"
+ ]
+ },
+ "execution_count": 68,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
"lost_e = electrons[\"lost\"]\n",
"e = electrons[\"energy\"]\n",
@@ -72,7 +246,7 @@
"brem_z = electrons[\"brem_vtx_z\"]\n",
"brem_x = electrons[\"brem_vtx_x\"]\n",
"length = electrons[\"brem_vtx_z_length\"]\n",
- "\n",
+ "rad_length = electrons[\"rad_length_frac\"]\n",
"\n",
"\n",
"brem = ak.ArrayBuilder()\n",
@@ -80,6 +254,7 @@
"for itr in range(ak.num(electrons, axis=0)):\n",
" brem.begin_record()\n",
" brem.field(\"lost\").boolean(lost_e[itr])\n",
+ " brem.field(\"rad_length_frac\").append(rad_length[itr])\n",
" # [:,\"energy\"] energy\n",
" brem.field(\"energy\").append(e[itr])\n",
" # [:,\"photon_length\"] number of vertices\n",
@@ -91,23 +266,26 @@
" brem.field(\"brem_vtx_z\").append(brem_z[itr])\n",
" brem.end_record()\n",
"\n",
- "brem = ak.Array(brem)"
+ "brem = ak.Array(brem)\n",
+ "brem[0]"
]
},
{
"cell_type": "code",
- "execution_count": 177,
+ "execution_count": 69,
"metadata": {},
"outputs": [],
"source": [
"photon_cut = 0\n",
- "photon_cut_ratio = 0.2\n",
+ "photon_cut_ratio = 0.1\n",
"\n",
"cut_brem = ak.ArrayBuilder()\n",
"\n",
"for itr in range(ak.num(brem, axis=0)):\n",
" cut_brem.begin_record()\n",
+ " cut_brem.field(\"event_id\").integer(itr)\n",
" cut_brem.field(\"lost\").boolean(brem[itr, \"lost\"])\n",
+ " cut_brem.field(\"rad_length_frac\").real(brem[itr, \"rad_length_frac\"])\n",
" cut_brem.field(\"energy\").real(brem[itr, \"energy\"])\n",
"\n",
" ph_length = brem[itr, \"photon_length\"]\n",
@@ -171,28 +349,33 @@
},
{
"cell_type": "code",
- "execution_count": 178,
+ "execution_count": 70,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "13313\n"
+ "44163\n",
+ "50501\n"
]
},
{
"data": {
"text/html": [
- "{lost: False,\n",
- " energy: 3.63e+03,\n",
- " brem_photons_pe: [],\n",
- " brem_vtx_x: [],\n",
- " brem_vtx_z: [],\n",
- " photon_length: 0}\n",
- "-----------------------------------\n",
+ "{event_id: 0,\n",
+ " lost: True,\n",
+ " rad_length_frac: 0.129,\n",
+ " energy: 1.17e+04,\n",
+ " brem_photons_pe: [2.62e+03, 2.54e+03, 1.86e+03],\n",
+ " brem_vtx_x: [-6.97, -52.9, -55.2],\n",
+ " brem_vtx_z: [112, 859, 895],\n",
+ " photon_length: 3}\n",
+ "-------------------------------------------------\n",
"type: {\n",
+ " event_id: int64,\n",
" lost: bool,\n",
+ " rad_length_frac: float64,\n",
" energy: float64,\n",
" brem_photons_pe: var * float64,\n",
" brem_vtx_x: var * float64,\n",
@@ -201,10 +384,120 @@
"}
"
],
"text/plain": [
- ""
+ ""
]
},
- "execution_count": 178,
+ "execution_count": 70,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "print(ak.sum(ak.num(ntuple[\"brem_photons_pe\"], axis=1)))\n",
+ "print(ak.num(ntuple,axis=0))\n",
+ "ntuple[0]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 71,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# nulltuple = ntuple[:7000]\n",
+ "# onetuple = ntuple[7000:14000]\n",
+ "# twotuple = ntuple[14000:21000]\n",
+ "# threetuple = ntuple[21000:28000]\n",
+ "# fourtuple = ntuple[28000:35000]\n",
+ "# fivetuple = ntuple[35000:42000]\n",
+ "# sixtuple = ntuple[42000:49000]\n",
+ "# seventuple = ntuple[49000:]\n",
