjn9RicnAAAAAAAAAFsL8RouAAAAAAAAYDN0cvqNTk4AAAAAAAAAthbiNVwAAAAAAADAXkwNyYRZP2YoC/HdAwAAAAAAABDq6OQEAAAAAAAAgogr/MRi9ZihLMR3DwAAAAAAALAXipz+43J1AAAAAAAAALYW4jVcAAAAAAAAwF6KwxwqDnNYPKaRZCwdM5jQyQkAAAAAAADA1ujkBAAAAAAAAIKIKzxcrnBrOzld4UZSkaVjBhM6OQEAAAAAAADYGp2cAAAAAAAAQBBxhYXJZfE9OV1hdHICAAAAAAAAQNCikxMAAAAAAAAIIiUKk0vWdnKWhPCT1SWKnAAAAAAAAEBQKVaYii0uchaHeJGTy9UBAAAAAAAA2BqdnAAAAAAAAEAQcSlMLot7E10qsXS8YEMnJwAAAAAAAABbo5MTAAAAAAAACCKB6eS09h6fwYZOTgAAAAAAAAC2RicnAAAAAAAAEETo5PQfnZwAAAAAAAAAbI1OTgAAAAAAACCI0MnpP4qcAAAAAAAAQBBxKUzFFDn9wuXqAAAAAAAAAGyNTk4AAAAAAAAgiLgUHoDL1UssHS/Y0MkJAAAAAAAAwNbo5AQAAAAAAACCiEs15FKYxWOGNjo5AQAAAAAAANganZwAAAAAAABAEHEpjE5OP9HJCQAAAAAAAMDW6OQEAAAAAAAAgkixwlRscSdnsaWjBR+KnAAAAAAAAEAQKVG45Zerl8hh6XjBhsvVAQAAAAAAANganZwAAAAAAABAEOHBQ/6jkxMAAAAAAACArdHJCQAAAAAAAAQROjn9RycnAAAAAAAAAFujkxMAAAAAAAAIIi7VCEAnp7F0vGBDJycAAAAAAAAAW6OTEwAAAAAAAAgixQpTscWdnMUh3slJkRMAAAAAAAAIIi6Fy2Vx2Y4HDwEAAAAAAABAEKOTEwAAAAAAAAgiJQqz/MFDJSF+uTqdnAAAAAAAAABsjU5OAAAAAAAAIIi4AtDJ6QrxTk6fipx16tSRw+HwacCff/75d00IAAAAJ5CDAQAAAL7xqcg5Y8YM978PHjyohx56SH369FF6erokaePGjVq5cqXuv//+gEwSAACgOiIHAwAAqJ6KVUPFFndyFqvE0vGCjcMY41ev6jXXXKOePXtq9OjRHutnzpypNWvWaOnSpVbOr8rl5+fL6XQqLy9P8fHxVT0dAABgMbt815ODAQCAUMJ3vXelx2VuXi/VjI+wdOyj+UXKcq4J2WPu94OHVq5cqb59+5ZZ36dPH61Zs8aSSQEAAMATORgAAED14VJ4QJZQ5neRs27dulqyZEmZ9UuXLlXdunUtmRQAAAA8kYMBAABUH6UPHrJ6CWV+l3AnTZqkYcOG6Z133nHfD2rTpk1asWKFnn/+ecsnCAAAAHIwAAAAoCJ+FzlvuukmtWzZUo8//rgWL14sY4xatWql9957T507dw7EHAEAAKo9cjAAAIDqIxCdl64Qf/DQKV2M37lzZ82fP9/quQAAAKAC5GAAAACAdz4VOfPz891PXcrPz68wNhSfzgQAAFAVyMEAAACqJ5fCVEwnp198KnLWqVNH+/fvV1JSkmrXri2Hw1Emxhgjh8Mhl8tl+SQBAACqI3IwAAAAwDc+FTnffvttJSQkSJLWrl0b0AkBAADgBHIwAACA6smlcLlO7S6TFYxpLB0v2Ph0tLp37+713wAAAAgccjAAAABUpe+//1733HOP/v3vf+vYsWM6++yzNXv2bHXs2FHSiauKJk2apGeffVa5ubnq3LmznnzySZ1zzjnuMQoKCnTXXXfp5Zdf1rFjx5SRkaFZs2apQYMGls61hqWjAQAAAAAAAPhdXKrhfsK6dYt/ZcDc3FxdcMEFioiI0L///W999tln+tvf/qbatWu7Y6ZNm6bp06dr5syZ2rx5s1JSUtS7d28dPnzYHZOdna0lS5Zo4cKFWr9+vY4cOaJ+/fpZfrsla/teAQAAAAAAAPwupYVJq8f0x9SpU5WWlqYXX3zRva5x48bufxtjNGPGDN177726+uqrJUkvvfSSkpOTtWDBAo0YMUJ5eXmaPXu25s6dq169ekmS5s2bp7S0NK1Zs0Z9+vT5/Tv2Kzo5AQAAAAAAgGoiPz/fYykoKPAat2zZMnXq1EnXXXedkpKS1L59ez333HPu13fv3q2cnBxlZma610VFRal79+7asGGDJGnLli0qKiryiElNTVXr1q3dMVahyAkAAAAAAAAEEesvVf9fZ2haWpqcTqd7mTJlitc5fP3113rqqafUrFkzrVy5UiNHjtQdd9yhf/zjH5KknJwcSVJycrLHdsnJye7XcnJyFBkZqTp16pQbYxW/i5w7duwo97UVK1b8rskAAADAO3IwAAAAWGHv3r3Ky8tzL+PHj/caV1JSog4dOmjy5Mlq3769RowYoeHDh+upp57yiHM4HB4/G2PKrDuZLzH+8rvI2alTJz3xxBMe6woKCjR69GhdddVVlk0MAAAA/0MOBgAAUH24FKZii5fSTs74+HiPJSoqyusczjjjDLVq1cpjXcuWLbVnzx5JUkpKiiSV6cg8cOCAu7szJSVFhYWFys3NLTfGKn4XOefPn69JkybpkksuUU5OjrZv36727dvr7bff1nvvvWfp5AAAAHACORgAAABOpwsuuEA7d+70WPfll1+qUaNGkqQmTZooJSVFq1evdr9eWFiodevWqWvXrpKkjh07KiIiwiNm//79+vTTT90xVvG7yHn11Vfr448/VnFxsVq3bq309HT16NFDW7ZsUYcOHSydHAAAAE4gBwMAAKg+XAoPyOKPO++8U5s2bdLkyZO1a9cuLViwQM8++6xuu+02SScuU8/OztbkyZO1ZMkSffrpp7rppptUs2ZNDRw4UJLkdDo1bNgwjR07Vm+99Za2bdumG2+8UW3atHE/bd0q/u3dr1wulwoLC+VyueRyuZSSklJua2uocDqnSIqu6mlYwNePvNji8SJ8jPNVnB+xvu5LgsVx8T7GJfkY18zHOD908zGus49xvX0LuynzaZ/iRugZn+K61N/u2xtLmrTPtzhfP+Xbl/sW99wlWT7FjS/xfsPnkx2cV9+3N17qW5gk6V0f437xMe5YkY+Bn/gYl+9jnK+/8z/4GCdJxyyO8/XY+Dqer/+N9XW84GfMBJ/iHI5JPkQd/32TOY2qZw42Q5XlYMbcbel7OhzTfIz09XfK128VSWrpR6wvWvgY97OPcb7Oz4//xtZp4FtcXR/HS/P9rX3S0ce4y3wLS7poj89vfWCfb5fx/SX1Xp/iRvqYWyVOOeJTnL72LUy7fQv7aU0tHweUnnT4NscJ5/o44AM+xrXxLWzZWZmVB0l60Mc33nm0uW9vLOnIJ4m+Bfb0cUAf007918c4X/n6v9/HvvJj0MY+xn3jx5i+8PW/sb7lxcbc4lOcb3mQf6prDlZdnXfeeVqyZInGjx+vBx98UE2aNNGMGTM0aNAgd8zdd9+tY8eOadSoUcrNzVXnzp21atUqxcX9r27z2GOPKTw8XP3799exY8eUkZGhOXPmKCwszNL5+t3JuXDhQrVt21ZOp1Nffvml3nzzTT377LPq1q2bvv7a1285AAAA+IMcDAAAoPoI5NPV/dGvXz998sknOn78uD7//HMNHz7c43WHw6GJEydq//79On78uNatW6fWrVt7xERHR+uJJ57QwYMHdfToUb3++utKS7P6r5KnUOQcNmyYJk+erGXLlqlevXrq3bu3PvnkE9WvX1/nnnuu5RMEAAAAORgAAABQEb8vV9+6dauaN/dsla9Tp47++c9/au7cuZZNDAAAAP9DDgYAAFB9uFTjlDovKxszlPm9d4sWLdLRo0fLrD927Jh27/bxZisAAADwCzkYAABA9VGssIAsoczvIuekSZN05EjZmzwfPXpUkyZZf1NbAAAAkIMBAAAAFfG7yGmMkcPhKLP+o48+UkKCP0+OPDWzZs1SkyZNFB0drY4dO+rddyt+HPC6devUsWNHRUdHq2nTpnr6ad+e6gwAABBMyMEAAACqD5fCA7KEMp/3rk6dOnI4HHI4HDr77LM9kmyXy6UjR45o5MiRAZlkqUWLFik7O1uzZs3SBRdcoGeeeUaXXHKJPvvsMzVs2LBM/O7du/WHP/xBw4cP17x58/Tee+9p1KhRqlevnq655pqAzhUAAMAK5GAAAABA5Xwucs6YMUPGGN18882aNGmSnE6n+7XIyEg1btxY6enpAZlkqenTp2vYsGG65ZZb3HNauXKlnnrqKU2ZMqVM/NNPP62GDRtqxowZkqSWLVvqww8/1F//+lcSbAAAYAvkYAAAANVPicIsf/BQSYjfk9PnIueQIUMkSU2aNNEFF1yg8PDT2+JaWFioLVu2aNy4cR7rMzMztWHDBq/bbNy4UZmZmR7r+vTpo9mzZ6uoqEgRERFltikoKFBBQYH75/z8fAtmDwAAcGrIwQAAAIDK+Z0lT5w4UTfeeKOuvfZaj06CQPvpp5/kcrmUnJzssT45OVk5OTlet8nJyfEaX1xcrJ9++klnnHFGmW2mTJni9eb9eXnjFR8f/zv2AMD/+HpZpY9x3/v+zhN8D7XUcF/jfL1T8mCL4wKibBHDuw4BnQWqN2Mq/63Pz8+X0/nIaZjN71N9c7Ds056DGXP3aX2/4NAgyMcLJWVv8VCuVF8D/2pt3Hhf39daiX7ETjABm4YlLrc4TjX9ePPOPsYd9WPMoNbMJmP6wtcPzze+5EGBEko5WFVxBaCT0+rxgo3fDx5q06aN7rvvPqWkpOiaa67R0qVLVVhYGIi5eXXyDffLuwl/RfHe1pcaP3688vLy3MvevXt/54wBAAB+P3IwAAAAoHx+Fzkff/xxff/993rttdcUFxenIUOGKCUlRX/84x+1bt26QMxRkpSYmKiwsLAyHQMHDhwo0ylQKiUlxWt8eHi46tat63WbqKgoxcfHeywAAABVjRwMAACg+nCphrub07rF7zKgrZzS3tWoUUOZmZmaM2eOfvjhBz3zzDP64IMPdPHFF1s9P7fIyEh17NhRq1ev9li/evVqde3a1es26enpZeJXrVqlTp06eb0XFAAAQDAjBwMAAKgeihUWkCWU/a4Sbk5Ojp5++mlNnTpVH3/8sTp16mTVvLwaM2aMnn/+eb3wwgv6/PPPdeedd2rPnj0aOfLEffvGjx+vwYP/dwO6kSNH6ttvv9WYMWP0+eef64UXXtDs2bN11113BXSeAAAAgUQOBgAAAHjy+8FD+fn5evXVV7VgwQK98847atq0qQYOHKiFCxfqrLPOCsQc3QYMGKCDBw/qwQcf1P79+9W6dWstX75cjRo1kiTt379fe/bsccc3adJEy5cv15133qknn3xSqampevzxx3XNNdcEdJ4AAABWIwcDAACoPlwKl8v/sl2lY4Yyhym9C7yPYmJiVKdOHfXv31+DBg3SeeedF6i5BYUTT/tyKi8vj3tDAQAQguzyXU8OBgAAQgnf9d6VHpdb8yYoKj7a0rEL8o/rKeekkD3mfpdwX3vtNfXq1Us1aoT2zUoBAACCCTkYAABA9VHy68OCrB4zlPld5MzMzAzEPAAAAFABcjAAAACgfD4VOdu3by+Hw+HTgFu3bv1dEwIAAMAJ5GAAAADVkysAnZxWjxdsfCpyXnnlle5/Hz9+XLNmzVKrVq2Unp4uSdq0aZN27NihUaNGBWSSAAAA1RE5GAAAAOAbn4qcEyZMcP/7lltu0R133KG//OUvZWL27t1r7ewAAACqMXIwAACA6qlYYaphcedlcYh3cvp95/pXXnlFgwcPLrP+xhtv1KuvvmrJpAAAAOCJHAwAAKD6OHG5erjFC0VODzExMVq/fn2Z9evXr1d0tLWPtgcAAMAJ5GAAAABA+fx+unp2drZuvfVWbdmyRV26dJF04n5QL7zwgh544AHLJwgAAAByMAAAgOqEBw/5z+8i57hx49S0aVP9/e9/14IFCyRJLVu21Jw5c9S/f3/LJwgAAAByMAAAAKAifhc5Jal///4k0wAAAKcZORgAAED1QCen/06pyClJhYWFOnDggEpKSjzWN2zY8HdPCgAAAN6RgwEAAABl+V3k/Oqrr3TzzTdrw4YNHuuNMXI4HHK5XJZNDgAAACeQgwEAAFQfJQHo5Cyhk9PTTTfdpPDwcL3xxhs644wz5HA4AjEvAAAA/AY5GAAAAFA+v4uc27dv15YtW9SiRYtAzAcAAABekIMBAABUH8UKk8PizstiOjk9tWrVSj/99FMg5gIAAIBykIMBAABUHy6FqcapP0qn3DFDWQ1/N5g6daruvvtuvfPOOzp48KDy8/M9FgAAAFiPHAwAAAAon98l4V69ekmSMjIyPNZz03sAAIDAIQcDAACoPk50clrbeRnqnZx+FznXrl0biHkAAACgAuRgAAAAQPn8LnJ27949EPMAAABABcjBAAAAqg86Of3n9z05Jendd9/VjTfeqK5du+r777+XJM2dO1fr16+3dHIAAAD4H3IwAAAAwDu/i5yvvvqq+vTpo5iYGG3dulUFBQWSpMOHD2vy5MmWTxAAAADkYAAAANVJscICsoQyv4ucDz30kJ5++mk999xzioiIcK/v2rWrtm7daunkAAAAcAI5GAAAAFA+v+/JuXPnTl100UVl1sfHx+vQoUNWzAkAAAAnIQcDAACoPkoULpf/ZbtKxwxlfndynnHGGdq1a1eZ9evXr1fTpk0tmRQAAAA8kYMBAABUHy6FBWQJZX4XOUeMGKE//elPev/99+VwOLRv3z7Nnz9fd911l0aNGhWIOQIAAFR75GAAAABA+fzuU7377ruVl5ennj176vjx47rooosUFRWlu+66S6NHjw7EHAEAAKo9cjAAAIDqw6Uacljceenyv9fRVhzGGHMqGx49elSfffaZSkpK1KpVK9WqVcvquQWF/Px8OZ1O5eXlKT4+vqqnAwAALGa373pyMAAAEAr4rveu9LhcmPcvhcfHWjp2cf4vWu+8NmSP+SnfcbRmzZrq1KmTlXMBAABAJcjBAAAAQl+xwiSLOzmLuScnAAAAAAAAAASv0H52PAAAAAAAAGAzLoXLYXHZzhXiZUA6OQEAAAAAAADYWmiXcAEAAAAAAACbKVGYXBbfQ7MkxO/JSZETAAAAAAAACCKuADx4yOqiabDhcnUAAAAAAAAAtkYnJwAAAAAAABBE6OT0H52cAAAAAAAAAGyNTk4AAAAAAAAgiBSrhozlnZyh3esY2nsHAAAAAAAAIOTRyQkAAAAAAAAEEZfCZXXZzhXiZUA6OQEAAAAAAADYWmiXcAEAAAAAAACb4enq/qPICQAAAAAAAASRkgAUOUtCvMjJ5eoAAAAAAAAAbI1OTgAAAAAAACCIFCtMNejk9AudnAAAAAAAAABsjU5OAAAAAAAAIIi4FCZjcdmOTk4AAAAAAAAACGJ0cgIAAAAAAABB5EQnJ/fk9AednAAAAAAAAABsjU5OAAAAAAAAIIjQyek/ipwAAAAAAABAEHGVhMmUWFzktHi8YMPl6gAAAAAAAABsjU5OAAAAAAAAIIi4isNUUmxt56WxeLxgQycnAAAAAAAAAFujkxMAAAAAAAAIIq7icDmKrS3bGYvHCzZ0cgIAAAAAAACwNYqcAAAAAAAAQBBxFdeQqzjM4uXUy4BTpkyRw+FQdna2e50xRhMnTlRqaqpiYmLUo0cP7dixw2O7goIC3X777UpMTFRsbKwuv/xyfffdd6c8j4pQ5AQAAAAAAADg1ebNm/Xss8+qbdu2HuunTZum6dOna+bMmdq8ebNSUlLUu3dvHT582B2TnZ2tJUuWaOHChVq/fr2OHDmifv36yeVyWT5PipwAAAAAAABAELG+i/PE4q8jR45o0KBBeu6551SnTh33emOMZsyYoXvvvVdXX321WrdurZdeeklHjx7VggULJEl5eXmaPXu2/va3v6lXr15q37695s2bp08++URr1qyx7FiVosgJAAAAAAAABJHi4jAVF1m8/FrkzM/P91gKCgrKncdtt92mSy+9VL169fJYv3v3buXk5CgzM9O9LioqSt27d9eGDRskSVu2bFFRUZFHTGpqqlq3bu2OsRJFTgAAAAAAAKCaSEtLk9PpdC9TpkzxGrdw4UJt3brV6+s5OTmSpOTkZI/1ycnJ7tdycnIUGRnp0QF6coyVQvvZ8QAAAAAAAIDNGFe4jMvist2v4+3du1fx8fHu1VFRUWVC9+7dqz/96U9atWqVoqOjyx3S4XB4/GyMKbPuZL7EnAo6OQEAAAAAAIBqIj4+3mPxVuTcsmWLDhw4oI4dOyo8PFzh4eFat26dHn/8cYWHh7s7OE/uyDxw4ID7tZSUFBUWFio3N7fcGCtR5AQAAAAAAACCSXFYYBYfZWRk6JNPPtH27dvdS6dOnTRo0CBt375dTZs2VUpKilavXu3eprCwUOvWrVPXrl0lSR07dlRERIRHzP79+/Xpp5+6Y6zE5eoAAAAAAAAA3OLi4tS6dWuPdbGxsapbt657fXZ2tiZPnqxmzZqpWbNmmjx5smrWrKmBAwdKkpxOp4YNG6axY8eqbt26SkhI0F133aU2bdqUeZCRFShyAgAAAAAAAMHEz85Ln8e00N13361jx45p1KhRys3NVefOnbVq1SrFxcW5Yx577DGFh4erf//+OnbsmDIyMjRnzhyFhVm8b5Icxhhj+aghJD8/X06nU3l5eR43ZQUAAKGB7/rgxOcCAEBo47veu9Ljou2HpDiLj8vhfOnc2iF7zOnkBAAAAAAAAIKJyyEVW/wEcpf1TzQPJjx4CAAAAAAAAICt0ckJAAAAAAAABJPiXxerxwxhFDkBAAAAAACAYEKR029crg4AAAAAAADA1ujkBAAAAAAAAIIJnZx+o5MTAAAAAAAAgK3RyQkAAAAAAAAEk2JJRQEYM4TRyQkAAAAAAADA1ujkBAAAAAAAAIKJ69fF6jFDGJ2cAAAAAAAAAGyNTk4AAAAAAAAgmPB0db9R5AQAAAAAAACCCUVOv3G5OgAAAAAAAABbs02RMzc3V1lZWXI6nXI6ncrKytKhQ4fKjS8qKtI999yjNm3aKDY2VqmpqRo8eLD27dt3+iYNAABgc+RgAAAAVaA4QEsIs02Rc+DAgdq+fbtWrFihFStWaPv27crKyio3/ujRo9q6davuv/9+bd26VYsXL9aXX36pyy+//DTOGgAAwN7IwQAAAGAHDmOMqepJVObzzz9Xq1attGnTJnXu3FmStGnTJqWnp+uLL75Q8+bNfRpn8+bNOv/88/Xtt9+qYcOGPm2Tn58vp9OpvLw8xcfHn/I+AACA4MR3ffnIwQAAQKDwXe9d6XHRK3lSTYuPy9F86brQPea26OTcuHGjnE6nO7mWpC5dusjpdGrDhg0+j5OXlyeHw6HatWuXG1NQUKD8/HyPBQAAoDoiBwMAAIBd2KLImZOTo6SkpDLrk5KSlJOT49MYx48f17hx4zRw4MAKq9VTpkxx33PK6XQqLS3tlOcNAABgZ+RgAAAAVYR7cvqtSoucEydOlMPhqHD58MMPJUkOh6PM9sYYr+tPVlRUpOuvv14lJSWaNWtWhbHjx49XXl6ee9m7d++p7RwAAECQIgcDAABAqAmvyjcfPXq0rr/++gpjGjdurI8//lg//PBDmdd+/PFHJScnV7h9UVGR+vfvr927d+vtt9+u9J4DUVFRioqKqnzyAAAANkUOBgAAEOQC0XkZ4p2cVVrkTExMVGJiYqVx6enpysvL0wcffKDzzz9fkvT+++8rLy9PXbt2LXe70uT6q6++0tq1a1W3bl3L5g4AAGBX5GAAAABBrujXxeoxQ5gt7snZsmVL9e3bV8OHD9emTZu0adMmDR8+XP369fN4qmeLFi20ZMkSSVJxcbGuvfZaffjhh5o/f75cLpdycnKUk5OjwsLCqtoVAAAA2yAHAwAAgF3YosgpSfPnz1ebNm2UmZmpzMxMtW3bVnPnzvWI2blzp/Ly8iRJ3333nZYtW6bvvvtO5557rs444wz34s/TQAEAAKozcjAAAIAq4ArQEsKq9HJ1fyQkJGjevHkVxhhj3P9u3Lixx88AAADwHzkYAAAA7MA2RU4AAAAAAACgWnDJ+gcFhXgnp20uVwcAAAAAAAAAb+jkBAAAAAAAAIJJsazv5LR6vCBDJycAAAAAAAAAW6OTEwAAAAAAAAgmdHL6jSInAAAAAAAAEEwocvqNy9UBAAAAAAAA2BqdnAAAAAAAAEAwccn6zkuXxeMFGTo5AQAAAAAAANganZwAAAAAAABAMOGenH6jkxMAAAAAAACArdHJCQAAAAAAAASTIklhARgzhNHJCQAAAAAAAMDW6OQEAAAAAAAAgolL1j8NPcSfrk6REwAAAAAAAAgmPHjIb1yuDgAAAAAAAMDW6OQEAAAAAAAAgolL1ndehvjl6nRyAgAAAAAAALA1OjkBAAAAAACAYFIsKSwAY4YwOjkBAAAAAAAA2BqdnAAAAAAAAEAwKZL1rYlFFo8XZOjkBAAAAAAAAGBrdHICAAAAAAAAwcQl65+GHuJPV6fICQAAAAAAAAQTl6x/UFCIFzm5XB0AAAAAAACArdHJCQAAAAAAAASTYlnfmmh1Z2iQoZMTAAAAAAAAgK3RyQkAAAAAAAAEkyJJjgCMGcLo5AQAAAAAAABga3RyAgAAAAAAAMHEJeufhs7T1QEAAAAAAAAgeNHJCQAAAAAAAAQTnq7uN4qcAAAAAAAAQDBxyfqiJJerAwAAAAAAAEDwopMTAAAAAAAACCZFNhkziNDJCQAAAAAAAMDW6OQEAAAAAAAAgolL1rcmck9OAAAAAAAAAAhedHICAAAAAAAAwaRYkiMAY4YwOjkBAAAAAAAA2BqdnAAAAAAAAEAwoZPTbxQ5AQAAAAAAgGASiIJkiBc5uVwdAAAAAAAAgK3RyQkAAAAAAAAEE5esv1zdZfF4QYZOTgAAAAAAAAC2RicnAAAAAAAAEEy4J6ff6OQEAAAAAAAA4GHKlCk677zzFBcXp6SkJF155ZXauXOnR4wxRhMnTlRqaqpiYmLUo0cP7dixwyOmoKBAt99+uxITExUbG6vLL79c3333neXzpcgJAAAAAAAABJPiAC1+WLdunW677TZt2rRJq1evVnFxsTIzM/XLL7+4Y6ZNm6bp06dr5syZ2rx5s1JSUtS7d28dPnzYHZOdna0lS5Zo4cKFWr9+vY4cOaJ+/frJ5bL2JqEOY4yxdMQQk5+fL6fTqby8PMXHx1f1dAAAgMX4rg9OfC4AAIQ2vuu9Kz0uOi9PCrf4uBTnS5tP/Zj/+OOPSkpK0rp163TRRRfJGKPU1FRlZ2frnnvukXSiazM5OVlTp07ViBEjlJeXp3r16mnu3LkaMGCAJGnfvn1KS0vT8uXL1adPH8t2j05OAAAAAAAAIJgUSyqyePm1kzM/P99jKSgo8GlKeXl5kqSEhARJ0u7du5WTk6PMzEx3TFRUlLp3764NGzZIkrZs2aKioiKPmNTUVLVu3dodYxWKnAAAAAAAAEA1kZaWJqfT6V6mTJlS6TbGGI0ZM0YXXnihWrduLUnKycmRJCUnJ3vEJicnu1/LyclRZGSk6tSpU26MVXi6OgAAAAAAABBMrL1dpceYe/fu9bhcPSoqqtJNR48erY8//ljr168v85rD4fD42RhTZt3JfInxF52cAAAAAAAAQDAJ4IOH4uPjPZbKipy33367li1bprVr16pBgwbu9SkpKZJUpiPzwIED7u7OlJQUFRYWKjc3t9wYq1DkBAAAAAAAAODBGKPRo0dr8eLFevvtt9WkSROP15s0aaKUlBStXr3ava6wsFDr1q1T165dJUkdO3ZURESER8z+/fv16aefumOswuXqAAAAAAAAQDAplmQsHtPPS+Bvu+02LViwQK+99pri4uLcHZtOp1MxMTFyOBzKzs7W5MmT1axZMzVr1kyTJ09WzZo1NXDgQHfssGHDNHbsWNWtW1cJCQm666671KZNG/Xq1cvS3aPICQAAAAAAAMDDU089JUnq0aOHx/oXX3xRN910kyTp7rvv1rFjxzRq1Cjl5uaqc+fOWrVqleLi4tzxjz32mMLDw9W/f38dO3ZMGRkZmjNnjsLCwiydr8MYY3VdOKTk5+fL6XQqLy/P46asAAAgNPBdH5z4XAAACG1813tXelzUNE+qYfFxKcmXvg7dY849OQEAAAAAAADYGperAwAAAAAAAMHEJevvyVli8XhBhk5OAAAAAAAAALZGJycAAAAAAAAQTIplfWtiiHdyUuQEAAAAAAAAgglFTr9xuToAAAAAAAAAW6OTEwAAAAAAAAgmRaKT0090cgIAAAAAAACwNTo5AQAAAAAAgGBSIslYPKbV4wUZOjkBAAAAAAAA2BqdnAAAAAAAAEAwKZbksHhMOjkBAAAAAAAAIHjRyQkAAAAAAAAEEzo5/UaREwAAAAAAAAgmRaLI6ScuVwcAAAAAAABga3RyAgAAAAAAAMHEJTo5/UQnJwAAAAAAAABbo5MTAAAAAAAACDYh3nlpNTo5AQAAAAAAANgaRU4AAAAAAAAAtkaREwAAAAAAAICtUeQEAAAAAAAAYGsUOQEAAAAAAADYGkVOAAAAAAAAALYWXtUTAAAAAAAAAPBbRb8uVo8ZumzTyZmbm6usrCw5nU45nU5lZWXp0KFDPm8/YsQIORwOzZgxI2BzBAAACDXkYAAAALAD2xQ5Bw4cqO3bt2vFihVasWKFtm/frqysLJ+2Xbp0qd5//32lpqYGeJYAAAChhRwMAACgKhQHaAldtrhc/fPPP9eKFSu0adMmde7cWZL03HPPKT09XTt37lTz5s3L3fb777/X6NGjtXLlSl166aWna8oAAAC2Rw4GAAAAu7BFkXPjxo1yOp3u5FqSunTpIqfTqQ0bNpSbYJeUlCgrK0t//vOfdc455/j0XgUFBSooKHD/nJ+f//smDwAAYFPkYAAAAFWFe3L6yxaXq+fk5CgpKanM+qSkJOXk5JS73dSpUxUeHq477rjD5/eaMmWK+55TTqdTaWlppzRnAAAAuyMHAwAAgF1UaZFz4sSJcjgcFS4ffvihJMnhcJTZ3hjjdb0kbdmyRX//+981Z86ccmO8GT9+vPLy8tzL3r17T23nAAAAghQ5GAAAQLDjnpz+qtLL1UePHq3rr7++wpjGjRvr448/1g8//FDmtR9//FHJyclet3v33Xd14MABNWzY0L3O5XJp7NixmjFjhr755huv20VFRSkqKsr3nQAAALAZcjAAAIBgVyzrLy+nyBkwiYmJSkxMrDQuPT1deXl5+uCDD3T++edLkt5//33l5eWpa9euXrfJyspSr169PNb16dNHWVlZGjp06O+fPAAAgE2RgwEAACDU2OLBQy1btlTfvn01fPhwPfPMM5KkP/7xj+rXr5/HDe9btGihKVOm6KqrrlLdunVVt25dj3EiIiKUkpJS4ZNAAQAAcAI5GAAAQFXhwUP+ssWDhyRp/vz5atOmjTIzM5WZmam2bdtq7ty5HjE7d+5UXl5eFc0QAAAg9JCDAQAAwA5s0ckpSQkJCZo3b16FMcaYCl8v7x5QAAAA8I4cDAAAoCoE4kFBoX1PTtt0cgIAAAAAAACAN7bp5AQAAAAAAACqB56u7i86OQEAAAAAAADYGp2cAAAAAAAAQFDhnpz+osgJAAAAAAAABJUiWX+5utXjBRcuVwcAAAAAAABga3RyAgAAAAAAAEGFy9X9RScnAAAAAAAAAFujkxMAAAAAAAAIKsWy/h6adHICAAAAAAAAQNCikxMAAAAAAAAIKtyT0190cgIAAAAAAACwNTo5AQAAAAAAgKBSJOvvyWn1eMGFIicAAAAAAAAQVLhc3V9crg4AAAAAAADA1ujkBAAAAAAAAIJKsay/vJxOTgAAAAAAAAAIWnRyAgAAAAAAAEGFe3L6i05OAAAAAAAAALZGJycAAAAAAAAQVIpk/T05rR4vuNDJCQAAAAAAAMDW6OQEAAAAAAAAggqdnP6iyAkAAAAAAAAEFR485C8uVwcAAAAAAABga3RyAgAAAAAAAEGlWNZfXk4nJwAAAAAAAAAELTo5AQAAAAAAgKDCPTn9RScnAAAAAAAAAFujkxMAAAAAAAAIKkWyvmxn9T0+gwudnAAAAAAAAABsjU5OAAAAAAAAIKhwT05/0ckJAAAAAAAAwNbo5AQAAAAAAACCSrGsv4dmaHdyUuQEAAAAAAAAggqXq/uLy9UBAAAAAAAA2BqdnAAAAAAAAEBQKZIUFoAxQxednAAAAAAAAABsjU5OAAAAAAAAIKhwT05/UeSshDFGkpSfn1/FMwEAAIFQ+h1f+p2P4EAOBgBAaCMHq0yBTcYMHhQ5K3H48GFJUlpaWhXPBAAABNLhw4fldDqrehr4FTkYAADVAzmYp8jISKWkpCgn57GAjJ+SkqLIyMiAjF3VHIaSeYVKSkq0b98+xcXFyeFwVPV0KpSfn6+0tDTt3btX8fHxVT2doMFxKYtj4h3HpSyOSVkcE+/sfFyMMTp8+LBSU1NVowa3Kw8WwZaD2fkcB5+f3fH52Rufn70F8vMjByvf8ePHVVhYGJCxIyMjFR0dHZCxqxqdnJWoUaOGGjRoUNXT8Et8fDxfHl5wXMrimHjHcSmLY1IWx8Q7ux4XugeCT7DmYHY9x3ECn5+98fnZG5+fvQXq8yMH8y46OjpkC5GBRKkcAAAAAAAAgK1R5AQAAAAAAABgaxQ5Q0hUVJQmTJigqKioqp5KUOG4lMUx8Y7jUhbHpCyOiXccF4Q6znF74/OzNz4/e+Pzszc+P9gJDx4CAAAAAAAAYGt0cgIAAAAAAACwNYqcAAAAAAAAAGyNIicAAAAAAAAAW6PICQAAAAAAAMDWKHLaTG5urrKysuR0OuV0OpWVlaVDhw5VuI3D4fC6PProo+6YHj16lHn9+uuvD/DeWONUjslNN91UZn+7dOniEVNQUKDbb79diYmJio2N1eWXX67vvvsugHtiHX+PSVFRke655x61adNGsbGxSk1N1eDBg7Vv3z6POLudJ7NmzVKTJk0UHR2tjh076t13360wft26derYsaOio6PVtGlTPf3002ViXn31VbVq1UpRUVFq1aqVlixZEqjpB4Q/x2Tx4sXq3bu36tWrp/j4eKWnp2vlypUeMXPmzPH635fjx48Helcs5c9xeeedd7zu8xdffOERV53OFW//TXU4HDrnnHPcMaFyrqD6ePjhh9W1a1fVrFlTtWvX9mkbY4wmTpyo1NRUxcTEqEePHtqxY0dgJwqvApUfInACkbfh9AlELoXT4z//+Y8uu+wypaamyuFwaOnSpZVuw+8fghVFTpsZOHCgtm/frhUrVmjFihXavn27srKyKtxm//79HssLL7wgh8Oha665xiNu+PDhHnHPPPNMIHfFMqdyTCSpb9++Hvu7fPlyj9ezs7O1ZMkSLVy4UOvXr9eRI0fUr18/uVyuQO2KZfw9JkePHtXWrVt1//33a+vWrVq8eLG+/PJLXX755WVi7XKeLFq0SNnZ2br33nu1bds2devWTZdccon27NnjNX737t36wx/+oG7dumnbtm36v//7P91xxx169dVX3TEbN27UgAEDlJWVpY8++khZWVnq37+/3n///dO1W7+Lv8fkP//5j3r37q3ly5dry5Yt6tmzpy677DJt27bNIy4+Pr7Mf2eio6NPxy5Zwt/jUmrnzp0e+9ysWTP3a9XtXPn73//ucSz27t2rhIQEXXfddR5xdj9XUL0UFhbquuuu06233urzNtOmTdP06dM1c+ZMbd68WSkpKerdu7cOHz4cwJnCm0DlhwiMQORtOH0CkUvh9Pnll1/Url07zZw506d4fv8Q1Axs47PPPjOSzKZNm9zrNm7caCSZL774wudxrrjiCnPxxRd7rOvevbv505/+ZNVUT5tTPSZDhgwxV1xxRbmvHzp0yERERJiFCxe6133//femRo0aZsWKFZbMPVCsOk8++OADI8l8++237nV2Ok/OP/98M3LkSI91LVq0MOPGjfMaf/fdd5sWLVp4rBsxYoTp0qWL++f+/fubvn37esT06dPHXH/99RbNOrD8PSbetGrVykyaNMn984svvmicTqdVU6wS/h6XtWvXGkkmNze33DGr+7myZMkS43A4zDfffONeFwrnCqonX8/dkpISk5KSYh555BH3uuPHjxun02mefvrpAM4QJwtUfojACUTehtMnELkUqoYks2TJkgpj+P1DMKOT00Y2btwop9Opzp07u9d16dJFTqdTGzZs8GmMH374QW+++aaGDRtW5rX58+crMTFR55xzju666y5bdB38nmPyzjvvKCkpSWeffbaGDx+uAwcOuF/bsmWLioqKlJmZ6V6Xmpqq1q1b+3ysq4oV54kk5eXlyeFwlLlEzw7nSWFhobZs2eLx+UlSZmZmucdg48aNZeL79OmjDz/8UEVFRRXGBPs5IZ3aMTlZSUmJDh8+rISEBI/1R44cUaNGjdSgQQP169evTKdnMPs9x6V9+/Y644wzlJGRobVr13q8Vt3PldmzZ6tXr15q1KiRx3o7nytAZXbv3q2cnByP352oqCh1797dFr/7oSRQ+SECI1B5G06PQOVSCF78/iGYhVf1BOC7nJwcJSUllVmflJSknJwcn8Z46aWXFBcXp6uvvtpj/aBBg9SkSROlpKTo008/1fjx4/XRRx9p9erVlsw9UE71mFxyySW67rrr1KhRI+3evVv333+/Lr74Ym3ZskVRUVHKyclRZGSk6tSp47FdcnKyz8e6qlhxnhw/flzjxo3TwIEDFR8f715vl/Pkp59+ksvlUnJyssf6ij6/nJwcr/HFxcX66aefdMYZZ5QbE+znhHRqx+Rkf/vb3/TLL7+of//+7nUtWrTQnDlz1KZNG+Xn5+vvf/+7LrjgAn300Ue2uOToVI7LGWecoWeffVYdO3ZUQUGB5s6dq4yMDL3zzju66KKLJJV/PlWHc2X//v3697//rQULFnist/u5AlSm9PfD2+/Ot99+WxVTqrYClR8iMAKVt+H0CFQuheDF7x+CGUXOIDBx4kRNmjSpwpjNmzdLOvEQoZMZY7yu9+aFF17QoEGDytwDbfjw4e5/t27dWs2aNVOnTp20detWdejQwaexrRToYzJgwAD3v1u3bq1OnTqpUaNGevPNN8sUgP0ZN5BO13lSVFSk66+/XiUlJZo1a5bHa8F2nlTm5P2t7Bh4iz95vb9jBptTnf/LL7+siRMn6rXXXvP4H8cuXbp4PJThggsuUIcOHfTEE0/o8ccft27iAebPcWnevLmaN2/u/jk9PV179+7VX//6V4/EvLqeK3PmzFHt2rV15ZVXeqwPlXMF9ubrd2mnTp1O+T3s/rsfzII1P4Q1ApG34fQJRC6F4MXvH4IVRc4gMHr06EqfUN24cWN9/PHH+uGHH8q89uOPP5b5S4o37777rnbu3KlFixZVGtuhQwdFREToq6++qpLi1ek6JqXOOOMMNWrUSF999ZUkKSUlRYWFhcrNzfXo5jxw4IC6du3q87hWOh3HpKioSP3799fu3bv19ttve3RxelPV50l5EhMTFRYWVuavxwcOHCj3GKSkpHiNDw8PV926dSuM8edcqyqnckxKLVq0SMOGDdMrr7yiXr16VRhbo0YNnXfeee7fpWD3e47Lb3Xp0kXz5s1z/1xdzxVjjF544QVlZWUpMjKywli7nSsIDb5+l56KlJQUSSc6XH7bxWKX3307qOr8EIERqLwNp0egcikEL37/EMwocgaBxMREJSYmVhqXnp6uvLw8ffDBBzr//PMlSe+//77y8vJ8KrzNnj1bHTt2VLt27SqN3bFjh4qKiqqs1fx0HZNSBw8e1N69e93727FjR0VERGj16tXuS3P379+vTz/9VNOmTTuFPfr9An1MSgucX331ldauXevTF1RVnyfliYyMVMeOHbV69WpdddVV7vWrV6/WFVdc4XWb9PR0vf766x7rVq1apU6dOikiIsIds3r1at15550eMVVV+PbHqRwT6UQH580336yXX35Zl156aaXvY4zR9u3b1aZNG0vmHWinelxOtm3bNo/fg+p4rkjSunXrtGvXLq/3fT6Z3c4VhAZfv0tPRentXFavXq327dtLOnGvunXr1mnq1KkBec/qpqrzQwRGoPI2nB6ByqUQvPj9Q1A7vc85wu/Vt29f07ZtW7Nx40azceNG06ZNG9OvXz+PmObNm5vFixd7rMvLyzM1a9Y0Tz31VJkxd+3aZSZNmmQ2b95sdu/ebd58803TokUL0759e1NcXBzQ/bGCv8fk8OHDZuzYsWbDhg1m9+7dZu3atSY9Pd3Ur1/f5Ofnu7cZOXKkadCggVmzZo3ZunWrufjii027du1C8pgUFRWZyy+/3DRo0MBs377d7N+/370UFBQYY+x3nixcuNBERESY2bNnm88++8xkZ2eb2NhY99Oex40bZ7KystzxX3/9talZs6a58847zWeffWZmz55tIiIizL/+9S93zHvvvWfCwsLMI488Yj7//HPzyCOPmPDwcI+ntwYzf4/JggULTHh4uHnyySc9zolDhw65YyZOnGhWrFhh/vvf/5pt27aZoUOHmvDwcPP++++f9v07Vf4el8cee8wsWbLEfPnll+bTTz8148aNM5LMq6++6o6pbudKqRtvvNF07tzZ65ihcK6gevn222/Ntm3bzKRJk0ytWrXMtm3bzLZt28zhw4fdMSfnXI888ohxOp1m8eLF5pNPPjE33HCDOeOMMzzyC5wegcoPERiByNtw+gQil8Lpc/jwYfd3nCQzffp0s23bNvPtt98aY/j9g71Q5LSZgwcPmkGDBpm4uDgTFxdnBg0aZHJzcz1iJJkXX3zRY90zzzxjYmJiPIoTpfbs2WMuuugik5CQYCIjI82ZZ55p7rjjDnPw4MEA7ol1/D0mR48eNZmZmaZevXomIiLCNGzY0AwZMsTs2bPHY5tjx46Z0aNHm4SEBBMTE2P69etXJiZY+XtMdu/ebSR5XdauXWuMsed58uSTT5pGjRqZyMhI06FDB7Nu3Tr3a0OGDDHdu3f3iH/nnXdM+/btTWRkpGncuLHXPwq88sorpnnz5iYiIsK0aNHCdsmYP8eke/fuXs+JIUOGuGOys7NNw4YNTWRkpKlXr57JzMw0GzZsOI17ZA1/jsvUqVPNmWeeaaKjo02dOnXMhRdeaN58880yY1anc8UYYw4dOmRiYmLMs88+63W8UDlXUH0MGTKkwu9FY8rmXCUlJWbChAkmJSXFREVFmYsuush88sknp3/yCFh+iMAJRN6G0ycQuRROj7Vr11aY8/P7BztxGPPrHWIBAAAAAAAAwIZqVPUEAAAAAAAAAOD3oMgJAAAAAAAAwNYocgIAAAAAAACwNYqcAAAAAAAAAGyNIicAAAAAAAAAW6PICQAAAAAAAMDWKHICAAAAAAAAsDWKnAAAAAAAAABsjSInAEjq0aOHsrOzq3oaAAAA1Qo5GADAKhQ5AQAAAAAAANgaRU4AAAAAAAAAtkaREwB+VVxcrNGjR6t27dqqW7eu7rvvPhljqnpaAAAAIY0cDABgBYqcAPCrl156SeHh4Xr//ff1+OOP67HHHtPzzz9f1dMCAAAIaeRgAAArOAx/IgMA9ejRQwcOHNCOHTvkcDgkSePGjdOyZcv02WefVfHsAAAAQhM5GADAKnRyAsCvunTp4k6uJSk9PV1fffWVXC5XFc4KAAAgtJGDAQCsQJETAAAAAAAAgK1R5ASAX23atKnMz82aNVNYWFgVzQgAACD0kYMBAKxAkRMAfrV3716NGTNGO3fu1Msvv6wnnnhCf/rTn6p6WgAAACGNHAwAYIXwqp4AAASLwYMH69ixYzr//PMVFham22+/XX/84x+reloAAAAhjRwMAGAFnq4OAAAAAAAAwNa4XB0AAAAAAACArVHkBAAAAAAAAGBrFDkBAAAAAAAA2BpFTgAAAAAAAAC2RpETAAAAAAAAgK1R5AQAAAAAAABgaxQ5AQAAAAAAANgaRU4AAAAAAAAAtkaREwAAAAAAAICtUeQEAAAAAAAAYGsUOQEAAAAAAADY2v8DSv3MTnoi4TEAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABTEAAAIhCAYAAACWgv7sAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB1yUlEQVR4nO3deXgUVbrH8V+TPSFpCJCEaETQyCKLLArBBRQIOCLuqCCiouKgMhlgEMcFmKtB8A46I4O7woCI4yCIyyBBMYosRhYXVNQrKiohiCFhCVk65/7BpKXpArpJd6fS+X6ep56HnD51+lR1derlzVtVDmOMEQAAAAAAAADYVKO6ngAAAAAAAAAAHA1JTAAAAAAAAAC2RhITAAAAAAAAgK2RxAQAAAAAAABgayQxAQAAAAAAANgaSUwAAAAAAAAAtkYSEwAAAAAAAICtkcQEAAAAAAAAYGskMQEAAAAAAADYGklMhL2XXnpJp59+uuLi4uRwOLRp06a6npKlKVOmyOFw1PU0PDgcDk2ZMsXv9d58883jWu9Y+vbtq759+x6z33fffSeHw6E5c+YEfA7HMnv2bL/e1+Fw6I477gjehMJcsI41AEDozJkzRw6HQ999911Qxvf33Bwq7777rhwOh959912/1w3WNvka+wX7MzuS/fv3a8qUKT7vs5p9/O9//zu4EwsDxFQA6gOSmAhrO3fu1IgRI3TKKado2bJlWrNmjU477bS6nlbYe/PNNzV16tSAjzt79mzNnj074OMGkl3/oxSugnWsAQDCRziem4O1TWvWrNHNN98c8HEDZf/+/Zo6depxJX5xdMRUAOqDyLqeABBMX331lSorK3XdddepT58+dT0d1FKHDh3qegpHtH//fsXHx9f1NIKisrJSDodDkZEN55QRzp8nAABH0qtXr7qegiVjjA4cOFDX0wiacI47wnnbAIQelZgIWzfccIPOOeccSdLVV18th8PhcSny0qVLlZWVpfj4eCUmJmrAgAFas2aN1xgnn3yy19hWl37XXBY8b948tW/fXvHx8erSpYtef/11r/XfeOMNnXHGGYqJiVHr1q31v//7v35t24oVK9SvXz8lJSUpPj5eZ599tt5++23LOW7evFnXXnutnE6nUlNTddNNN6mkpMSjb2lpqW655RY1a9ZMjRs31qBBg/TVV1959FmyZIkcDofX+0jS448/LofDoU8++UQ33HCD/vGPf7j3Sc3y3XffaeHChXI4HJo1a5bH+pMnT1ZERITy8vKOut1Wl5P//PPPGjp0qBITE+V0OnX11VersLDwqOPUbHNkZKQefvhhd9svv/yiRo0ayel0qqqqyt0+duxYtWjRQsYY9zw6duyo9957T71791Z8fLxuuukmnXzyydq8ebPy8/Pd2211/Fh58sknddpppykmJkYdOnTQwoULj7lOzWXzM2bM0IMPPqiTTjpJsbGx6tGjh9fn9M033+jGG29UZmam4uPjdcIJJ+jiiy/Wp59+6tGv5rKrefPmafz48TrhhBMUExOjb775Rjt37tSYMWPUoUMHNW7cWCkpKbrgggv0/vvvW87r4Ycf1vTp03XyyScrLi5Offv2df9hYdKkSUpPT5fT6dRll12moqIir+176aWXlJWVpYSEBDVu3FgDBw7Uxo0b3a8f7ViTDv6HZ/bs2TrjjDMUFxenpk2b6sorr9S3337r8T5H+jwBAHXrueeeU5cuXRQbG6vk5GRddtll+uKLLzz6fPvtt7rmmmuUnp6umJgYpaamql+/fu7bBx3Pudnf80dBQYHOPfdcxcfHq02bNnrooYdUXV3t0ffLL7/UoEGDFB8fr+bNm+u2227Tnj17PPrk5OQoISFBpaWlXnO6+uqrlZqaqsrKyqNu02233abY2FitX7/evW51dbX69eun1NRUbd++/ajbbnU5+dq1a3X22WcrNjZW6enpuvvuu1VZWXnUcaSD8a7D4VBBQYG7bdGiRXI4HLrooos8+nbu3FlXXHGFxzzuuOMOPfHEE2rfvr1iYmI0d+5ctWjRQpI0depU97bfcMMNx5zLgQMHNG7cOKWlpSkuLk59+vTxiCmOpOay+by8PN14441KTk5WQkKCLr74Yq/jIS8vT5dccolOPPFExcbG6tRTT9Xo0aP1yy+/ePSridE3bNigK6+8Uk2bNtUpp5wiSfroo490zTXXuGOnk08+Wddee62+//57y3mtXLlSv//979W8eXM1a9ZMl19+uX7++Wev7SCmAhA2DBCmvvnmG/OPf/zDSDK5ublmzZo1ZvPmzcYYY1544QUjyWRnZ5slS5aYl156yXTv3t1ER0eb999/3z3GyJEjTatWrbzGnjx5sjn86yPJnHzyyeass84y//rXv8ybb75p+vbtayIjI83//d//ufutWLHCREREmHPOOce88sor5uWXXzZnnnmmOemkk7zGtDJv3jzjcDjMpZdeal555RXz2muvmcGDB5uIiAizYsUKrzm2bdvW3H///SYvL8/MnDnTxMTEmBtvvNHdr7q62px//vkmJibGPPjgg2b58uVm8uTJpk2bNkaSmTx5sjHGmMrKSpOSkmKGDx/uNaezzjrLdOvWzb3fr7zySiPJrFmzxr0cOHDAGGPMbbfdZqKjo01BQYExxpi3337bNGrUyNx7773H3PY+ffqYPn36uH/ev3+/ad++vXE6neaxxx4zb731lhk7dqx7Xz7//PNHHa9Xr14mOzvb/fPChQtNbGyscTgc5oMPPnC3t2/f3gwdOtRjHsnJySYjI8M89thjZuXKlSY/P99s2LDBtGnTxnTt2tW93Rs2bDjqHCSZjIwM06FDB/Piiy+apUuXmkGDBhlJ5uWXXz7qulu3bnWvf84555hFixa5j6eoqCizevVqd9/8/Hwzfvx48+9//9vk5+ebxYsXm0svvdTExcWZL7/80t1v5cqVRpI54YQTzJVXXmmWLl1qXn/9dbNr1y7z5Zdfmt///vdm4cKF5t133zWvv/66GTVqlGnUqJFZuXKl17xatWplLr74YvP666+b+fPnm9TUVHPaaaeZESNGmJtuusn85z//MU888YRp3Lixufjiiz227cEHHzQOh8PcdNNN5vXXXzevvPKKycrKMgkJCe7v8bGOtVtuucVERUWZ8ePHm2XLlpkFCxaYdu3amdTUVFNYWHjMzxMAEBrPP/+8kWS2bt3qbsvNzTWSzLXXXmveeOMN889//tO0adPGOJ1O89VXX7n7tW3b1px66qlm3rx5Jj8/3yxatMiMHz/efV46nnOzP+ePZs2amczMTPPEE0+YvLw8M2bMGCPJzJ07192vsLDQpKSkmBNOOME8//zz5s033zTDhw93xys1c/3444+NJPP00097zKe4uNjExMSYcePGHXObysrKzBlnnGHatGljiouLjTHG3H///aZRo0Zm+fLlx/wsDo39jDFm8+bNJj4+3h2nvPrqq2bgwIHuuR/6mR1uz549JioqyuTm5rrbbrvtNhMXF2cSEhJMRUWFMcaYHTt2GIfDYWbPnu0xjxNOOMF07tzZLFiwwLzzzjtm06ZNZtmyZUaSGTVqlHvbv/nmmyPOoSauycjIMJdccol57bXXzPz5882pp55qkpKSPGJ0KzXHZkZGhjt2eeqpp0xKSorJyMhw72NjjHn88cfNtGnTzNKlS01+fr6ZO3eu6dKli2nbtq17W435LUZv1aqVueuuu0xeXp5ZsmSJMcaYl19+2dx///1m8eLFJj8/3yxcuND06dPHtGjRwuzcudNrXm3atDF33nmneeutt8wzzzxjmjZtas4//3yPbSCmAhBOSGIirNUELocmg1wul0lPTzedOnUyLpfL3b5nzx6TkpJievfu7W7zN4mZmppqSktL3W2FhYWmUaNGZtq0ae62nj17mvT0dFNWVuZuKy0tNcnJycdMYu7bt88kJyd7JXxcLpfp0qWLOeuss7zmOGPGDI++Y8aMMbGxsaa6utoYY8x//vMfI8n87W9/8+j34IMPegWy48aNM3FxcWb37t3uts8//9xIMo899pi77fbbbz/ithw4cMB07drVtG7d2nz++ecmNTXV9OnTx1RVVR11243xTmI+/vjjRpJ59dVXPfrdcsstPiUx7733XhMXF+cO0G6++WYzaNAg07lzZzN16lRjjDE//fSTkWSeeuopj3lIMm+//bbXmKeffrrHHI9FkomLi/MIAKuqqky7du3MqaeeetR1a5KFRzqe+vfvf8R1q6qqTEVFhcnMzDR//OMf3e0135nzzjvvmHOvqqoylZWVpl+/fuayyy7zmleXLl08vmOPPvqokWSGDBniMU5OTo6RZEpKSowxxvzwww8mMjLS3HnnnR799uzZY9LS0jwSykc61tasWWMkmb/+9a8e7du2bTNxcXFm4sSJ7rajfZ4AgOA7PIlZXFxs4uLizO9+9zuPfj/88IOJiYkxw4YNM8YY88svvxhJ5tFHHz3q+P6cm4/n/LFu3TqPvh06dDADBw50/3zXXXcZh8NhNm3a5NFvwIABHklMY4zp1q2bRyxqjDGzZ882ksynn37q0zZ9/fXXJikpyVx66aVmxYoVPv+x2BjvJObVV199xDjlWElMY4w555xzzAUXXOD++dRTTzV/+tOfTKNGjdzJrZrigkOT05KM0+k0v/76q8d4O3fu9Jrj0dTENd26dXPHvsYY891335moqChz8803H3X9mmPz0DjHGGM++OADI8k88MADlutVV1ebyspK8/3333vFqjUx+v3333/M+VdVVZm9e/eahIQEj1i9Zl5jxozx6D9jxgwjyWzfvt0YQ0wFIPxwOTkanC1btujnn3/WiBEj1KjRb1+Bxo0b64orrtDatWu1f//+4xr7/PPPV2Jiovvn1NRUpaSkuC8B2bdvnwoKCnT55ZcrNjbW3S8xMVEXX3zxMcdfvXq1fv31V40cOVJVVVXupbq6WoMGDVJBQYH27dvnsc6QIUM8fu7cubMOHDjgvnx35cqVkqThw4d79Bs2bJjX+990000qKyvTSy+95G57/vnnFRMTY9nfSkxMjP71r39p165d6tatm4wxevHFFxUREeHT+odauXKlEhMTvbbR17n069dPZWVlWr16taSDl+kPGDBA/fv3d1/avmLFCklS//79PdZt2rSpLrjgAr/nfKR5pKamun+OiIjQ1VdfrW+++UY//vjjMdc/0vH03nvvyeVySZKqqqqUm5urDh06KDo6WpGRkYqOjtbXX3/tdWmeJI9Lug71xBNPqFu3boqNjVVkZKSioqL09ttvW47xu9/9zuM71r59e0nyuoSspv2HH36QJL311luqqqrS9ddf73Gcx8bGqk+fPj7dzP/111+Xw+HQdddd5zFGWlqaunTp4jVGID9PAEDtrFmzRmVlZV6XCWdkZOiCCy5w3zIlOTlZp5xyih5++GHNnDlTGzdu9LqM21/+nj/S0tJ01llnebR17tzZ4/LflStX6vTTT1eXLl08+lnFKzfeeKNWr16tLVu2uNuef/55nXnmmerYsaNP23Dqqafq6aef1pIlSzR48GCde+65x/3U6ZUrVx4xTvFFv3799MEHH6isrEzff/+9vvnmG11zzTU644wzPGKtk046SZmZmR7rXnDBBWratOlxzftww4YN87gVVKtWrdS7d293HHwsh8fJvXv3VqtWrTzWLyoq0m233aaMjAx3jNSqVStJ8jnW2rt3r+666y6deuqpioyMVGRkpBo3bqx9+/ZZjmEV50tyH3/EVADCDUlMNDi7du2SJLVs2dLrtfT0dFVXV6u4uPi4xm7WrJlXW0xMjMrKyiRJxcXFqq6uVlpamlc/q7bD7dixQ5J05ZVXKioqymOZPn26jDH69ddfjzqnmJgYSXLPadeuXYqMjPTqZzWf008/XWeeeaaef/55SZLL5dL8+fN1ySWXKDk5+Zjzr3Hqqafq3HPP1YEDBzR8+HDLz8IXu3bt8giqjzZ3KzX36lmxYoW++eYbfffdd+4k5rp167R3716tWLFCbdq0UevWrT3WPd45Wzna8VBzvB7P+hUVFdq7d68kady4cbrvvvt06aWX6rXXXtO6detUUFCgLl26uI+FQ1lt38yZM/X73/9ePXv21KJFi7R27VoVFBRo0KBBlmMcfkxER0cftb3mhv01x/mZZ57pdZy/9NJLXveWsrJjxw4ZY5Samuo1xtq1a73GCOTnCQConWPFajWv19yre+DAgZoxY4a6deumFi1aaOzYsV73m/SVv+ePY8V+Ndvja+w3fPhwxcTEuJ88/vnnn6ugoEA33nijX9tx0UUXKTU11X0vyOP5Y7G/c7fSv39/lZeXa9WqVcrLy1Pz5s3VtWtX9e/f3/2H4rffftvrj8VSaGItX+IsX9avrq5Wdna2XnnlFU2cOFFvv/22PvzwQ61du1aSfI61hg0bplmzZunmm2/WW2+9pQ8//FAFBQVq0aKF5RjHivOJqQCEm4bzqFngv2pO9lY3Nv/555/VqFEj9199Y2NjVV5e7tXPlxO+laZNm8rhcFg+eMaXh9E0b95ckvTYY48d8emRVkm9o2nWrJmqqqq0a9cuj0DoSPO58cYbNWbMGH3xxRf69ttvtX37dr8D62eeeUZvvPGGzjrrLM2aNUtXX321evbs6dcYNXP/8MMPvdp92ZfSweTZOeecoxUrVujEE09UWlqaOnXqpDZt2kg6+JCbt99+W4MHD/Za9/AHO9XG0Y4Hq/8c+bp+dHS0GjduLEmaP3++rr/+euXm5nr0++WXX9SkSROv9a22b/78+erbt68ef/xxj/bj/Y/ikdQc5//+97/dFQzHM4bD4dD777/vDugPdXhbID9PAEDtHCtWqzlPSAcr6p599llJ0ldffaV//etfmjJliioqKvTEE0/4/d7+nj980axZM59jv6ZNm+qSSy7RP//5Tz3wwAN6/vnnFRsbq2uvvdav96x5cNDpp5+usWPH6txzzz2uqkZ/5m6lZ8+eaty4sVasWKHvvvtO/fr1k8PhUL9+/fTXv/5VBQUF+uGHHyyTmKGItXyJs462/qmnnipJ+uyzz/Txxx9rzpw5GjlypLvPN998c8QxD9++kpISvf7665o8ebImTZrkbi8vL/cqUvAVMRWAcEMlJhqctm3b6oQTTtCCBQvcT5uWDl7qvWjRIvcTy6WDT7QsKipy/xVTkioqKvTWW28d13snJCTorLPO0iuvvOKuOpMOJoFee+21Y65/9tlnq0mTJvr888/Vo0cPy6Wmqs1X559/viTphRde8GhfsGCBZf9rr71WsbGxmjNnjubMmaMTTjhB2dnZHn0O/yvwoT799FONHTtW119/vd5//3117txZV1999XFVv55//vnas2ePli5d6tPcrfTv31/r16/XokWL3AF0QkKCevXqpccee0w///yzZWB9JIdXX/ji7bff9jjGXC6XXnrpJZ1yyik68cQTj7n+kY6nc88911154XA4vILMN954Qz/99JPP87Qa45NPPtGaNWt8HsMXAwcOVGRkpP7v//7viMd5jSMda4MHD5YxRj/99JPl+p06dQronAEAgZOVlaW4uDjNnz/fo/3HH3/UO++8o379+lmud9ppp+nee+9Vp06dtGHDBne7P+fmYJw/zj//fG3evFkff/yxR/uR4pUbb7xRP//8s958803Nnz9fl112mdcfHI+2Tc8884zmz5+vWbNmaenSpdq9e7fff3A+dO5HilN8ERUVpfPOO095eXl65513NGDAAEnSueeeq8jISN17773upKYvjhZjHs2LL77oEfd///33Wr16tfr27evT+ofHyatXr9b333/vXr8mcXd4nPTkk0/6PEeHwyFjjNcYzzzzjPv2QP4ipgIQbqjERIPTqFEjzZgxQ8OHD9fgwYM1evRolZeX6+GHH9bu3bv10EMPufteffXVuv/++3XNNdfoT3/6kw4cOKC///3vxx1ISNL//M//aNCgQRowYIDGjx8vl8ul6dOnKyEh4Zh/ZW3cuLEee+wxjRw5Ur/++quuvPJKpaSkaOfOnfr444+1c+dOryq5Y8nOztZ5552niRMnat++ferRo4c++OADzZs3z7J/kyZNdNlll2nOnDnavXu3JkyY4HHfQ0nuYGb69Om68MILFRERoc6dO6uyslJDhw5V69atNXv2bEVHR+tf//qXunXrphtvvFFLlizxa+7XX3+9HnnkEV1//fV68MEHlZmZqTfffNOvJHO/fv3kcrn09ttva+7cue72/v37a/LkyXI4HH7d16dTp05auHChXnrpJbVp00axsbHHDO6aN2+uCy64QPfdd58SEhI0e/Zsffnll1q4cKFP7xkREaEBAwZo3Lhxqq6u1vTp01VaWqqpU6e6+wwePFhz5sxRu3bt1LlzZ61fv14PP/ywT0nSQ8f4n//5H02ePFl9+vTRli1b9Je//EWtW7dWVVWVz+Mcy8knn6y//OUvuueee/Ttt99q0KBBatq0qXbs2KEPP/xQCQkJ7m070rF29tln69Zbb9WNN96ojz76SOedd54SEhK0fft2rVq1Sp06ddLvf//7gM0ZABA4TZo00X333ac///nPuv7663Xttddq165dmjp1qmJjYzV58mRJB/+Qdscdd+iqq65SZmamoqOj9c477+iTTz7xqGTz59wcjPNHTk6OnnvuOV100UV64IEHlJqaqhdeeEFffvmlZf/s7GydeOKJGjNmjAoLCy0TkEfappo/Fo8cOdK93rPPPqsrr7xSjz76qHJycvya+7333qulS5fqggsu0P3336/4+Hj94x//8LoH+9H069dP48ePl/TbPcbj4uLUu3dvLV++XJ07d1ZKSopPYyUmJqpVq1Z69dVX1a9fPyUnJ6t58+Y6+eSTj7peUVGRLrvsMt1yyy0qKSnR5MmTFRsbq7vvvtun9/3oo490880366qrrtK2bdt0zz336IQTTtCYMWMkSe3atdMpp5yiSZMmyRij5ORkvfbaa+77fvoiKSlJ5513nh5++GH3NuXn5+vZZ5+1vGrGF8RUAMJO3TxPCAgNq6eT11iyZInp2bOniY2NNQkJCaZfv37mgw8+8Or35ptvmjPOOMPExcWZNm3amFmzZh3x6eS333671/qtWrUyI0eO9GhbunSp6dy5s4mOjjYnnXSSeeihhyzHPJL8/Hxz0UUXmeTkZBMVFWVOOOEEc9FFF3lsZ814O3fu9Fj38CeAGmPM7t27zU033WSaNGli4uPjzYABA8yXX355xKc/Ll++3EjyepJkjfLycnPzzTebFi1aGIfD4X6/6667zsTHx5vNmzd79H/55ZeNJPPII48cdbsPfzq5Mcb8+OOP5oorrjCNGzc2iYmJ5oorrjCrV6/26enkxhx8emTz5s2NJPPTTz+522ueOtmtWzfLeZx++umW43333XcmOzvbJCYmGkmWT7c/VM1xM3v2bHPKKaeYqKgo065dO/PCCy8cc+41TwGfPn26mTp1qjnxxBNNdHS06dq1q3nrrbc8+hYXF5tRo0aZlJQUEx8fb8455xzz/vvve+3To31nysvLzYQJE8wJJ5xgYmNjTbdu3cySJUvMyJEjPbazZl4PP/ywx/pHGrvmmCwoKPBoX7JkiTn//PNNUlKSiYmJMa1atTJXXnmlWbFihcecrI61Gs8995zp2bOnSUhIMHFxceaUU04x119/vfnoo4/cfY72eQIAgs8qNjHGmGeeecYdLzmdTnPJJZd4xBA7duwwN9xwg2nXrp1JSEgwjRs3Np07dzaPPPKIqaqqcvfz99xsTO3OH4efF40x5vPPPzcDBgwwsbGxJjk52YwaNcq8+uqrXk8nr/HnP//ZSDIZGRnG5XJ5vW61TXv37jXt2rUzHTp0MPv27fPof/vtt5uoqCivJ6kfzir2++CDD0yvXr1MTEyMSUtLM3/605/MU0895dPTyY0x5uOPPzaSTGZmpkf7gw8+aCSZcePGWc7DKq42xpgVK1aYrl27mpiYGCPJK84+VE3sMW/ePDN27FjTokULExMTY84991yPz/JIao7N5cuXmxEjRpgmTZqYuLg487vf/c58/fXXHn1rPuPExETTtGlTc9VVV5kffvjBa58eKUY35re4tmnTpiYxMdEMGjTIfPbZZ17/nzhS7FSzvYcfU8RUAMKFw5hD6uoBAPXGd999p9atW+vhhx/WhAkT6no6AAAAYWXOnDm68cYbVVBQ4HHpNQCgbnBPTAAAAAAAAAC2RhITAAAAAAAAgK1xOTkAAAAAAAAAW6MSEwAAAAAAAICtkcQEAAAAAAAAYGskMQEAAAAAAADYWmRdT8AOqqur9fPPPysxMVEOh6OupwMAAALMGKM9e/YoPT1djRrxN1y7IAYDACC8EYMd2YEDB1RRURGUsaOjoxUbG+tT3ylTpmjq1KkebampqSosLJR08DOcOnWqnnrqKRUXF6tnz576xz/+odNPP93dv7y8XBMmTNCLL76osrIy9evXT7Nnz9aJJ57o7lNcXKyxY8dq6dKlkqQhQ4boscceU5MmTXzeLpKYkn7++WdlZGTU9TQAAECQbdu2zSOYQt0iBgMAoGEgBvN04MABtYiL094gjZ+WlqatW7f6nMg8/fTTtWLFCvfPERER7n/PmDFDM2fO1Jw5c3TaaafpgQce0IABA7RlyxYlJiZKknJycvTaa69p4cKFatasmcaPH6/Bgwdr/fr17rGGDRumH3/8UcuWLZMk3XrrrRoxYoRee+01n7eLJKbk3unbtm1TUlJSHc/GfpzOaV5tJSV318FM/GM1b9Q1q185VT72sxJVi7lIUqWPY1r1qw1ft9mqH4IhGL/T7PS7005zqSulpaXKyMhwn/NhD3UZg9Xl98Lu30m7za828wnFttQm5rSaS3BiWF/jjDiLtrJavG9txqvtf1V9i6N8/wzqZ6zm6/bV5nsRiu9oML7LdtoP4YwYzFpFRYX2SvqjpJgAj10u6ZHCQlVUVPicxIyMjFRaWppXuzFGjz76qO655x5dfvnlkqS5c+cqNTVVCxYs0OjRo1VSUqJnn31W8+bNU//+/SVJ8+fPV0ZGhlasWKGBAwfqiy++0LJly7R27Vr17NlTkvT0008rKytLW7ZsUdu2bX2bp0+9wlzN5UtJSUkkMS15H/T1Yz/59mVFKNktiRlh0WY1plW/2iCJaTfB+Z1mp9+ddppL3eKSZXup2xisLr8Xdv9O2m1+tZlPKLbl+GNO67kEI4b1Nc6wem9Ti/etzXihSWL6/hnUz1jN1+2r3fciFN/RYHyX7bQfwh8xmLUEBf63fs1vq9LSUo/2mJgYxcRYp0y//vprpaenKyYmRj179lRubq7atGmjrVu3qrCwUNnZ2R7j9OnTR6tXr9bo0aO1fv16VVZWevRJT09Xx44dtXr1ag0cOFBr1qyR0+l0JzAlqVevXnI6nVq9erXPSUxuSAAAAAAAAACEWFSQFknKyMiQ0+l0L9OmWVf69+zZU//85z/11ltv6emnn1ZhYaF69+6tXbt2ue+LmZqa6rHOoffMLCwsVHR0tJo2bXrUPikpKV7vnZKS4u7jCyoxcUzGTK7rKRyX+jpvAOHBTr+D7DQXwC7q8nth9++k3eZXm/mEYlsC/R522/8NUbh/BnY6Zn1dNxifiZ32AxAMh9+u50hVmBdeeKH73506dVJWVpZOOeUUzZ07V7169ZLkXUlrjDlmde3hfaz6+zLOoajEBAAAAAAAAEIsMkiL9NvtemqWIyUxD5eQkKBOnTrp66+/dt8n8/BqyaKiInd1ZlpamioqKlRcXHzUPjt27PB6r507d3pVeR4NSUwAAAAAAAAAKi8v1xdffKGWLVuqdevWSktLU15envv1iooK5efnq3fv3pKk7t27KyoqyqPP9u3b9dlnn7n7ZGVlqaSkRB9++KG7z7p161RSUuLu4wsuJwcAAAAAAABCLFK1f1zt4fx95NiECRN08cUX66STTlJRUZEeeOABlZaWauTIkXI4HMrJyVFubq4yMzOVmZmp3NxcxcfHa9iwYZIkp9OpUaNGafz48WrWrJmSk5M1YcIEderUyf208vbt22vQoEG65ZZb9OSTT0qSbr31Vg0ePNjnh/pIJDEBAAAAAACABunHH3/Utddeq19++UUtWrRQr169tHbtWrVq1UqSNHHiRJWVlWnMmDEqLi5Wz549tXz5ciUmJrrHeOSRRxQZGamhQ4eqrKxM/fr105w5cxQREeHu88ILL2js2LHup5gPGTJEs2bN8muuDmOMCcA212ulpaVyOp0qKSnxuOkpAAAID5zr7YnPBQCA8Ma53lrNfvmrpLgAj10mabwUlvuce2ICAAAAAAAAsDUuJwcAAAAAAABCLEp1f0/M+oQkJgAAAAAAABBikQp8Yi6cE31cTg4AAAAAAADA1sI5QVunHI6pXm3GTK6DmaChsDrmpNAcd0d672Dzddv8mR/fUwAAECq1/T9DoP/P4WvMRLwEAIERqcBfTl4Z4PHshEpMAAAAAAAAALZGJSYAAAAAAAAQYtwT0z9UYgIAAAAAAACwtXBO0NYp7hODUKvLY87ux7vd5wcAABqm2sYogY5xiJkAILSiFPh7YgZ6PDuhEhMAAAAAAACArVGJCQAAAAAAAIQYlZj+IYkJAAAAAAAAhBgP9vEPl5MDAAAAAAAAsLVwTtDWKYdjqk/9anvzbF/fx9f3rs144c/q61LlY79QqG3ReFwt1rXaZqv5+PoeST6ua/W+qRZtpT6+r2Q97199HLPMoq3Sos3quLHqZ8VqXStW41nNz5/jxtc5WvH1u+Lr9iFUjnSeCtV5Dg2D0zlNUqz757o6bqyOa1/nUtsYyjoue9Cip6+/J2sTt1j1szoPW51XfHWkeMnXOVrNx+qcZjVHX7fZ6rxn9b5WcYsVq/H2WLS1OsL6vp7Hrd7nZIu27yzaMi3avrZoa2bRVhtWcVWyj22S9b75yaLN6rOyGvNHizarGNMqRvQ1Xor38X19PdYl68/USm3+D+Pr98xq3rWJd339PWD1nTqSQG+zN1//z0281HBFKvCXf4dzoo9KTAAAAAAAAAC2Fs4JWgAAAAAAAMCWuCemf6jEBAAAAAAAAGBrDmOMqetJ1LXS0lI5nU6VlJQoKcnXe9oAAID6gnO9PfG5AAAQ3jjXW6vZL29JSgjw2PskDZTCcp9TiQkAAAAAAADA1sL5UnkAAAAAAADAlrgnpn/CedsAAAAAAAAAW4qUFBWEMcMVl5MDAAAAAAAAsLVwTtACAAAAAAAAtsTl5P6hEhMAAAAAAACArYVzghYAAAAAAACwpSgF/p6YgR7PTqjEBAAAAAAAAGBrVGICAAAAAAAAIcY9Mf0TztvmN6dzmqRY98/GTPbq43BMDeGMAinOoq3Mos3qkKjysZ9V0XJlLfpZzflIrObo6/q+bnNigPsl+TgXq+2wGi/Fok2S2lu0/erd1DzVu22fxaonW7S1s2jr4d3UbNJPXm2dGn3q1XaznvFqGz55kfeAT3g3TS3ybjvSnjnbom2FRdu4td5tS3tme7dpiFfbsz+M9l55vsXnXGzxxuss2n60aNtj0fbLDotGq++Z1e8ByfoYsxrTisXxpVKLNl9/F1ixWtfqPXz9/XUkVju3Nr8nrfpZsfpcrH4XWO0vX9/Dt/lZnQulwJ8Pj/Q+x8t7fgcCOj4Cy+l8Qoce48bcGfT3tD6GfYtvjJloMd7jFuta/Q6RrM9AH1i0DbNoszpT9bVos/qd6H3OlU71rV/izd5te76zWNf7XG85l+YXWvST9Mt/LN7bou8eq3NNsneTryFwa4u2NB/brHbrdIu27yzavEMe6d8WbZIan/yLV5urKsKrrUnSbq+2hbrGq22SHvJqW935Au83tjpcL7Nos4pbrNa1CMymdrzLu9HhvRMHWQwnST1P8m4r/Tbaq+0vEfd5tf3vJd5tE179H6+2RO31avtKp3m1/fvXK73aKl63iPu/8W7Sbos2q+P1SNeKWq3/skVb1QaLxm4WbRbfsziL71nZJxbrWn35Mr2bulp022gV8G60aLM6Iqx2rCRZ/F/H8vekFV9jW4t9I6t9bTWe1bnm+M+FDscMi/G8z10H+8606DuuFu/94GEtxGAInDq9nPy9997TxRdfrPT0dDkcDi1ZssTjdWOMpkyZovT0dMXFxalv377avHmzR5/y8nLdeeedat68uRISEjRkyBD9+KPVLz0AAABIxGAAAAB2EKnf7osZqCWcqxXrNIm5b98+denSRbNmzbJ8fcaMGZo5c6ZmzZqlgoICpaWlacCAAdqz57e/aufk5Gjx4sVauHChVq1apb1792rw4MFyuVyh2gwAAIB6hRgMAACg7gU6gRmMBwXZSZ0maC+88EJdeKH1pSTGGD366KO65557dPnll0uS5s6dq9TUVC1YsECjR49WSUmJnn32Wc2bN0/9+/eXJM2fP18ZGRlasWKFBg4cGLJtAQAAqC+IwQAAAFDfOIwxpq4nIUkOh0OLFy/WpZdeKkn69ttvdcopp2jDhg3q2vW3G2VccsklatKkiebOnat33nlH/fr106+//qqmTZu6+3Tp0kWXXnqppk61vl9XeXm5ysvL3T+XlpYqIyNDJSUlSkqyuk8hAH9Z3WvM13ve1WZdX8er7ZgA6pfS0lI5nU7O9RaIwYD6IdDxEQCEAjGYtZr98rWsn6pRG3t08A604bjP6/Ry8qMpLCyUJKWmet6ANzU11f1aYWGhoqOjPYLnw/tYmTZtmpxOp3vJyMgI8OwBAADqJ2IwAAAA2JFtk5g1HA6Hx8/GGK+2wx2rz913362SkhL3sm3btoDMFQAAIFwQgwEAAARXZIQUFRnYJTKirrcqeGybxExLS5Mkr7/mFxUVuSsD0tLSVFFRoeLi4iP2sRITE6OkpCSPBQAAAMRgAAAAsCfbJjFbt26ttLQ05eXludsqKiqUn5+v3r17S5K6d++uqKgojz7bt2/XZ5995u4DAAAA3xGDAQAAhEZkZHCWcFWnm7Z3715988037p+3bt2qTZs2KTk5WSeddJJycnKUm5urzMxMZWZmKjc3V/Hx8Ro2bJgkyel0atSoURo/fryaNWum5ORkTZgwQZ06dXI/KRNA3ajNjeYDfZN6bnoPAJ6IwYD6h3gGANDQ1WkS86OPPtL555/v/nncuHGSpJEjR2rOnDmaOHGiysrKNGbMGBUXF6tnz55avny5EhN/e3bTI488osjISA0dOlRlZWXq16+f5syZo4iIML4JAAAAQC0QgwEAANS9qAgp6ui3HPd/TBPY8ezEYYwJ483zTc2j7cPx8fMAAIBzvV3xuQAAEN4411ur2S+/JElJAU5ilhqpeanCcp/b9p6YAAAAAAAAACDV8eXkAAAAAAAAQEMUFSFFBbi8MKo6sOPZCZWYAAAAAAAAAGyNSkwAAAAAAAAg1CIU+PLCAN9j006oxAQAAAAAAABga1RiAgAAAAAAAKEWqcCXF3JPTAAAAAAAAACoG1RiAgAAAAAAAKFGJaZfSGICAAAAAAAAoUYS0y9cTg4AAAAAAADA1qjEBAAAAAAAAEKtkaSIup5E/UElJgAAAAAAAABboxITAAAAAAAACLVIBb4S0xHg8WyESkwAAAAAAAAAtkYlJgAAAAAAABBqVGL6hUpMAAAAAAAAALZGJSYAAAAAAAAQahHi6eR+IIkJAAAAAAAAhBqXk/uFy8kBAAAAAAAA2BqVmAAAAAAAAECoRYjMnB+oxAQAAAAAAABga+R7AQAAAAAAgFALxoN9TIDHsxEqMQEAAAAAAADYGpWYAAAAAAAAQKhFisycH6jEBAAAAAAAAGBr5HsBAAAAAACAUKMS0y9UYgIAAAAAAACwNfK9AAAAAAAAQKhRiekXdhUAAAAAAAAQao0kRQR4zOoAj2cjXE4OAAAAAAAAwNaoxAQAAAAAAABCLRiXk5sAj2cjVGICAAAAAAAAsDUqMQEAAAAAAIBQoxLTL1RiAgAAAAAAALA1KjEBAAAAAACAUIsQTyf3A5WYAAAAAAAAAGyNSkwAAAAAAAAg1Lgnpl9IYgIAAAAAAAChFqHAZ+a4nBwAAAAAAAAA6gaVmAAAAAAAAECoBePBPoEez0aoxAQAAAAAAABga1RiAgAAAAAAAKEWjAf7cE9MAAAAAAAAAOFq2rRpcjgcysnJcbcZYzRlyhSlp6crLi5Offv21ebNmz3WKy8v15133qnmzZsrISFBQ4YM0Y8//ujRp7i4WCNGjJDT6ZTT6dSIESO0e/duv+ZHEhMAAAAAAAAItcggLcehoKBATz31lDp37uzRPmPGDM2cOVOzZs1SQUGB0tLSNGDAAO3Zs8fdJycnR4sXL9bChQu1atUq7d27V4MHD5bL5XL3GTZsmDZt2qRly5Zp2bJl2rRpk0aMGOHXHEliAgAAAAAAAA3U3r17NXz4cD399NNq2rSpu90Yo0cffVT33HOPLr/8cnXs2FFz587V/v37tWDBAklSSUmJnn32Wf31r39V//791bVrV82fP1+ffvqpVqxYIUn64osvtGzZMj3zzDPKyspSVlaWnn76ab3++uvasmWLz/MkiQkAAAAAAACEWhArMUtLSz2W8vLyI07j9ttv10UXXaT+/ft7tG/dulWFhYXKzs52t8XExKhPnz5avXq1JGn9+vWqrKz06JOenq6OHTu6+6xZs0ZOp1M9e/Z09+nVq5ecTqe7jy9IYgIAAAAAAACh1khSRICX/2b6MjIy3PefdDqdmjZtmuUUFi5cqA0bNli+XlhYKElKTU31aE9NTXW/VlhYqOjoaI8KTqs+KSkpXuOnpKS4+/iCp5MDAAAAAAAAYWTbtm1KSkpy/xwTE2PZ5w9/+IOWL1+u2NjYI47lcDg8fjbGeLUd7vA+Vv19GedQVGICAAAAAAAAoRbEy8mTkpI8Fqsk5vr161VUVKTu3bsrMjJSkZGRys/P19///ndFRka6KzAPr5YsKipyv5aWlqaKigoVFxcftc+OHTu83n/nzp1eVZ5HQxITAAAAAAAAaGD69eunTz/9VJs2bXIvPXr00PDhw7Vp0ya1adNGaWlpysvLc69TUVGh/Px89e7dW5LUvXt3RUVFefTZvn27PvvsM3efrKwslZSU6MMPP3T3WbdunUpKStx9fMHl5AAAAAAAAECoHVI5GTAu37smJiaqY8eOHm0JCQlq1qyZuz0nJ0e5ubnKzMxUZmamcnNzFR8fr2HDhkmSnE6nRo0apfHjx6tZs2ZKTk7WhAkT1KlTJ/eDgtq3b69Bgwbplltu0ZNPPilJuvXWWzV48GC1bdvW5/mSxAQAAAAAAADgZeLEiSorK9OYMWNUXFysnj17avny5UpMTHT3eeSRRxQZGamhQ4eqrKxM/fr105w5cxQREeHu88ILL2js2LHup5gPGTJEs2bN8msuDmOMCcxm1V+lpaVyOp0qKSnxuOkpAAAID5zr7YnPBQCA8Ma53pp7v4yXkrxvVVm7scsl518Vlvuce2ICAAAAAAAAsDUuJwcAAAAAAABCrY7viVnfkMQEAAAAAAAAQi1Cgc/MVQV4PBvhcnIAAAAAAAAAtkYlJgAAAAAAABBqwbicPIwzfVRiAgAAAAAAALC1MM7PAgAAAAAAADYV8d8l0GOGKSoxAQAAAAAAANgalZgAAAAAAABAqHFPTL9QiQkAAAAAAADA1sI4PwsAAAAAAADYFJWYfgnjTQMAAAAAAABsqpEC/yCeML7mOow3DQAAAAAAAEA4oBITAAAAAAAACDUuJ/cLlZgAAAAAAAAAbC2M87MAAAAAAACATVGJ6RcqMQEAAAAAAADYWhjnZwEAAAAAAACbilDgn04e6PFshEpMAAAAAAAAALZGJSYAAAAAAAAQatwT0y+2rsSsqqrSvffeq9atWysuLk5t2rTRX/7yF1VXV7v7GGM0ZcoUpaenKy4uTn379tXmzZvrcNYAAAD1GzEYAABACETot0RmoBYuJ68b06dP1xNPPKFZs2bpiy++0IwZM/Twww/rsccec/eZMWOGZs6cqVmzZqmgoEBpaWkaMGCA9uzZU4czBwAAqL+IwQAAAGA3ti4yXbNmjS655BJddNFFkqSTTz5ZL774oj766CNJBysAHn30Ud1zzz26/PLLJUlz585VamqqFixYoNGjR9fZ3AEAAOorYjAAAIAQ4HJyv9i6EvOcc87R22+/ra+++kqS9PHHH2vVqlX63e9+J0naunWrCgsLlZ2d7V4nJiZGffr00erVq484bnl5uUpLSz0WAAAAHEQMBgAAALuxdX72rrvuUklJidq1a6eIiAi5XC49+OCDuvbaayVJhYWFkqTU1FSP9VJTU/X9998fcdxp06Zp6tSpwZs4AABAPUYMBgAAEAIRCvw9LLknZt146aWXNH/+fC1YsEAbNmzQ3Llz9b//+7+aO3euRz+Hw+HxszHGq+1Qd999t0pKStzLtm3bgjJ/AACA+ogYDAAAAHZj60rMP/3pT5o0aZKuueYaSVKnTp30/fffa9q0aRo5cqTS0tIkHawGaNmypXu9oqIir8qAQ8XExCgmJia4kwcAAKiniMEAAABCgHti+sXWlZj79+9Xo0aeU4yIiFB1dbUkqXXr1kpLS1NeXp779YqKCuXn56t3794hnSsAAEC4IAYDAACA3dg6P3vxxRfrwQcf1EknnaTTTz9dGzdu1MyZM3XTTTdJOngJU05OjnJzc5WZmanMzEzl5uYqPj5ew4YNq+PZAwAA1E/EYAAAACFAJaZfbL1pjz32mO677z6NGTNGRUVFSk9P1+jRo3X//fe7+0ycOFFlZWUaM2aMiouL1bNnTy1fvlyJiYl1OHMAAID6ixgMAAAgBBop8A/isfU117XjMMaYup5EXSstLZXT6VRJSYmSkpLqejoAACDAONfbE58LAADhjXO9Nfd+eUVKSgjw2Psk5+UKy31u60pMAAAAAAAAICxxOblfwrjIFAAAAAAAAEA4COP8LAAAAAAAAGBTVGL6hUpMAAAAAAAAALYWxvlZAAAAAAAAwKYiFPinkwd6PBuhEhMAAAAAAACArVGJCQAAAAAAAIQa98T0SxhvGgAAAAAAAGBTEQp8Zo7LyQEAAAAAAACgblCJCQAAAAAAAIQal5P7hUpMAAAAAAAAALYWxvlZAAAAAAAAwKYiFPh7WHJPTAAAAAAAAACoG1RiAgAAAAAAAKHGPTH9QiUmAAAAAAAAAFsL4/wsAAAAAAAAYFMRCnxmjntiAgAAAAAAAEDdoBITAAAAAAAACDWeTu4XkpgAAAAAAABAqPFgH79wOTkAAAAAAAAAWwvj/CwAAAAAAABgU1Ri+oVKTAAAAAAAAAC2Fsb5WQAAAAAAAMCmqMT0C5WYAAAAAAAAAGwtjPOzAAAAAAAAgD2ZRpKJCPyY4SqMNw0AAAAAAABAOKASEwAAAAAAAAgxV+TBJdBjhqsw3jQAAAAAAADAnkhi+ofLyQEAAAAAAADYWhjnZwEAAAAAAAB7qopwqCrCEeAxjSQT0DHtgkpMAAAAAAAAALZGJSYAAAAAAAAQYq7ISLkiA1uJ6Yo0kioDOqZdUIkJAAAAAAAAwNaoxAQAAAAAAABCzBURIVeA74npiqASEwAAAAAAAADqBJWYAAAAAAAAQIhVK0IuBbYSszpMn0wukcQEAAAAAAAAQq5KEaoKcBKzKoyTmFxODgAAAAAAAMDWqMQEAAAAAAAAQsylCLkCXF/oUnVAx7MTKjEBAAAAAAAA2BqVmAAAAAAAAECIBacSM7D32LQTKjEBAAAAAAAA2BqVmAAAAAAAAECIUYnpHyoxAQAAAAAAANgalZgAAAAAAABAiFGJ6R+SmAAAAAAAAECIuRShKpKYPuNycgAAAAAAAAC2RiUmAAAAAAAAEGIuRQbhcvLqgI5nJ1RiAgAAAAAAALA1KjEBAAAAAACAEHOpkVyKCPCY4YtKTAAAAAAAAKABevzxx9W5c2clJSUpKSlJWVlZ+s9//uN+3RijKVOmKD09XXFxcerbt682b97sMUZ5ebnuvPNONW/eXAkJCRoyZIh+/PFHjz7FxcUaMWKEnE6nnE6nRowYod27d/s1V5KYAAAAAAAAQIi5FBGUxR8nnniiHnroIX300Uf66KOPdMEFF+iSSy5xJypnzJihmTNnatasWSooKFBaWpoGDBigPXv2uMfIycnR4sWLtXDhQq1atUp79+7V4MGD5XL9Vhc6bNgwbdq0ScuWLdOyZcu0adMmjRgxwq+5Oowxxq81wlBpaamcTqdKSkqUlJRU19MBAAABxrnenvhcAAAIb5zrrdXsl/dKTlPjpMBeTr631KXznF/Vap8nJyfr4Ycf1k033aT09HTl5OTorrvuknSw6jI1NVXTp0/X6NGjVVJSohYtWmjevHm6+uqrJUk///yzMjIy9Oabb2rgwIH64osv1KFDB61du1Y9e/aUJK1du1ZZWVn68ssv1bZtW5/mRSUmAAAAAAAAEGJVigjKIh1MlB66lJeXH3M+LpdLCxcu1L59+5SVlaWtW7eqsLBQ2dnZ7j4xMTHq06ePVq9eLUlav369KisrPfqkp6erY8eO7j5r1qyR0+l0JzAlqVevXnI6ne4+viCJCQAAAAAAAIRYtSLlCvBS/d9neGdkZLjvP+l0OjVt2rQjzuPTTz9V48aNFRMTo9tuu02LFy9Whw4dVFhYKElKTU316J+amup+rbCwUNHR0WratOlR+6SkpHi9b0pKiruPL3g6OQAAAAAAABBGtm3b5nE5eUxMzBH7tm3bVps2bdLu3bu1aNEijRw5Uvn5+e7XHQ6HR39jjFfb4Q7vY9Xfl3EORRITAAAAAAAACLHjeRDPscc8qOZp476Ijo7WqaeeKknq0aOHCgoK9Le//c19H8zCwkK1bNnS3b+oqMhdnZmWlqaKigoVFxd7VGMWFRWpd+/e7j47duzwet+dO3d6VXkeDZeTAwAAAAAAAJB0sEKyvLxcrVu3VlpamvLy8tyvVVRUKD8/352g7N69u6Kiojz6bN++XZ999pm7T1ZWlkpKSvThhx+6+6xbt04lJSXuPr6gEhMAAAAAAAAIsWBWYvrqz3/+sy688EJlZGRoz549Wrhwod59910tW7ZMDodDOTk5ys3NVWZmpjIzM5Wbm6v4+HgNGzZMkuR0OjVq1CiNHz9ezZo1U3JysiZMmKBOnTqpf//+kqT27dtr0KBBuuWWW/Tkk09Kkm699VYNHjzY5yeTSyQxAQAAAAAAgAZpx44dGjFihLZv3y6n06nOnTtr2bJlGjBggCRp4sSJKisr05gxY1RcXKyePXtq+fLlSkxMdI/xyCOPKDIyUkOHDlVZWZn69eunOXPmKCLitwTtCy+8oLFjx7qfYj5kyBDNmjXLr7k6jDEmANtcr5WWlsrpdKqkpMTn+wUAAID6g3O9PfG5AAAQ3jjXW6vZL6+VnKmEpMDWF+4rrdLFzoKw3OfcExMAAAAAAACArXE5OQAAAAAAABBiVYpQVYDviVml8L3gmiQmAAAAAAAAEGIuRcoV4NScvw/2qU+4nBwAAAAAAACArVGJCQAAAAAAAIRYtSLkCvDl5NVhfDk5lZgAAAAAAAAAbI1KTAAAAAAAACDEXEGoxHSFcSWmT0nMpk2byuFw+DTgr7/+WqsJAQAA4CBiMAAAAOAgn5KYjz76qPvfu3bt0gMPPKCBAwcqKytLkrRmzRq99dZbuu+++4IySQAAgIaIGAwAACB8VamRqgJciVml6oCOZycOY4xfdaZXXHGFzj//fN1xxx0e7bNmzdKKFSu0ZMmSQM4vJEpLS+V0OlVSUqKkpKS6ng4AAAiwcDjXE4MBAID6hnO9tZr9Mq+kv+KTogI69v7SSo1wrgjLfe73g33eeustDRo0yKt94MCBWrFiRUAmBQAAAE/EYAAAAOHFpcigLOHK7yRms2bNtHjxYq/2JUuWqFmzZgGZFAAAADwRgwEAAISXmgf7BHoJV34nMadOnapJkybpoosu0gMPPKAHHnhAgwcP1t13362pU6cGfII//fSTrrvuOjVr1kzx8fE644wztH79evfrxhhNmTJF6enpiouLU9++fbV58+aAzwMAAKAuEYMBAACgIfM7iXnDDTdo9erVatKkiV555RUtWrRITqdTH3zwgW644YaATq64uFhnn322oqKi9J///Eeff/65/vrXv6pJkybuPjNmzNDMmTM1a9YsFRQUKC0tTQMGDNCePXsCOhcAAIC6RAwGAAAQXqjE9I/fD/YJpUmTJumDDz7Q+++/b/m6MUbp6enKycnRXXfdJUkqLy9Xamqqpk+frtGjR/v0PtxoFgCA8Ma53j/EYAAAIBA411ur2S9PlQwJyoN9bnUuDct97lMlZmlpqce/j7YE0tKlS9WjRw9dddVVSklJUdeuXfX000+7X9+6dasKCwuVnZ3tbouJiVGfPn20evXqI45bXl4e1HkDAAAEAjEYAABA+HIpQlUBXsK5EtOnJGbTpk1VVFQkSWrSpImaNm3qtdS0B9K3336rxx9/XJmZmXrrrbd02223aezYsfrnP/8pSSosLJQkpaameqyXmprqfs3KtGnT5HQ63UtGRkZA5w0AABAIxGAAAADAQT49d/2dd95RcnKyJGnlypVBndChqqur1aNHD+Xm5kqSunbtqs2bN+vxxx/X9ddf7+7ncDg81jPGeLUd6u6779a4cePcP5eWlhJEAwAA2yEGAwAACF8uRcrlW2rOjzFte9fIWvNpT/Xp08fy38HWsmVLdejQwaOtffv2WrRokSQpLS1N0sFqgJYtW7r7FBUVeVUGHComJkYxMTFBmDEAAEDgEIMBAAAAB/n9dPJQOvvss7VlyxaPtq+++kqtWrWSJLVu3VppaWnKy8tzv15RUaH8/Hz17t07pHMFAAAIF8RgAAAAwedSoyA8ndzWqb5aCWzNaoD98Y9/VO/evZWbm6uhQ4fqww8/1FNPPaWnnnpK0sFLmHJycpSbm6vMzExlZmYqNzdX8fHxGjZsWB3PHgAAoH4iBgMAAAg+VxAexBPOD/axdRLzzDPP1OLFi3X33XfrL3/5i1q3bq1HH31Uw4cPd/eZOHGiysrKNGbMGBUXF6tnz55avny5EhMT63DmAAAA9RcxGAAAAOzGYYwJ3zt++qi0tFROp1MlJSVKSkqq6+kAAIAA41xvT3wuAACEN8711mr2y8MlIxSXFB3QsctKK/Qn57yw3Od+Xyi/efPmI762bNmyWk0GAAAA1ojBAAAA0JD5ncTs0aOHHnvsMY+28vJy3XHHHbrssssCNjEAAAD8hhgMAAAgvLgUoaoAL+F8T0y/k5gvvPCCpk6dqgsvvFCFhYXatGmTunbtqnfeeUcffPBBMOYIAADQ4BGDAQAAoCHzO4l5+eWX65NPPlFVVZU6duyorKws9e3bV+vXr1e3bt2CMUcAAIAGjxgMAAAgvLgUGZQlXPmdxJQkl8uliooKuVwuuVwupaWlKSYmJtBzAwAAwCGIwQAAANBQ+Z3EXLhwoTp37iyn06mvvvpKb7zxhp566imde+65+vbbb4MxRwAAgAaPGAwAACC8uP57D8tAL+HK7yTmqFGjlJubq6VLl6pFixYaMGCAPv30U51wwgk644wzgjBFAAAAEIMBAACgIfP7QvkNGzaobdu2Hm1NmzbVv/71L82bNy9gEwMAAMBviMEAAADCi0uNAl456Tq+O0fWC35v2UsvvaT9+/d7tZeVlWnr1q0BmRQAAAA8EYMBAACElypFBGUJV34nMadOnaq9e/d6te/fv19Tp04NyKQAAADgiRgMAAAADZnfl5MbY+RwOLzaP/74YyUnJwdkUgAAAPBEDAYAABBeXIqUy//U3DHGdAV0PDvxeU81bdpUDodDDodDp512mkcQ7XK5tHfvXt12221BmSQAAEBDRQwGAAAA+JHEfPTRR2WM0U033aSpU6fK6XS6X4uOjtbJJ5+srKysoEwSAACgoSIGAwAACE/Vigj4g32qw/iemD4nMUeOHClJat26tc4++2xFRga23BUAAADeiMEAAACA43iwz5QpUzR37lyVlJQEYz4AAACwQAwGAAAQXlz/rcQM9BKu/E5idurUSffee6/S0tJ0xRVXaMmSJaqoqAjG3AAAAPBfxGAAAABoyPxOYv7973/XTz/9pFdffVWJiYkaOXKk0tLSdOuttyo/Pz8YcwQAAGjwiMEAAADCi0uNglCJ6Xeqr944ri1r1KiRsrOzNWfOHO3YsUNPPvmkPvzwQ11wwQWBnh8AAAD+ixgMAAAgfFQpIihLuKrVneELCwu1cOFCzZ8/X5988onOPPPMQM0LAAAAR0AMBgAAgIbG7yRmaWmpFi1apAULFujdd99VmzZtNGzYMC1cuFCnnnpqMOYIAADQ4BGDAQAAhBeXIuWqXX2h5Zjhyu8tS01NVdOmTTV06FDl5ubyl38AAIAQIAYDAABAQ+Z3EvPVV19V//791ahR+N4oFAAAwG6IwQAAAMJL9X8fxhPoMcOV30nM7OzsYMwDAAAAR0EMBgAAgIbMpyRm165d5XA4fBpww4YNtZoQAAAADiIGAwAACF+uIFRiBno8O/EpiXnppZe6/33gwAHNnj1bHTp0UFZWliRp7dq12rx5s8aMGROUSQIAADRExGAAAADAQT4lMSdPnuz+980336yxY8fqf/7nf7z6bNu2LbCzAwAAaMCIwQAAAMJXlSLUKMCVk1VhXInp953hX375ZV1//fVe7dddd50WLVoUkEkBAADAEzEYAABAeDl4OXlkgBeSmG5xcXFatWqVV/uqVasUGxsbkEkBAADAEzEYAAAAGjK/n06ek5Oj3//+91q/fr169eol6eD9mJ577jndf//9AZ8gAAAAiMEAAADCDQ/28Y/fScxJkyapTZs2+tvf/qYFCxZIktq3b685c+Zo6NChAZ8gAAAAiMEAAADQsPmdxJSkoUOHEiwDAACEGDEYAABA+KAS0z/HlcSUpIqKChUVFam6utqj/aSTTqr1pAAAAGCNGAwAAAANkd9JzK+//lo33XSTVq9e7dFujJHD4ZDL5QrY5AAAAHAQMRgAAEB4qQ5CJWY1lZi/ueGGGxQZGanXX39dLVu2lMPhCMa8AAAAcAhiMAAAADRkficxN23apPXr16tdu3bBmA8AAAAsEIMBAACElypFyBHgyskqKjF/06FDB/3yyy/BmAsAAACOgBgMAAAgvLgUoUbH/7iaI44Zrhr5u8L06dM1ceJEvfvuu9q1a5dKS0s9FgAAAAQeMRgAAAAaMr/Tvf3795ck9evXz6Odm8oDAAAEDzEYAABAeDlYiRnYyslwrsT0O4m5cuXKYMwDAAAAR0EMBgAAgIbM7yRmnz59gjEPAAAAHAUxGAAAQHihEtM/ft8TU5Lef/99XXfdderdu7d++uknSdK8efO0atWqgE4OAAAAvyEGAwAAQEPldxJz0aJFGjhwoOLi4rRhwwaVl5dLkvbs2aPc3NyATxAAAADEYAAAAOGmShFBWcKV30nMBx54QE888YSefvppRUVFudt79+6tDRs2BHRyAAAAOIgYDAAAAA2Z3/fE3LJli8477zyv9qSkJO3evTsQcwIAAMBhiMEAAADCS7Ui5fI/NXfMMcOV35WYLVu21DfffOPVvmrVKrVp0yYgkwIAAIAnYjAAAIDw4lJEUJZw5XcSc/To0frDH/6gdevWyeFw6Oeff9YLL7ygCRMmaMyYMcGYIwAAQINHDAYAAICGzO8a04kTJ6qkpETnn3++Dhw4oPPOO08xMTGaMGGC7rjjjmDMEQAAoMEjBgMAAAgvLjWSI8CVky7/6xXrDYcxxhzPivv379fnn3+u6upqdejQQY0bNw703EKmtLRUTqdTJSUlSkpKquvpAACAAAuncz0xGAAAqC8411ur2S/nlPxbkUkJAR27qnSfVjmvDMt9ftx3+4yPj1ePHj0CORcAAAAcAzEYAABAeKhShBTgSswq7okJAAAAAAAAAHUjfJ+7DgAAAAAAANiUS5FyBDg15wrjVB+VmAAAAAAAAABsLXzTswAAAAAAAIBNVStCrgDfw7I6jO+JSRITAAAAAAAACDFXEB7sE+ikqJ1wOTkAAAAAAAAAW6MSEwAAAAAAAAgxKjH9QyUmAAAAAAAAAFsjiQkAAAAAAACEWJUaqUoRAV58T/VNmzZNZ555phITE5WSkqJLL71UW7Zs8ehjjNGUKVOUnp6uuLg49e3bV5s3b/boU15erjvvvFPNmzdXQkKChgwZoh9//NGjT3FxsUaMGCGn0ymn06kRI0Zo9+7dfu0vkpgAAAAAAABAA5Ofn6/bb79da9euVV5enqqqqpSdna19+/a5+8yYMUMzZ87UrFmzVFBQoLS0NA0YMEB79uxx98nJydHixYu1cOFCrVq1Snv37tXgwYPlcrncfYYNG6ZNmzZp2bJlWrZsmTZt2qQRI0b4NV+HMcbUfrPrt9LSUjmdTpWUlCgpKamupwMAAAKMc7098bkAABDeONdbq9kvp5W8p4ikxgEd21W6V185zzuufb5z506lpKQoPz9f5513nowxSk9PV05Oju666y5JB6suU1NTNX36dI0ePVolJSVq0aKF5s2bp6uvvlqS9PPPPysjI0NvvvmmBg4cqC+++EIdOnTQ2rVr1bNnT0nS2rVrlZWVpS+//FJt27b1aX5UYgIAAAAAAABhpLS01GMpLy8/5jolJSWSpOTkZEnS1q1bVVhYqOzsbHefmJgY9enTR6tXr5YkrV+/XpWVlR590tPT1bFjR3efNWvWyOl0uhOYktSrVy85nU53H1+QxAQAAAAAAABCzKWIoCySlJGR4b7/pNPp1LRp0446F2OMxo0bp3POOUcdO3aUJBUWFkqSUlNTPfqmpqa6XyssLFR0dLSaNm161D4pKSle75mSkuLu44tIn3sCAAAAAAAACIhqRUj/TToGdkxp27ZtHpeTx8TEHHW9O+64Q5988olWrVrl9ZrD4fD42Rjj1Xa4w/tY9fdlnENRiQkAAAAAAACEkaSkJI/laEnMO++8U0uXLtXKlSt14oknutvT0tIkyatasqioyF2dmZaWpoqKChUXFx+1z44dO7zed+fOnV5VnkdDEhMAAAAAAAAIsSpFBGXxlTFGd9xxh1555RW98847at26tcfrrVu3VlpamvLy8txtFRUVys/PV+/evSVJ3bt3V1RUlEef7du367PPPnP3ycrKUklJiT788EN3n3Xr1qmkpMTdxxdcTg4AAAAAAAA0MLfffrsWLFigV199VYmJie6KS6fTqbi4ODkcDuXk5Cg3N1eZmZnKzMxUbm6u4uPjNWzYMHffUaNGafz48WrWrJmSk5M1YcIEderUSf3795cktW/fXoMGDdItt9yiJ598UpJ06623avDgwT4/mVwiiQkAAAAAAACEnEsRMgFOzVX7UYn5+OOPS5L69u3r0f7888/rhhtukCRNnDhRZWVlGjNmjIqLi9WzZ08tX75ciYmJ7v6PPPKIIiMjNXToUJWVlalfv36aM2eOIiJ+m8sLL7ygsWPHup9iPmTIEM2aNcuvbXMYY4xfa4Sh0tJSOZ1OlZSUeNz0FAAAhAfO9fbE5wIAQHjjXG+tZr+kl2xQo6TEY6/gh+rSPfrZ2S0s9zmVmAAAAAAAAECIHazEDM7TycMRD/YBAAAAAAAAYGtUYgIAAAAAAAAhRiWmf0hiAgAAAAAAACHmqo6QqQ5wEjPA49kJl5MDAAAAAAAAsLV6lcScNm2aHA6HcnJy3G3GGE2ZMkXp6emKi4tT3759tXnz5rqbJAAAQJghBgMAAAg8V1WEqgK8uKqoxKxzBQUFeuqpp9S5c2eP9hkzZmjmzJmaNWuWCgoKlJaWpgEDBmjPnj11NFMAAIDwQQwGAAAAO6gXScy9e/dq+PDhevrpp9W0aVN3uzFGjz76qO655x5dfvnl6tixo+bOnav9+/drwYIFdThjAACA+o8YDAAAIHhcVZFBWcJVvUhi3n777brooovUv39/j/atW7eqsLBQ2dnZ7raYmBj16dNHq1evPuJ45eXlKi0t9VgAAADgiRgMAAAAdmH79OzChQu1YcMGFRQUeL1WWFgoSUpNTfVoT01N1ffff3/EMadNm6apU6cGdqIAAABhhBgMAAAguFxVjeQI8D0sTVW9qFc8Lrbesm3btukPf/iD5s+fr9jY2CP2czgcHj8bY7zaDnX33XerpKTEvWzbti1gcwYAAKjviMEAAABgN7auxFy/fr2KiorUvXt3d5vL5dJ7772nWbNmacuWLZIOVgO0bNnS3aeoqMirMuBQMTExiomJCd7EAQAA6jFiMAAAgOBzVUUEoRIzfJ9ObuskZr9+/fTpp596tN14441q166d7rrrLrVp00ZpaWnKy8tT165dJUkVFRXKz8/X9OnT62LKAAAA9R4xGAAAQPBVVUXIUUkS01e2TmImJiaqY8eOHm0JCQlq1qyZuz0nJ0e5ubnKzMxUZmamcnNzFR8fr2HDhtXFlAEAAOo9YjAAAADYja2TmL6YOHGiysrKNGbMGBUXF6tnz55avny5EhMT63pqAAAAYYsYDAAAoHaMK1LGFeDUXKDHsxGHMcbU9STqWmlpqZxOp0pKSpSUlFTX0wEAAAHGud6e+FwAAAhvnOut1ewXfVkkJQZ4v+wpldqlhOU+D9/0LAAAAAAAAGBXVREHl0CPGaYa1fUEAAAAAAAAAOBoqMQEAAAAAAAAQo1KTL9QiQkAAAAAAADA1qjEBAAAAAAAAELN5ZCqHIEfM0xRiQkAAAAAAADA1qjEBAAAAAAAAEKt6r9LoMcMUyQxAQAAAAAAgFAjiekXLicHAAAAAAAAYGtUYgIAAAAAAAChRiWmX6jEBAAAAAAAAGBrVGICAAAAAAAAoVYlqTIIY4YpKjEBAAAAAAAA2BqVmAAAAAAAAECouf67BHrMMEUlJgAAAAAAAABboxITAAAAAAAACDWeTu4XkpgAAAAAAABAqJHE9AuXkwMAAAAAAACwNSoxAQAAAAAAgFCjEtMvVGICAAAAAAAAsDUqMQEAAAAAAIBQcynwlZOuAI9nI1RiAgAAAAAAALA1KjEBAAAAAACAUOOemH6hEhMAAAAAAACArVGJCQAAAAAAAIQalZh+IYkJAAAAAAAAhFrlf5dAjxmmuJwcAAAAAAAAgK1RiQkAAAAAAACEmuu/S6DHDFNUYgIAAAAAAACwNSoxAQAAAAAAgFBzKfAP4qESEwAAAAAAAADqBpWYAAAAAAAAQKhVKfCVmIEez0aoxAQAAAAAAABga1RiAgAAAAAAAKFGJaZfSGICAAAAAAAAoUYS0y9cTg4AAAAAAADA1qjEBAAAAAAAAELNpcBXTroCPJ6NUIkJAAAAAAAAwNaoxAQAAAAAAABCjXti+oVKTAAAAAAAAAC2RiUmAAAAAAAAEGqVkiKCMGaYohITAAAAAAAAgK1RiQkAAAAAAACEmkuBf5p4GD+dnCQmAAAAAAAAEGo82McvXE4OAAAAAAAAwNaoxAQAAAAAAABCzaXAV06G8eXkVGICAAAAAAAAsDUqMQEAAAAAAIBQq5IUEYQxwxSVmAAAAAAAAABsjUpMAAAAAAAAINQqFfjywsoAj2cjVGICAAAAAAAAsDUqMQEAAAAAAIBQcynwTxMP46eTk8QEAAAAAAAAQs2lwD+IJ4yTmFxODgAAAAAAAMDWqMQEAAAAAAAAQq1KgS8vDHRlp41QiQkAAAAAAADA1qjEBAAAAAAAAEKtUpIjCGOGKSoxAQAAAAAAANgalZgAAAAAAABAqLkU+KeJ83RyAAAAAAAAAKgbVGICAAAAAAAAocbTyf1CEhMAAAAAAAAINZcCn3TkcnIAAAAAAAAAqBtUYgIAAAAAAAChVllPxrQJKjEBAAAAAAAA2BpJTAAAAAAAACDUXEFa/PDee+/p4osvVnp6uhwOh5YsWeLxujFGU6ZMUXp6uuLi4tS3b19t3rzZo095ebnuvPNONW/eXAkJCRoyZIh+/PFHjz7FxcUaMWKEnE6nnE6nRowYod27d/s1V5KYAAAAAAAAQAO0b98+denSRbNmzbJ8fcaMGZo5c6ZmzZqlgoICpaWlacCAAdqzZ4+7T05OjhYvXqyFCxdq1apV2rt3rwYPHiyX67eM6rBhw7Rp0yYtW7ZMy5Yt06ZNmzRixAi/5so9MQEAAAAAAIBQq5LkCMKYfrjwwgt14YUXWr5mjNGjjz6qe+65R5dffrkkae7cuUpNTdWCBQs0evRolZSU6Nlnn9W8efPUv39/SdL8+fOVkZGhFStWaODAgfriiy+0bNkyrV27Vj179pQkPf3008rKytKWLVvUtm1bn+ZKJSYAAAAAAAAQRkpLSz2W8vJyv8fYunWrCgsLlZ2d7W6LiYlRnz59tHr1aknS+vXrVVlZ6dEnPT1dHTt2dPdZs2aNnE6nO4EpSb169ZLT6XT38QVJTAAAAAAAACDUqoK0SMrIyHDff9LpdGratGl+T6+wsFCSlJqa6tGemprqfq2wsFDR0dFq2rTpUfukpKR4jZ+SkuLu4wsuJwcAAAAAAABCzc9Lv/0Zc9u2bUpKSnI3x8TEHPeQDofnNe/GGK+2wx3ex6q/L+McikpMAAAAAAAAIIwkJSV5LMeTxExLS5Mkr2rJoqIid3VmWlqaKioqVFxcfNQ+O3bs8Bp/586dXlWeR0MSEwAAAAAAAAg1V5CWAGndurXS0tKUl5fnbquoqFB+fr569+4tSerevbuioqI8+mzfvl2fffaZu09WVpZKSkr04YcfuvusW7dOJSUl7j6+sHUSc9q0aTrzzDOVmJiolJQUXXrppdqyZYtHH2OMpkyZovT0dMXFxalv377avHlzHc0YAACg/iMGAwAAaBj27t2rTZs2adOmTZIOPsxn06ZN+uGHH+RwOJSTk6Pc3FwtXrxYn332mW644QbFx8dr2LBhkiSn06lRo0Zp/Pjxevvtt7Vx40Zdd9116tSpk/tp5e3bt9egQYN0yy23aO3atVq7dq1uueUWDR482Ocnk0s2T2Lm5+fr9ttv19q1a5WXl6eqqiplZ2dr37597j4zZszQzJkzNWvWLBUUFCgtLU0DBgzQnj176nDmAAAA9RcxGAAAQAgE8cE+vvroo4/UtWtXde3aVZI0btw4de3aVffff78kaeLEicrJydGYMWPUo0cP/fTTT1q+fLkSExPdYzzyyCO69NJLNXToUJ199tmKj4/Xa6+9poiICHefF154QZ06dVJ2drays7PVuXNnzZs3z6+5Oowxxr/Nqzs7d+5USkqK8vPzdd5558kYo/T0dOXk5Oiuu+6SJJWXlys1NVXTp0/X6NGjfRq3tLRUTqdTJSUlHjc9BQAA4YFzfe0QgwEAgOPBud5azX5RVokUGeD9UlUqrQnPfW7rSszDlZSUSJKSk5MlHSxxLSwsVHZ2trtPTEyM+vTpo9WrVx9xnPLycpWWlnosAAAAsEYMBgAAEAQ2qMSsT+pNEtMYo3Hjxumcc85Rx44dJf32dKTDn2SUmprq9eSkQ02bNk1Op9O9ZGRkBG/iAAAA9RgxGAAAAOyg3iQx77jjDn3yySd68cUXvV5zOBwePxtjvNoOdffdd6ukpMS9bNu2LeDzBQAACAfEYAAAAEFSJakywEsYV2JG1vUEfHHnnXdq6dKleu+993TiiSe629PS0iQdrAZo2bKlu72oqMirMuBQMTExiomJCd6EAQAAwgAxGAAAAOzC1pWYxhjdcccdeuWVV/TOO++odevWHq+3bt1aaWlpysvLc7dVVFQoPz9fvXv3DvV0AQAAwgIxGAAAQAi4grSEKVtXYt5+++1asGCBXn31VSUmJrrvseR0OhUXFyeHw6GcnBzl5uYqMzNTmZmZys3NVXx8vIYNG1bHswcAAKifiMEAAABCoEqSCfCYJDHrxuOPPy5J6tu3r0f7888/rxtuuEGSNHHiRJWVlWnMmDEqLi5Wz549tXz5ciUmJoZ4tgAAAOGBGAwAAAB24zDGBDrnW++UlpbK6XSqpKRESUlJdT0dAAAQYJzr7YnPBQCA8Ma53lrNftFpJVJEgPeLq1T6Kjz3ua3viQkAAAAAAAAAtr6cHAAAAAAAAAhLVZKqAzxmoMezESoxAQAAAAAAANgalZgAAAAAAABAqLkU+KeTU4kJAAAAAAAAAHWDSkwAAAAAAAAg1KoU+PLCMK7EJIkJAAAAAAAAhBpJTL9wOTkAAAAAAAAAW6MSEwAAAAAAAAi1SlGJ6QcqMQEAAAAAAADYGpWYAAAAAAAAQKhVSzIBHjPQ49kIlZgAAAAAAAAAbI1KTAAAAAAAACDUqiQ5AjwmlZgAAAAAAAAAUDeoxAQAAAAAAABCjUpMv5DEBAAAAAAAAEKtUiQx/cDl5AAAAAAAAABsjUpMAAAAAAAAINRcohLTD1RiAgAAAAAAALA1KjEBAAAAAACAuhDGlZOBRiUmAAAAAAAAAFsjiQkAAAAAAADA1khiAgAAAAAAALA1kpgAAAAAAAAAbI0kJgAAAAAAAABbI4kJAAAAAAAAwNYi63oCAAAAAAAAQMNT+d8l0GOGJyoxAQAAAAAAANgalZgAAAAAAABAyFX9dwn0mOGJSkwAAAAAAAAAtkYlJgAAAAAAABBy3BPTH1RiAgAAAAAAALA1KjEBAAAAAACAkOOemP4giQkAAAAAAACEXJUCf/l3+CYxuZwcAAAAAAAAgK1RiQkAAAAAAACEHA/28QeVmAAAAAAAAABsjUpMAAAAAAAAIOR4sI8/qMQEAAAAAAAAYGtUYgIAAAAAAAAhx9PJ/UElJgAAAAAAAABboxITAAAAAAAACDnuiekPkpgAAAAAAABAyFUq8JeTB3o8++BycgAAAAAAAAC2RiUmAAAAAAAAEHJcTu4PKjEBAAAAAAAA2BqVmAAAAAAAAEDIVSnw97CkEhMAAAAAAAAA6gSVmAAAAAAAAEDIcU9Mf1CJCQAAAAAAAMDWqMQEAAAAAAAAQq5Sgb8nZqDHsw+SmAAAAAAAAEDIcTm5P7icHAAAAAAAAICtUYkJAAAAAAAAhFyVAn/5N5WYAAAAAAAAAFAnqMQEAAAAAAAAQo57YvqDSkwAAAAAAAAAtkYlJgAAAAAAABBylQr8PTEDPZ59UIkJAAAAAAAAwNaoxAQAAAAAAABCjkpMf5DEBAAAAAAAAEKOB/v4g8vJAQAAAAAAANgalZgAAAAAAABAyFUp8Jd/U4kJAAAAAAAAAHWCSkwAAAAAAAAg5Lgnpj+oxAQAAAAAAABga1RiAgAAAAAAACFXqcCn5gJ9j037oBITAAAAAAAAgK1RiQkAAAAAAACEHPfE9AeVmAAAAAAAAABsjUpMAAAAAAAAIOSqFPh7WIZvJSZJTAAAAAAAACDkuJzcHyQxD+F0TpMU6/7ZmMlefRyOqT6NVZt1EWpWXwOrL32gvy5RPvar7fzifFzfqp+v87Fa12r7kmoxXqqP41mt689ftqzm/aNF2x6LtjKLtlIf26xYjWfF6vO0Wre2f+Hz9biz6ldXT8gL3xO4PwJ9PvNnfV8d6X2Ol/f8DgR0fASWLzFYKIQuzvP1d6ev61qxOp9ZnRuszptW/ZJ97Gf1+95qLkeKO6zOkVbvbaU2v/N9jUd81cyibZdFm9WcE/0Y09dYoZVF268WbadatFnFPFb7y9djzuoYKbJo6+TjexxpTKtjyep9rPbN9xZtVseD1XtY7S+r+fkaG/lzXFvtb1/jU6u4ujZzrM3/YXyNbWvzHZV83z6r4y4Yn5+n2pwLrc5J/sR0gX1vYjAETtjcE3P27Nlq3bq1YmNj1b17d73//vt1PSUAAICwRwwGAABwvCqDtISnsEhivvTSS8rJydE999yjjRs36txzz9WFF16oH374oa6nBgAAELaIwQAAABAqYZHEnDlzpkaNGqWbb75Z7du316OPPqqMjAw9/vjjdT01AACAsEUMBgAAUBtVQVrCU72/J2ZFRYXWr1+vSZMmebRnZ2dr9erVluuUl5ervLzc/XNJSUnNKx79Skut7hXi2/0carMuQq2u7onp8rFfMOYX6HtGGYs2q3vHRPg4XrVFm9X9hazU5p5DkvW89/rYZvUd3+9jmxVff2f4et+g2p7MuCdmfRX485nv6/vqyO9zvA6f38FzvDFWv69wPEIfg4VCqOK8UNwT0yrOsJqjw8d+VucVq35Wv+99jXn8eW8rgY5vasPqXO/rudkqXpIOvW/sb3w97qziln0WbVbxltW6VvvLqs3XY8TXuRzpc7Laj7XZZqt+VsexVT+rzz5U98SszXfXKgb29b1DcU9MX39/+cPXz8Dqsw/+PTFrdy703l/+xHSBfW9isKMrP3YXW4xpD/U+ifnLL7/I5XIpNdXzoR+pqakqLCy0XGfatGmaOtXq5uuPePzkdD503POqzboAAARSfTifhep99uzZI6fTGZL3Cnd2jcFCwe7zAwDUf4E+1/gzXjDOc8RgnqKjo5WWlqbCwkeO3fk4pKWlKTo6Oihj16V6n8Ss4XB4/hXGGOPVVuPuu+/WuHHj3D9XV1fr119/VbNmzY64jl2UlpYqIyND27ZtU1KS1RPkGib2izf2iTf2iTX2izf2ibX6vF+MMdqzZ4/S09PreiphJ1xisPp8fOMgPsP6jc+vfuPzq9+C+fkRg1mLjY3V1q1bVVFREZTxo6OjFRtrVcFfv9X7JGbz5s0VERHh9Rf/oqIir8qAGjExMYqJifFoa9KkSbCmGBRJSUmcHCywX7yxT7yxT6yxX7yxT6zV1/3CX/8DK1xjsPp6fOM3fIb1G59f/cbnV78F6/MjBrMWGxsblonGYKr3D/aJjo5W9+7dlZeX59Gel5en3r1719GsAAAAwhsxGAAAAEKp3ldiStK4ceM0YsQI9ejRQ1lZWXrqqaf0ww8/6LbbbqvrqQEAAIQtYjAAAACESlgkMa+++mrt2rVLf/nLX7R9+3Z17NhRb775plq1alXXUwu4mJgYTZ482etSrIaO/eKNfeKNfWKN/eKNfWKN/YLDhVMMxvFd//EZ1m98fvUbn1/9xueH+sJheM49AAAAAAAAABur9/fEBAAAAAAAABDeSGICAAAAAAAAsDWSmAAAAAAAAABsjSQmAAAAAAAAAFsjiWkzxcXFGjFihJxOp5xOp0aMGKHdu3cfdR2Hw2G5PPzww+4+ffv29Xr9mmuuCfLWBM7x7JcbbrjBa5t79erl0ae8vFx33nmnmjdvroSEBA0ZMkQ//vhjELckcPzdJ5WVlbrrrrvUqVMnJSQkKD09Xddff71+/vlnj3717ViZPXu2WrdurdjYWHXv3l3vv//+Ufvn5+ere/fuio2NVZs2bfTEE0949Vm0aJE6dOigmJgYdejQQYsXLw7W9IPCn33yyiuvaMCAAWrRooWSkpKUlZWlt956y6PPnDlzLH/HHDhwINibElD+7Jd3333Xcpu//PJLj34N6Vix+p3qcDh0+umnu/uEy7GChuPBBx9U7969FR8fryZNmvi0jjFGU6ZMUXp6uuLi4tS3b19t3rw5uBOFpWDFhwiOYMRsCK1gxFIIvvfee08XX3yx0tPT5XA4tGTJkmOuw/cPdkUS02aGDRumTZs2admyZVq2bJk2bdqkESNGHHWd7du3eyzPPfecHA6HrrjiCo9+t9xyi0e/J598MpibElDHs18kadCgQR7b/Oabb3q8npOTo8WLF2vhwoVatWqV9u7dq8GDB8vlcgVrUwLG332yf/9+bdiwQffdd582bNigV155RV999ZWGDBni1be+HCsvvfSScnJydM8992jjxo0699xzdeGFF+qHH36w7L9161b97ne/07nnnquNGzfqz3/+s8aOHatFixa5+6xZs0ZXX321RowYoY8//lgjRozQ0KFDtW7dulBtVq34u0/ee+89DRgwQG+++abWr1+v888/XxdffLE2btzo0S8pKcnrd01sbGwoNikg/N0vNbZs2eKxzZmZme7XGtqx8re//c1jX2zbtk3Jycm66qqrPPrV92MFDUtFRYWuuuoq/f73v/d5nRkzZmjmzJmaNWuWCgoKlJaWpgEDBmjPnj1BnCmsBCs+ROAFI2ZDaAUjlkJo7Nu3T126dNGsWbN86s/3D7ZmYBuff/65kWTWrl3rbluzZo2RZL788kufx7nkkkvMBRdc4NHWp08f84c//CFQUw2p490vI0eONJdccskRX9+9e7eJiooyCxcudLf99NNPplGjRmbZsmUBmXuwBOpY+fDDD40k8/3337vb6tOxctZZZ5nbbrvNo61du3Zm0qRJlv0nTpxo2rVr59E2evRo06tXL/fPQ4cONYMGDfLoM3DgQHPNNdcEaNbB5e8+sdKhQwczdepU98/PP/+8cTqdgZpinfB3v6xcudJIMsXFxUccs6EfK4sXLzYOh8N899137rZwOFbQMPl67FZXV5u0tDTz0EMPudsOHDhgnE6neeKJJ4I4QxwuWPEhgiMYMRtCKxixFEJPklm8ePFR+/D9g51RiWkja9askdPpVM+ePd1tvXr1ktPp1OrVq30aY8eOHXrjjTc0atQor9deeOEFNW/eXKeffromTJhQbyoGarNf3n33XaWkpOi0007TLbfcoqKiIvdr69evV2VlpbKzs91t6enp6tixo8/7u64E4liRpJKSEjkcDq9L6OrDsVJRUaH169d7fH6SlJ2dfcR9sGbNGq/+AwcO1EcffaTKysqj9rH7MSEd3z45XHV1tfbs2aPk5GSP9r1796pVq1Y68cQTNXjwYK9KTTurzX7p2rWrWrZsqX79+mnlypUerzX0Y+XZZ59V//791apVK4/2+nysAMeydetWFRYWenx3YmJi1KdPn3rx3Q8nwYoPEXjBitkQOsGKpWBPfP9gZ5F1PQH8prCwUCkpKV7tKSkpKiws9GmMuXPnKjExUZdffrlH+/Dhw9W6dWulpaXps88+0913362PP/5YeXl5AZl7MB3vfrnwwgt11VVXqVWrVtq6davuu+8+XXDBBVq/fr1iYmJUWFio6OhoNW3a1GO91NRUn/d3XQnEsXLgwAFNmjRJw4YNU1JSkru9vhwrv/zyi1wul1JTUz3aj/b5FRYWWvavqqrSL7/8opYtWx6xj92PCen49snh/vrXv2rfvn0aOnSou61du3aaM2eOOnXqpNLSUv3tb3/T2WefrY8//rheXBJ0PPulZcuWeuqpp9S9e3eVl5dr3rx56tevn959912dd955ko58PDWEY2X79u36z3/+owULFni01/djBTiWmu+H1Xfn+++/r4spNVjBig8ReMGK2RA6wYqlYE98/2BnJDFDYMqUKZo6depR+xQUFEg6+JCewxljLNutPPfccxo+fLjX/cduueUW9787duyozMxM9ejRQxs2bFC3bt18GjvQgr1frr76ave/O3bsqB49eqhVq1Z64403vJK8/owbTKE6ViorK3XNNdeourpas2fP9njNjsfK0Ry+vcfaB1b9D2/3d0y7Od75v/jii5oyZYpeffVVj/8Y9urVy+OhB2effba6deumxx57TH//+98DN/Eg82e/tG3bVm3btnX/nJWVpW3btul///d/PQLvhnqszJkzR02aNNGll17q0R4uxwrqN1/PpT169Dju96jv3307s2t8iNoLRsyG0ApGLAV74vsHuyKJGQJ33HHHMZ/ufPLJJ+uTTz7Rjh07vF7buXOn119CrLz//vvasmWLXnrppWP27datm6KiovT111/XWWIqVPulRsuWLdWqVSt9/fXXkqS0tDRVVFSouLjYoxqzqKhIvXv39nncQArFPqmsrNTQoUO1detWvfPOOx5VmFbscKxYad68uSIiIrz++ltUVHTEfZCWlmbZPzIyUs2aNTtqH3+OtbpyPPukxksvvaRRo0bp5ZdfVv/+/Y/at1GjRjrzzDPd3yW7q81+OVSvXr00f/58988N9Vgxxui5557TiBEjFB0dfdS+9e1YQXjw9Vx6PNLS0iQdrFI5tBKlvnz364O6jg8ReMGK2RA6wYqlYE98/2BnJDFDoHnz5mrevPkx+2VlZamkpEQffvihzjrrLEnSunXrVFJS4lNS7dlnn1X37t3VpUuXY/bdvHmzKisr67QUPFT7pcauXbu0bds29zZ3795dUVFRysvLc186u337dn322WeaMWPGcWxR7QV7n9QkML/++mutXLnSp5OQHY4VK9HR0erevbvy8vJ02WWXudvz8vJ0ySWXWK6TlZWl1157zaNt+fLl6tGjh6Kiotx98vLy9Mc//tGjT10ltv1xPPtEOliBedNNN+nFF1/URRdddMz3McZo06ZN6tSpU0DmHWzHu18Ot3HjRo/vQUM8ViQpPz9f33zzjeW9lw9X344VhAdfz6XHo+Z2K3l5eerataukg/eKy8/P1/Tp04Pyng1NXceHCLxgxWwInWDFUrAnvn+wtdA+RwjHMmjQINO5c2ezZs0as2bNGtOpUyczePBgjz5t27Y1r7zyikdbSUmJiY+PN48//rjXmN98842ZOnWqKSgoMFu3bjVvvPGGadeunenataupqqoK6vYEir/7Zc+ePWb8+PFm9erVZuvWrWblypUmKyvLnHDCCaa0tNS9zm233WZOPPFEs2LFCrNhwwZzwQUXmC5dutSL/eLvPqmsrDRDhgwxJ554otm0aZPZvn27eykvLzfG1L9jZeHChSYqKso8++yz5vPPPzc5OTkmISHB/bTkSZMmmREjRrj7f/vttyY+Pt788Y9/NJ9//rl59tlnTVRUlPn3v//t7vPBBx+YiIgI89BDD5kvvvjCPPTQQyYyMtLj6ad25u8+WbBggYmMjDT/+Mc/PI6J3bt3u/tMmTLFLFu2zPzf//2f2bhxo7nxxhtNZGSkWbduXci373j5u18eeeQRs3jxYvPVV1+Zzz77zEyaNMlIMosWLXL3aWjHSo3rrrvO9OzZ03LMcDhW0LB8//33ZuPGjWbq1KmmcePGZuPGjWbjxo1mz5497j6Hx10PPfSQcTqd5pVXXjGffvqpufbaa03Lli094guERrDiQwReMGI2hFYwYimExp49e9znN0lm5syZZuPGjeb77783xvD9Q/1CEtNmdu3aZYYPH24SExNNYmKiGT58uCkuLvboI8k8//zzHm1PPvmkiYuL80g81Pjhhx/MeeedZ5KTk010dLQ55ZRTzNixY82uXbuCuCWB5e9+2b9/v8nOzjYtWrQwUVFR5qSTTjIjR440P/zwg8c6ZWVl5o477jDJyckmLi7ODB482KuPXfm7T7Zu3WokWS4rV640xtTPY+Uf//iHadWqlYmOjjbdunUz+fn57tdGjhxp+vTp49H/3XffNV27djXR0dHm5JNPtkz8v/zyy6Zt27YmKirKtGvXrt4FW/7skz59+lgeEyNHjnT3ycnJMSeddJKJjo42LVq0MNnZ2Wb16tUh3KLA8Ge/TJ8+3ZxyyikmNjbWNG3a1JxzzjnmjTfe8BqzIR0rxhize/duExcXZ5566inL8cLlWEHDMXLkyKOeF43xjruqq6vN5MmTTVpamomJiTHnnXee+fTTT0M/eQQtPkRwBCNmQ2gFI5ZC8K1cufKo8T7fP9QnDmP+e4dWAAAAAAAAALChRnU9AQAAAAAAAAA4GpKYAAAAAAAAAGyNJCYAAAAAAAAAWyOJCQAAAAAAAMDWSGICAAAAAAAAsDWSmAAAAAAAAABsjSQmAAAAAAAAAFsjiQkAAAAAAADA1khiAmgw+vbtq5ycnLqeBgAAQINCDAYACASSmAAAAAAAAABsjSQmAAAAAAAAAFsjiQmgQamqqtIdd9yhJk2aqFmzZrr33ntljKnraQEAAIQ1YjAAQG2RxATQoMydO1eRkZFat26d/v73v+uRRx7RM888U9fTAgAACGvEYACA2nIY/vwFoIHo27evioqKtHnzZjkcDknSpEmTtHTpUn3++ed1PDsAAIDwRAwGAAgEKjEBNCi9evVyB8+SlJWVpa+//loul6sOZwUAABDeiMEAALVFEhMAAAAAAACArZHEBNCgrF271uvnzMxMRURE1NGMAAAAwh8xGACgtkhiAmhQtm3bpnHjxmnLli168cUX9dhjj+kPf/hDXU8LAAAgrBGDAQBqK7KuJwAAoXT99derrKxMZ511liIiInTnnXfq1ltvretpAQAAhDViMABAbfF0cgAAAAAAAAC2xuXkAAAAAAAAAGyNJCYAAAAAAAAAWyOJCQAAAAAAAMDWSGICAAAAAAAAsDWSmAAAAAAAAABsjSQmAAAAAAAAAFsjiQkAAAAAAADA1khiAgAAAAAAALA1kpgAAAAAAAAAbI0kJgAAAAAAAABbI4kJAAAAAAAAwNb+H7Q/00oBD8xRAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -578,12 +637,12 @@ "source": [ "fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(18,6))\n", "\n", - "a0=ax[0].hist2d(b_found, vtx_type_found, bins=50, cmap=plt.cm.jet, cmin=1)\n", + "a0=ax[0].hist2d(b_found, vtx_types_found, bins=100, cmap=plt.cm.jet, cmin=1)\n", "ax[0].set_xlabel(\"b\")\n", "ax[0].set_ylabel(\"endvtx id\")\n", "ax[0].set_title(\"found endvtx id wrt b parameter\")\n", "\n", - "a1=ax[1].hist2d(b_lost, vtx_type_lost, bins=50, cmap=plt.cm.jet, cmin=1) \n", + "a1=ax[1].hist2d(b_lost, vtx_types_lost, bins=100, cmap=plt.cm.jet, cmin=1) \n", "ax[1].set_xlabel(\"b\")\n", "ax[1].set_ylabel(\"endvtx id\")\n", "ax[1].set_title(\"lost endvtx id wrt b paraneter\")\n", @@ -592,7 +651,7 @@ "B:\n", "\n", "\"\"\"\n", - "fig.colorbar(a0[3], ax=ax.ravel().tolist(), orientation='vertical')\n", + "fig.colorbar(a0[3], ax=ax, orientation='vertical')\n", "plt.show()" ] },