+ "\n",
+ "# ntuple.nbytes"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 72,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# cut = \"tenCut\"\n",
+ "# tree = \"Tree10\"\n",
+ "# with uproot.update(\"trackinglosses_B_photon_cuts.root\") as outFile:\n",
+ "# #outFile[\"README\"] = \"The Cuts are placed on the photons. noCut: 0*E, first: 0.05*E, second: 0.1*E, etc.\"\n",
+ "# outFile.mktree(tree, {cut + \"_event_id\": ntuple[\"event_id\"].type, cut + \"_lost\": ntuple[\"lost\"].type, cut + \"_rad_length_frac\": ntuple[\"rad_length_frac\"].type, cut + \"_energy\": ntuple[\"energy\"].type, cut + \"_brem_photons_pe\": ntuple[\"brem_photons_pe\"].type, cut + \"_brem_vtx_x\": ntuple[\"brem_vtx_x\"].type, cut + \"_brem_vtx_z\": ntuple[\"brem_vtx_z\"].type, cut + \"_photon_length\": ntuple[\"photon_length\"].type} )\n",
+ "# outFile[tree].extend( {cut + \"_event_id\": nulltuple[\"event_id\"], cut + \"_lost\": nulltuple[\"lost\"], cut + \"_rad_length_frac\": nulltuple[\"rad_length_frac\"], cut + \"_energy\": nulltuple[\"energy\"], cut + \"_brem_photons_pe\": nulltuple[\"brem_photons_pe\"], cut + \"_brem_vtx_x\": nulltuple[\"brem_vtx_x\"], cut + \"_brem_vtx_z\": nulltuple[\"brem_vtx_z\"], cut + \"_photon_length\": nulltuple[\"photon_length\"]} )\n",
+ "# outFile[tree].extend( {cut + \"_event_id\": onetuple[\"event_id\"], cut + \"_lost\": onetuple[\"lost\"], cut + \"_rad_length_frac\": onetuple[\"rad_length_frac\"], cut + \"_energy\": onetuple[\"energy\"], cut + \"_brem_photons_pe\": onetuple[\"brem_photons_pe\"], cut + \"_brem_vtx_x\": onetuple[\"brem_vtx_x\"], cut + \"_brem_vtx_z\": onetuple[\"brem_vtx_z\"], cut + \"_photon_length\": onetuple[\"photon_length\"]} )\n",
+ "# outFile[tree].extend( {cut + \"_event_id\": twotuple[\"event_id\"], cut + \"_lost\": twotuple[\"lost\"], cut + \"_rad_length_frac\": twotuple[\"rad_length_frac\"], cut + \"_energy\": twotuple[\"energy\"], cut + \"_brem_photons_pe\": twotuple[\"brem_photons_pe\"], cut + \"_brem_vtx_x\": twotuple[\"brem_vtx_x\"], cut + \"_brem_vtx_z\": twotuple[\"brem_vtx_z\"], cut + \"_photon_length\": twotuple[\"photon_length\"]} )\n",
+ "# outFile[tree].extend( {cut + \"_event_id\": threetuple[\"event_id\"], cut + \"_lost\": threetuple[\"lost\"], cut + \"_rad_length_frac\": threetuple[\"rad_length_frac\"], cut + \"_energy\": threetuple[\"energy\"], cut + \"_brem_photons_pe\": threetuple[\"brem_photons_pe\"], cut + \"_brem_vtx_x\": threetuple[\"brem_vtx_x\"], cut + \"_brem_vtx_z\": threetuple[\"brem_vtx_z\"], cut + \"_photon_length\": threetuple[\"photon_length\"]} )\n",
+ "# outFile[tree].extend( {cut + \"_event_id\": fourtuple[\"event_id\"], cut + \"_lost\": fourtuple[\"lost\"], cut + \"_rad_length_frac\": fourtuple[\"rad_length_frac\"], cut + \"_energy\": fourtuple[\"energy\"], cut + \"_brem_photons_pe\": fourtuple[\"brem_photons_pe\"], cut + \"_brem_vtx_x\": fourtuple[\"brem_vtx_x\"], cut + \"_brem_vtx_z\": fourtuple[\"brem_vtx_z\"], cut + \"_photon_length\": fourtuple[\"photon_length\"]} )\n",
+ "# outFile[tree].extend( {cut + \"_event_id\": fivetuple[\"event_id\"], cut + \"_lost\": fivetuple[\"lost\"], cut + \"_rad_length_frac\": fivetuple[\"rad_length_frac\"], cut + \"_energy\": fivetuple[\"energy\"], cut + \"_brem_photons_pe\": fivetuple[\"brem_photons_pe\"], cut + \"_brem_vtx_x\": fivetuple[\"brem_vtx_x\"], cut + \"_brem_vtx_z\": fivetuple[\"brem_vtx_z\"], cut + \"_photon_length\": fivetuple[\"photon_length\"]} )\n",
+ "# outFile[tree].extend( {cut + \"_event_id\": sixtuple[\"event_id\"], cut + \"_lost\": sixtuple[\"lost\"], cut + \"_rad_length_frac\": sixtuple[\"rad_length_frac\"], cut + \"_energy\": sixtuple[\"energy\"], cut + \"_brem_photons_pe\": sixtuple[\"brem_photons_pe\"], cut + \"_brem_vtx_x\": sixtuple[\"brem_vtx_x\"], cut + \"_brem_vtx_z\": sixtuple[\"brem_vtx_z\"], cut + \"_photon_length\": sixtuple[\"photon_length\"]} )\n",
+ "# outFile[tree].extend( {cut + \"_event_id\": seventuple[\"event_id\"], cut + \"_lost\": seventuple[\"lost\"], cut + \"_rad_length_frac\": seventuple[\"rad_length_frac\"], cut + \"_energy\": seventuple[\"energy\"], cut + \"_brem_photons_pe\": seventuple[\"brem_photons_pe\"], cut + \"_brem_vtx_x\": seventuple[\"brem_vtx_x\"], cut + \"_brem_vtx_z\": seventuple[\"brem_vtx_z\"], cut + \"_photon_length\": seventuple[\"photon_length\"]} )"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 73,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "50501\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "{event_id: 1,\n",
+ " lost: False,\n",
+ " rad_length_frac: 0.148,\n",
+ " energy: 1.28e+04,\n",
+ " brem_photons_pe: [7.42e+03],\n",
+ " brem_vtx_x: [-3.61],\n",
+ " brem_vtx_z: [35.6],\n",
+ " photon_length: 1}\n",
+ "-----------------------------------\n",
+ "type: {\n",
+ " event_id: int64,\n",
+ " lost: bool,\n",
+ " rad_length_frac: float64,\n",
+ " energy: float64,\n",
+ " brem_photons_pe: var * float64,\n",
+ " brem_vtx_x: var * float64,\n",
+ " brem_vtx_z: var * float64,\n",
+ " photon_length: int64\n",
+ "}
"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 73,
"metadata": {},
"output_type": "execute_result"
}
@@ -220,7 +513,7 @@
},
{
"cell_type": "code",
- "execution_count": 179,
+ "execution_count": 74,
"metadata": {},
"outputs": [],
"source": [
@@ -234,12 +527,12 @@
},
{
"cell_type": "code",
- "execution_count": 180,
+ "execution_count": 75,
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAHOCAYAAABttoiYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAvUUlEQVR4nO3dz28baWLm8UdJthUjgrtMz2GzQIBx8ZQ5GUX1JVjAA5hM/wEm5UMGyKHXLAx0a2BYoyCA5RNBIlcBKQoBZhd9kUjf9jJhOWhjgQALizU+JUCyLAeYwyww3XS1ocRRZwLl4FS1+Eui+LNK/H4AoU1W1Vuv31aTT7/vW++7cX5+fi4AAICU+q1VVwAAAGAWhBkAAJBqhBkAAJBqhBkAAJBqhBkAAJBqhBkAAJBqhBkAAJBqhBkAAJBqhBkAN14QBKuuAoAFIswAuPFKpZLCMFx1NQAsCGEGwELU63XduXNHGxsb2tjYUKFQiH+y2Wz8/qL5vi/TNGUYRiLrB2B2v7PqCgC4mSqVirrdrhqNhiqVimq1Wt/xIAhUKBQWXg/XdWXbdmLrB2B29MwAWJiTkxNJGhkKTNNUPp9feB08zxt7nyTUD8DsNtg1G8CiRMM04z5mwjAcGv6Zp1arpXa7Ldd1Rx5fdf0AzAc9MwAWwvM8SRrq3Wi1WvGfFx0Ujo6ORg4xScmoH4D5IMwAWIhmsympfwgnDEMdHR0t5f5hGCoIAlmWlcj6AZgfwgyAhYh6Po6OjpTL5ZTNZnXnzh198sknS7n/8fGxHj9+nNj6AZgfnmYCMHdRr4hhGOp0OvF7Dx8+nHpSbRiGOj4+VqfTUa1Wu3IIyHVdvXjxYm71s21b2WxWX3/9tT755BMVi8Wp/h4A5o8wA2Dujo+PJfXPRzEMQ/l8fuywz1UMw1Amk9Hx8fHYCb2RIAiUyWTGBp7r1q9UKsk0TVUqFUlSLpeLzwewegwzAZi7drstafiR5729vZnKffXqlXZ2dq48b9zaMtPULwgCtVqtvvIeP348tC4NgNUhzACYu2g+ymDwuNhTEp1z3XInWciu1WpdOgx0nfr5vi/pw7ozEcuy5HkeWyQACUGYATBXQRAoDMORWwhEGo3G0OaP0fYCrVZL9Xpd2WxWjuPEx8MwlO/7yufzarVaymazI3tfLlskb5r6vXr1aui8TCYjSer1emPvA2B5CDMA5ipap+ViT0YkDEPZti3btod6RSzLins6KpWKXNdVvV6P3/M8T6Zp6uTkRKZpynGceAXfi64aYrpu/cIwjMPLIHbjBpKBCcAA5qZer8e9KZ7nKZfLKZPJqNfrxU8QSVKxWBzq7Wi327Isa+zwULvdlmmaymQysixL1WpV29vbQ+f5vj92kvE09ctms/GE4UGjAhGA5SPMAJibSqUSP/FzXZ7n9a0LM7jbdTR8FAUVz/Pihe8ijUbj0l6ZaepnmubQ3JhoeIkwAyQDezMBSISNjQ11u904IGSzWbmuq3w+rzAMdefOnfh4EATKZrNDeyrlcjm9ePFirtsQRPe6WLd6va6jo6N4jRoAq8WcGQAr53meDMPoCwvFYjGeyOt5nizLio9HvTS+78e9JletLTMt0zRVLBb79mw6Ojri0WwgQRhmArBy7XZbmUxGnucpCIK+BeqkD08UXRyCCsNQvV5PvV4vHna6auLvLJrNpmzbVr1e19dffy3btlkwD0gQhpkArFwul5Nt2yqXy1OXUSqVhubQAFgPhBkAKzc4XwYAroM5MwBWKhoailbaBYDrWouema+++ko///nP9f3vf1+3bt1adXUAAMAE3r9/r3/6p3/Sp59+qu9973tjz1uLCcA///nP9aMf/WjV1QAAAFP44osv9Cd/8idjj69FmPn+978v6UNj/OEf/uHcyj09PdWDBw/08uVLbW1tza3cyKNHj/T8+fPUlLuosmnn5ZW9yLZOY3vQzsspm3ZOd9mLbOe///u/149+9KP4e3yctQgz0dDSn//5n48dZtrd3dXu7u61yn337p0k6f79+7p9+/ZslRzh1q1bY5dlT2K5iyqbdl5e2Yts6zS2B+28nLJp53SXPWs7Hxwc6ODgYOSx9+/fS9KVU0QWFmZ+/OMfa3t7W5999tmibnFtz58/X9gvCAAAuL7LOhN831cul7uyjIU8zfTmzRu5rjv1Hi0AAACTWkjPzL179+S6LmtGAACAhVvYMNOTJ08WVTQAAEBsYYvmffrpp3r9+vWiigcAAJA0Q8/MxU3fBoVhKM/zdHx8rPv37097i7V33aerVl3uosteFNp5OdLYHrTzcsqmnW9G2as09QrAv/VbV3fqZLNZ/eM//uM0xc9VNBu60+nM9Wmmd+/e6eOPP9Y333yzkEeG8QHtvDy09XLQzstBOy/HItt50u/vqYeZisWiut2u3r59O/RzcnKicrmciCADAAButqnDjG3bunfvnj7++OOhH8uylMvl9Gd/9mfzrCsAAMCQqcPMw4cPLz1umqZc1522eAAAgIlMPQH4sieVgiCQ4zjTFr0wjx49mut2BgAAYDaTbGdwlanDjGVZ2tjYGHv8/Pxc9Xp92uIXgu0MAABIlnlsZzB1mDEMQzs7OzIMY+jY3bt3ZVnWlUNRAAAAs5o6zBweHurRo0fzrAsAAMC1TT0BmCAjbW5u6unTp9rc3Fx1VW402nl5aOvloJ2Xg3ZejiS089SL5l3lxz/+sba3t/XZZ58tovhrWdSieZK0vz/ZewAA4HoWvmjeZd68eSPXdVWpVBZRPAAAQGwhu2bfu3dPruvKNM1FFA8AABBbSJiRpJ2dHX388ceLKh4AAEDSgoaZJOnFixfa29tbVPEAAACSZuyZ+Zu/+Ru1222FYdj3fq/Xk+/76vV6qlars9wCAADgUjOtM2Pb9qXnlMvlaYsHAACYyNRhxnVdtdttbW9v69WrV/rFL36hn/zkJ5KkMAz105/+VH/5l385t4rOA3szAQCQLCvdmymfz8fbFeTzeR0eHsbHDMNQLpfT3t5eooaZ2JsJAIBkmcfeTFNPAP7mm2/6Xu/s7Ogv/uIv+t5rtVrTFg8AADCRqXtmTNPUb//2b+vOnTs6OTnRo0ePtL29rXa7LcMw1Gq1Rm5CCQAAME9Th5mf/OQn+uqrr/SLX/xCmUxGknR8fKxCoaA3b95Ikmq12nxqCQC4uf52f9U1uNof7a+6BrjETI9mD4YV0zTV7Xb15s0bZTKZmRfNC4IgHqoql8txT4/v+6pWqzJNU2EYqlAoqFgsznQvAACQTgvbzmAWQRDIcRyFYTi0LUIQBEObTmWzWfV6PR4FBwAklu/7Ojo6kud5kqROp7PiGt0cC1sBeFrRzOVMJqN2uz20v5Nt28rn831PJTmOc+WaNwAArJJlWXr8+LF831/ofYIgGFrM9qZLVJgJw1APHz6UaZpyXXfkcc/zVCgU+t7f3t6WJDUajaXUEwCAaSxjeZBSqaRer7fw+yRJosJMNLQ0buLwycmJJA311kS/HO12e7EVBAAgwUql0sJ7fpJoYbtmTyPqWWm323IcR0EQaHt7O543EwSBJI195Ds6Ps7p6anevXs3df02Nze1ubk59fUAAIwThqEcx5FhGHEgcRxH+Xx+5DnRaIXjOCqXy2q1WvF1tm3LMAzt7e2tdLHYs7MznZ2dTX396enpROclJsxE/wIsy5Jt26rVagqCQIVCQdlsVm/fvlW325Wk+FHwQVeNET548GCmOj59+lT7+/szlQEAwCDf9/Xw4UO9ePEiDh+NRkOFQkG1Wk2VSkWS9OTJE5mmGY9gNBqN+LuvWCzq1atXqtfrQw/PrEq1WtWzZ88Wfp/EDDNFvSq2bcf/Ai7OnalWq8pms5I0dizwqn9xL1++1DfffDP1z97e3rz+ugAAxJ48eaLt7e2+XpRyuSzLsuKRCknxk1AXz0myvb29mb53X758OdF9EtMzM27oKOpei3pppPE9MFeFma2tLd2+fXvqOgIAMG9BEMj3/bj35SLbtmXbtlzXVa1Wk2maqtfrunv3bnz+qOuSYtbpGVtbWxOdl5iemeiJpGgoaVAmk4nPGZwbE72eZDMqAACS5LIJu4Pfe81mU4ZhyHEcZbPZtZzsO0piwoxhGMrn80NdaFEvTC6Xk2EYsixr6Kml6JqdnZ2l1BUAgHkbNeoQjVpEc0VN09SbN2+Uz+fjRWRZliRBYUb6sD2C7/t9gabRaMiyrHhc8PDwUJ7n9fXO1Go11Wo1NrYEAKRONE9m8H/mpe8CTjRnNAgCGYahdrutZrMpSSwaqwTNmZE+/AvtdDpyHCfuSgvDsG/J54vnRI9rR4+lAQCQNqZpyrIs+b6vIAj65n+enJzIMIz4O65Wq8UPxhSLRbmuK9u2h65btxWAExVmJI0cRhp1TpRIAQBIu2azqVwuJ9u24+/AaBHZw8PDeOTh+Pg4/p/56BzTNOPXUQ+O67pyHEe+76/FRsyJCzMAgDXzR/urrsFS+L4f96r4vq96va5yuSzDMOK5ME+ePFGhUIjDSbPZ7Htce3t7W4VCIQ4oQRD0jV6Uy2W5rqvj42NJGrk10E1EmAEAYAksy5LrumMDhmEYV446TLJtzzruxp2oCcAAAADXtVY9M48ePdKtW7dGHtvd3dXu7u6SawQAwHo7ODjQwcHByGPv37+fqIy1CjPPnz9f6YZbAACg32WdCb7vT7QgLsNMAAAg1QgzAAAg1QgzAAAg1QgzAAAg1QgzAAAg1QgzAAAg1QgzAAAg1QgzAAAg1QgzAAAg1dZqBWC2MwAAIFnYzuCa2M4AAJJnf3/VNbhaGuo4b77v6+TkROVyeaH3YTsDAABSyPd9OY6jUqmkbDarer2+6irFgiBQqVRSLpeT67qrrs5E1qpnBgCAVfN9Xw8fPtTbt28lSY7jqNvtrrhW3zFNU81mUxsbG6uuysQIMwAALFG1WlUmk4lf12q1FdbmZmCYCQCAJfJ9f9VVuHEIMwAALEGj0VCpVFIQBPG8lFKpJM/z4nPCMJRt23IcR4VCQYVCoe94q9XSnTt3tLGxEYciz/NUKpW0sbGhUqkUl9NoNJTL5dRqteR5nnK5XN85F0X3jX6SNIdnEoQZAACWoFwuq9lsyjTNeF5Ks9lUPp+X9KHH5t69e7JtW7VaTe12W6VSSYVCIQ4XxWJROzs7feXm8/mhoaper6d2uy3f9+W6rtrttg4PD1Uul9VqtfrCShAEunfvnkqlklzXTc2k34sIMwAAJMCTJ0+0vb3dt4RIuVyWZVlyHEdBEEiSDMMYuvbiHBzpwyTex48fS5IKhYJqtZosy4qDSrvdjs91HEfb29txqJKkSqUyt7/XMhBmAABYsSAI5Pv+yLXQbNuWpKl7TEaFn16vF9+31WqpUChMVXZSEGYAAFixyyYFb29vS1LcMzNPUZmmac697GVaq0ez2c4AAJBkYRgOvRf1rAwOJc1DFGainppVYDuDa2I7AwBAEkXfTRefXIpEASebzc79vlGPTKfTmXvZk2I7AwAAUqbX6w31hJimKcuy4se2Lzo5OZFhGPEeSXfv3pXUP+wU/XlUz85loiGsRqMx8trrlrcqhBkAABKg2WzKMIx4wq/0IUzUajUdHh7Gw01RL47jOPI8T41GI54c7HlePJl3kqEjwzDiJ5dyuZw8z1MQBHIcR9KHkJSGNWfWapgJAJA867IjdbTmS9TbYdu2SqVS/Ei0aZp68+aNnjx5okKhEA8BNZvNvikS0boy1WpVpVJJ5XJZruvK8zwVi0U9fvw4vpf0YbsE0zS1vb0dhxTf91Wv11WpVFSr1ZTNZlWr1VQoFGRZlprNplqtlorFoorF4hJbaTob5+fn56uuxKJFY26dTmfuc2ZG/Ue4Lv9hAgCwSJN+fzPMBAAAUo0wAwAAUo0wAwAAUo0wAwAAUo0wAwAAUm2tHs1mOwMAAJKF7Qyuie0MAABIFrYzAAAAa48wAwAAUo0wAwAAUi0VYWZwB1EAAIBIIicAb2xs9L22LEudTid+7fu+qtWqTNNUGIYqFAqp2AgLAADMX+LCTKPRULlcVjabjd+LdhSVPvTSDG46lc1m1ev1VC6Xl15fAACwWokLM81mU+12e+xx27aVz+f7HrF2HEe2bRNmAABYQ4maM9NqtXRycqJSqaRGozF0PAxDeZ6nQqHQ9/729rYkjbwGAADcbInqmWm32wrDUK1WS61WS47jqNlsxsNMJycnkiTTNPuui3pp2u32pb0zp6enevfu3dT129zc1Obm5tTXAwCwTs7OznR2djb19aenpxOdl6gw47quXNeV7/tyXVeNRkOFQkHdblemacZPNRmGMfL6q556evDgwUz1e/r0qfb392cqAwCAdVGtVvXs2bOF3ydRYSZiWZZc11WhUFCpVIp7aLrdriQpk8mMvC4Mw0vLffnype7fvz91veiVAQBgcnt7e/r888+nvv7169cTdUQkMsxEisWiisWifN+XpPgJp16vN/L8weGnQVtbW7p9+/Z8KwkAAEaadXrG1tbWROclagLwKIVCIQ4vUVgZ1wNzVZgBAAA3T+LDjPTd00rRPwfnxkSvJ9lZEwAA3CyJDzPtdlu2bUv6MPHXsqyhdWg8z5Mk7ezsLL1+AABgtRITZnzfVy6XU71ej99rtVrKZDJ9WxUcHh7K87y+3plaraZarTb2KScAAHBzJWYCsGmaymQyqlararfbsixLhUJBruv2nRft0+Q4Tvy4tuM4rP4LAMCaSkyYMQzj0m0MLrIsS81mc8E1mtAvvxzx5g+XWwcAANZYYoaZAAAApkGYAQAAqZaYYaZlePTokW7dujXy2O7urnZ3d5dcIwAA1tvBwYEODg5GHnv//v1EZaxVmHn+/Hm8KSUAAFi9yzoToiedr8IwEwAASDXCDAAASDXCDAAASDXCDAAASDXCDAAASDXCDAAASDXCDAAASDXCDAAASDXCDAAASDXCDAAASLW12s6AvZkAAEgW9ma6JvZmAgAgWdibCQAArD3CDAAASDXCDAAASDXCDAAASDXCDAAASDXCDAAASDXCDAAASDXCDAAASDXCDAAASLW1WgGY7QwAAEgWtjO4JrYzAAAgWdjOAAAArD3CDAAASDXCDAAASDXCDAAASDXCDAAASDXCDAAASDXCDAAASDXCDAAASDXCDAAASLW1WgGY7QwAAEgWtjO4JrYzAAAgWdjOAAAArD3CDAAASDXCDAAASLVEhxnP83Tnzp2h933fV6lUkuM4sm1brVZrBbUDAABJkOgJwLZtD70XBIFyuZw6nU48mTebzarX66lcLi+7igAAYMUS2zPjOI5M0xx637Zt5fP5vqeSoh4aAACwfhIZZjzP0927d4ceow7DUJ7nqVAo9L2/vb0tSWo0GkurIwAASIZEhhnXdVWpVIbePzk5kaShHpso9LTb7cVXDgAAJEri5sw4jqNarTbyWBAEkiTDMC49Ps7p6anevXs3dd02Nze1ubk59fUAAKyTs7MznZ2dTX396enpROclKsz4vq+7d++OnCsjSd1uV5KUyWRGHg/D8NLyHzx4MFP9nj59qv39/ZnKAABgXVSrVT179mzh90lUmKlWq2o2m2OPZ7NZSVKv1xt5fFwIirx8+VL379+fun70ygAAMLm9vT19/vnnU1//+vXriToiEhNmHMdRoVDoGyqK/hz9Mwor43pgrgozW1tbun379hxqCwAArjLr9Iytra2JzktMmPE8T/V6feSxbDYry7L04sULScNzY6LXk2xGBQAAbpbEPM3U6XR0fn7e91OpVGQYhs7Pz9XpdGQYhizLGnpqyfM8SdLOzs4qqg4AAFYoMWFmUoeHh/I8r693plarqVarjX3KCQAA3FyJGWaalGVZ6nQ68QrBQRDIcRy2MgAAYE0lOsxEPS6DLMu69KknAACwPlI3zAQAAHARYQYAAKQaYQYAAKRaoufMzNujR49069atkcd2d3e1u7u75BoBALDeDg4OdHBwMPLY+/fvJypjrcLM8+fP4x22AQDA6l3WmeD7/kQL4jLMBAAAUo0wAwAAUo0wAwAAUo0wAwAAUo0wAwAAUo0wAwAAUo0wAwAAUo0wAwAAUo0wAwAAUm2tVgBmOwMAAJKF7Qyuie0MAABIFrYzAAAAa48wAwAAUo0wAwAAUo0wAwAAUo0wAwAAUo0wAwAAUo0wAwAAUo0wAwAAUo0wAwAAUm2tVgBmOwMAAJKF7Qyuie0MAABIFrYzAAAAa48wAwAAUo0wAwAAUo0wAwAAUo0wAwAAUo0wAwAAUo0wAwAAUo0wAwAAUo0wAwAAUm2tVgBmOwMAAJKF7Qyuie0MAABIFrYzAAAAa48wAwAAUo0wAwAAUo0wAwAAUi1xYabVaimXy2ljY0PZbFae5w2d4/u+SqWSHMeRbdtqtVorqCkAAEiCRD3N1Gg01Ol0VKvVJEmO46hQKKjb7co0TUlSEATK5XLqdDrxk0nZbFa9Xk/lcnlldQcAAKuRqJ6ZMAzluq7y+bzy+bwODw8lfeiJidi2rXw+3/eIddRDAwAA1k+iwkylUul7bRiGJMXBJQxDeZ6nQqHQd9729rakDz07AABgvSQqzAxqtVqq1WrxENPJyYkkxa8jUdhpt9vLrSAAAFi5RM2ZuchxHDUajXioSfowX0b6rsdmUHR8nNPTU717927qOm1ubmpzc3Pq6wEAWCdnZ2c6Ozub+vrT09OJzktkmKnX6wqCQGEYqlQqyXVdlctldbtdSVImkxl5XRiGl5b74MGDmer19OlT7e/vz1QGAADrolqt6tmzZwu/TyLDTDR3xvM8lUol1Wo1lctlZbNZSVKv1xt53eDw06CXL1/q/v37U9eLXhkAACa3t7enzz//fOrrX79+PVFHRCLDTCSfz6tcLqter0v6LqyM64G5KsxsbW3p9u3bc60jAAAYbdbpGVtbWxOdl+gJwJL0ySefxCElemppcG5M9HqSnTUBAMDNkvgwEwSB8vm8pA8Tfy3LGnpqKVoleGdnZ+n1AwAAq5WYMBNN9r24NUEQBGq323JdN37v8PBQnuf19c7UajXVarWxTzkBAICbKzFzZgzDUBiGevLkiVzXVaFQkGmaQ70wlmWp0+nIcRyZpqkgCOQ4DlsZAACwphITZqTJF72zLEvNZnPBtQEAAGmQmGEmAACAaRBmAABAqhFmAABAqiVqzsyiPXr0SLdu3Rp5bHd3V7u7u0uuEQAA6+3g4EAHBwcjj71//36iMtYqzDx//jzeYRsAAKzeZZ0Jvu9PtCAuw0wAACDVCDMAACDVCDMAACDVCDMAACDVCDMAACDVCDMAACDVCDMAACDVCDMAACDVCDMAACDV1moFYLYzAAAgWdjO4JrYzgAAgGRhOwMAALD2CDMAACDVCDMAACDVCDMAACDVCDMAACDVCDMAACDVCDMAACDVCDMAACDVCDMAACDV1moFYLYzAAAgWdjO4JrYzgAAgGRhOwMAALD2CDMAACDVCDMAACDVCDMAACDVCDMAACDVCDMAACDVCDMAACDVCDMAACDVCDMAACDV1moFYLYzAAAgWdjO4JrYzgAAgGRhOwMAALD2CDMAACDVCDMAACDVCDMAACDVEhdmWq2WcrmcNjY2lMvl5Hne0Dm+76tUKslxHNm2rVartYKaAgCAJEjU00z1el3tdlu2bavb7aper6tQKKjdbiufz0uSgiBQLpdTp9OJn0zKZrPq9Xoql8urrD4AAFiBRPXMvHr1Su12W+VyWbVaTZ1OR5JUq9Xic2zbVj6f73vEOuqhAQAA6ycxYcbzvL7QIkmWZcmyLAVBIEkKw1Ce56lQKPSdt729LUlqNBrLqSwAAEiMxAwzRcNIo5imKUk6OTnpex2JemmiXp1xTk9P9e7du6nruLm5qc3NzamvBwBgnZydnens7Gzq609PTyc6LzFhZpwgCOIhpKiHxjCMsede5sGDBzPV5enTp9rf35+pDAAA1kW1WtWzZ88Wfp9Eh5lWqyXTNOPelm63K0nKZDIjzw/D8NLyXr58qfv3709dH3plAACY3N7enj7//POpr3/9+vVEHRGJDjPValXNZjN+nc1mJUm9Xm/k+YPDT4O2trZ0+/bt+VUQAACMNev0jK2trYnOS8wE4EGO4+jw8LAvoER/HtcDc1WYAQAAN08iw0yj0VChUBja4Tp6amlwbkz0epKdNQEAwM2SuDATreY7+HST7/syDEOWZandbvcdi1YJ3tnZWU4lAQBAYiRqzozneapWq7Jtu2/NmE6no1wuJ8uydHh4qFwupyAI4mGlWq2mWq029iknAABwcyUmzPi+Hy+GN2o137dv30r6sKZMp9OR4zgyTVNBEMhxHLYyAABgTSUmzFiWpfPz84nPvfiUEwAAWF+JmzMDAABwHYQZAACQaokZZlqGR48e6datWyOP7e7uand3d8k1AgBgvR0cHOjg4GDksffv309UxlqFmefPnw+tXQMAAFbnss4E3/cnWkOOYSYAAJBqhBkAAJBqhBkAAJBqhBkAAJBqhBkAAJBqhBkAAJBqhBkAAJBqhBkAAJBqhBkAAJBqhBkAAJBqa7WdAXszAQCQLOzNdE3szQQAQLKwNxMAAFh7hBkAAJBqhBkAAJBqhBkAAJBqhBkAAJBqhBkAAJBqhBkAAJBqhBkAAJBqhBkAAJBqa7UCMNsZAACQLGxncE1sZwAAQLKwnQEAAFh7hBkAAJBqhBkAAJBqhBkAAJBqhBkAAJBqhBkAAJBqhBkAAJBqhBkAAJBqhBkAAJBqa7UCMNsZAACQLGxncE1sZwAAQLKwnQEAAFh7hBkAAJBqhBkAAJBqiZozE4ahqtWqJKlWqw0d931f1WpVpmkqDEMVCgUVi8VlVxMAACRIYsKM53lyXVetVkvlcnnoeBAEyuVy6nQ68STebDarXq838nwAALAeEjPMlM/n1Ww2xx63bVv5fL7vaSTHcWTb9jKqBwAAEioxYeYyYRjK8zwVCoW+97e3tyVJjUZjFdUCAAAJkIowc3JyIkkyTbPv/aiXpt1uL71OAAAgGRIzZ+YyQRBIkgzDuPT4VU5PT/Xu3bup67G5uanNzc2prwcAYJ2cnZ3p7Oxs6utPT08nOi8VYabb7UqSMpnMyONhGE5UzoMHD2aqx9OnT7W/vz9TGQAArItqtapnz54t/D6pCDPZbFaS1Ov1Rh4fHH4a5+XLl7p///7U9aBXBgCAye3t7enzzz+f+vrXr19P1BGRijAThZVxPTCThpmtrS3dvn17XtUCAACXmHV6xtbW1kTnpWICcPTU0uDcmOj1JJtQAQCAmykVYcYwDFmWNfTUkud5kqSdnZ1VVAsAACRAosLMZRN5Dw8P5XleX+9MrVZTrVYb+5QTAAC4+RIzZ8b3fbmuK0k6Pj5WoVBQPp+Pg4plWep0OnIcR6ZpKggCOY7DVgYAAKy5xIQZy7Lkum4caMadc9mWBwAAYP0kapgJAADguggzAAAg1QgzAAAg1RIzZ2YZHj16pFu3bo08tru7q93d3SXXCACA9XZwcKCDg4ORx96/fz9RGWsVZp4/fx7vtA0AAFbvss4E3/cnWhiXYSYAAJBqhBkAAJBqhBkAAJBqhBkAAJBqhBkAAJBqhBkAAJBqhBkAAJBqhBkAAJBqhBkAAJBqa7UCMNsZAACQLGxncE1sZwAAQLKwnQEAAFh7hBkAAJBqhBkAAJBqhBkAAJBqhBkAAJBqhBkAAJBqhBkAAJBqhBkAAJBqhBkAAJBqa7UCMNsZAACQLGxncE1sZwAAQLKwnQEAAFh7hBkAAJBqhBkAAJBqhBkAAJBqhJkZnJ2d6Uv/Z/rNv3+76qrcaGdnZ9rf39fZ2dmqq3Lj0dbLQTsvB+28HEloZ8LMDM7OzvTy9f/Uv//7v626Kjfa2dmZnj17xgfSEtDWy0E7LwftvBxJaGfCDAAASDXCDAAASDXCDAAASLW1WgGY7QwAAEgWtjO4JrYzAAAgWdjOAAAArD3CDAAASDXCTIKNG0NMarmLLntRaOflSGN70M7LKZt2vhllr9LG+fn5+aorsWjRmFun05nrnJl3797p448/1k9/9L+1+dHvxe/v/9UP51L+D37wA/3d3/3dXMpaRrmLKntcOw/5gx9eWdb+/vB7g3Uedc7+Hw+8+UcjTvrb/vd+8D+OU9XO0ndt/c033+j27dtzLTttv3eLLDdu57/+qW7/3uaHN0f9Tk1h6joP/P6Oqk9q25nf54WWvch2nvT7O5UTgH3fV7ValWmaCsNQhUJBxWJx1dVCEv3yy4E3frj8Olxm8AtEmtuXGlImab8Lo+ozzXWL/DtMeq//W5XmHBqRLKkLM0EQDKW0bDarXq+ncrm84tphpX755ZWnjOp1+fWv/kX7n124dkQPz1Bv21+Pun//Ob/+9fHI+/WV+8cj3htxzVXljLTIL8dJvkSm/TK87r2XbZov68Fr/nnJy74vM2Bcde9J77/KUDQKISjRUhdmbNtWPp/v625yHEe2bRNmMB+//HI+5/zmX648b+SQ5B+MOG//6tsNnTMQriRpX/0n7f91/+toa5Xq7v+Jh/RG1XHovb/6ckSN+s/59a9+1h8aR5QzeHzc/a80pyA3FHQl7X82wb3mZV0C4ftfX12nedV5Xj1O054zSfAf1R6EqUulKsyEYSjP81Sr1fre397eliQ1Gg0CDdLvl19eecqoL9lJDAeDgTK+/efha6a4z8SGPvx/OMH9h88ZDkrD54wOXNc3SQC76pqz/2zn6v/675fOA7sq/I30/uDKL9WRAXXgXqPL7v+SHV3O1cUMXvfr8GdzadfBsL7QHrBJAtgoiwxTkwSewXrfkJCUqjBzcnIiSTJNs+/9qJem3W4TZnC5X3656hrggnlNll+lRf4dpin71+HvTXXdJNeMCh3TlDOv+lx1zaShcaicz768suyJ2mJEOQu1qHCVgsCTqjATBIEkyTCMS48PipZD9n1fp6enU9//o48+0kcffRS/jsr6/1//P330X77bJsH35zOb+/379/J9fy5lLaPcRZU9rp3n5Te/OdOvvvqH1JS7yLK//bcP/60soq3T2B6083LKTlo727X/NuLd/vpNUufR5VztV1/9ztTXLqTs/zr8mW7b3/05+ox+/fq1tra2+s779ttv9e233167npF/+IcPbXzltgbnKVKpVM4lnXc6naFjks5N0xx53RdffHEuiR9++OGHH374SeHPF198cWk+SFXPTDablST1er2RxweHnyKffvqpfvazn+n3f//39bu/+7tT33+wZwYAAIw3a8/Mv/7rv+pXv/qVPv3000vPS1WYicJKGIaXHh/0ve99T3/6p3+6qGoBAIAVStV2BtFTS4NzY6LXk+ysCQAAbpZUhRnDMGRZltrtdt/7nudJknZ2dlZRLQAAsEKp25sp2qeh2+3Gw0rZbFa2batSqcz1PtNsmcBWC9czbXu1Wi1Vq1X5vi/LslSr1ZTP55dQ4/Sax++m53kqlUp6+/btgmqZfvNo5yAI1Gq1JEnlcnnsE5zrbJbPjna7LcMwFASBTNMcWrsMH4RhqGq1KkkTt9HKvgPn8JDR0nU6nfNisXheqVTOi8Xiueu6cy2/2+2eS/1PTZmmeeV9pr1uXU3bXrVa7Tyfz5+7rhs/4SbpvN1uL7rKqTWv303TNM8Nw5h39W6MWdu52+2eF4vF83w+f97tdhdVzdSbtp2bzea5ZVl97+Xz+fNKpbKQeqZZu90+LxaL55LOy+XyRNes8jswlWFm0fL5/Hk+n+97z3Xd86uy37TXratp26tYLPa97nQ655KGysJ35vG7WalUzvP5PGHmErO0c6fTOTcMY+IvjnU2y2f0YPvWarWxy3rg/FphZpXfgamaM7MM0ZYJhUKh7/2LWybM87p1NW17jdrOwrIsWZY1dtHEdTeP303P83T37t2+PdHQb5Z2DsNQDx8+lGmacl13ofVMu1naudfrxXMsIxenLGB6q/4OJMwMmGTLhHlet66mba98Pj/2g4cPpNHm8bvpuu5c56TdRLO0s+M4CsOQuRsTmKWdbdtWEAQqlUqSPszvOD4+pt3nYNXfgYSZAdNumTDtdetq3u118QMK/WZta8dx+LCfwCztHP1fa7vdVi6X0507d1QoFPjcGGGWdi6XyyqXy2q1Wspms3IcR2/evKHHcQ5W/R1ImBnQ7XYlSZlMZuTxcQv2TXvduppne7VaLZmmySajY8zS1r7v6+7du/R6TWDado72MrMsS7Ztq9PpqNPpKAgCZbNZPjsGzPrZ4bpuPCzted7QsBOms+rvQMLMgGm3TJj2unU1z/aqVqtqNptzqddNNEtbV6tVhpcmNG07R//Hatt2fM7FuTPRo7H4YNbPjkKhINu248ezS6VS/Bg8prfq78BUbWewDNNumTDtdetqXu3lOI4ODw9p30tM29aO4wwNdUR/jv5Ju39n2nYe1y0frZvEUFO/WT477P/c6jnqxX3z5o3u3bunJ0+esB7YjFb9HUjPzIBpt0xgq4XrmUd7NRoNFQoFxruvMG1be54n27aVzWbjn1arpTAMlc1mmaM0YNbPjqibftC4bvt1Nctnx/Hxcd/nhWEYqtVqCsMwHu7DdFb9HUiYGTDtlglstXA9s7ZX1C08uOovH0jDpm3rTqej8w9rUcU/lUpFhmHo/PxcnU5n4XVPk1k+O/L5/NDcjej/cPkfoX6zfHZkMpmhnoPoM4RVlmez8u/Aha9kk0LRImwXV+A0TfO8VqvFr7vd7rlpmn2rzk5yHb4zbTu32+1zy7LOXdft+ymXy6y2PMa0bT2oUqmwaN4lZv3suPherVYbWq0WH0zbzrVa7dwwjPO3b9/2vUc7j/b27duxi+Yl7TuQOTMjWJalTqcjx3FkmqaCIJDjOH1Py4RhqF6v15fyJ7kO35mmnX3fjxdlisa/L2LPoNGm/Z3G9czjs6PZbMowDIVhSO/XGNO2c9SzWCqV4uGmMAz14sWLZf8VEs/3/XgS+vHxsQqFgvL5fNyDlbTvwNRtNAkAAHARc2YAAECqEWYAAECqEWYAAECqEWYAAECqEWYAAECqEWYAAECqEWYAAECqEWYAAMDMVrkpKmEGAADMrFQqrWwFccIMAAA3WL1e1507d7SxsaGNjQ0VCoX4J5vNxu/Pwvd9maY5tGHnMu4tSezNBADADVapVNTtdtVoNFSpVFSr1fqOB0EQ73k3Ldd1R+6Xt4x7S/TMAABw452cnEjSyOBgmqby+fxM5XueN7aMRd9bYqNJAABuvGgoZ9xXfhiGQ0NEk2q1Wmq32/Eu28u8d4SeGQAAbjDP8yRpqAek1WrFf54lTBwdHY0cYlrGvSOEGQAAbrBmsympf5gnDEMdHR3NXHYYhgqCQJZlLf3eFxFmAAC4waLekaOjI+VyOWWzWd25c0effPLJzGUfHx/r8ePHK7n3RTzNBADADRX1nBiGoU6nE7/38OHDuUy8dV1XL168mNu9bdtWNpvV119/rU8++UTFYnGiehBmAAC4oY6PjyX1z1kxDEP5fH7s0NCkgiBQJpMZO+fluvculUoyTVOVSkWSlMvl4vOvwjATAAA3VLvdljT8WPTe3t7MZY9bW2aaewdBoFar1Vfe48ePh9alGYcwAwDADRXNWdnZ2el7/2JvSnSO9CFUZLNZ5XK5+L0wDJXL5fqeQJI+PJF02TDQde7t+76kD+vORCzLkud5E22RQJgBAOAGCoJAYRiO3GYg0mg0+jaIdBxHtVpNYRjGQaNarSoMw77gctkiedPc+9WrV0PnZTIZSVKv17vqr8qcGQAAbqKoJ+Vib0ckDEM5jqNGo6G3b9/G7z9+/FjFYjEOI2EYql6vx0NGEdd1Lx2quu69wzCMw8ugIAhGlnMRYQYAgBumXq/LcRxJH3pRcrmcMpmMer1e/JSRJBWLxb4ekaj3xbIsBUGgarWqYrE41Avj+/7YCcTT3DubzcYThgddFWQktjMAAAADfN/X0dGRWq2WOp1OX+BpNBoKwzB+6mgeWq2WSqVS35YHnuepUCiM3QbhInpmAABAH8MwVK/X1Ww2h+ayXLa2zLSiXp6LQ0qX9f4MYgIwAADoE4ah8vn80NNKV60tMy3TNFUsFvuemDo6Opr40WyGmQAAQB/HcXT37t2hoSTHca61Mu91XVwBOJvNqlwuT3QdYQYAAMTCMNSdO3fkuu5QmCiVSvHmkUnCMBMAAIg1Gg1Jo58iSmKQkQgzAADggm63K9M057IR5bIwzAQAAPqEYTj3Sb6LRJgBAACpxjATAABINcIMAABINcIMAABINcIMAABINcIMAABINcIMAABINcIMAABINcIMAABItf8AOa1r+jhBsc4AAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAHOCAYAAABttoiYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAtaUlEQVR4nO3dT2wjWWLf8Z/Wk5UFN7op9ebgAAGmi6edU6NK44MRYBZo0nPJIQnJ7sMu4ACbJrHRbQCr0r6M5kRT8JWASWGBQTA5SKISIMhlzWpjBgEMxC2W+7QG7Kh6gTlsgJ1h1zS0pjXZLHPQVI34VxT/P/H7AYhpsapevX7TTf76vVfvrbXb7bYAAAAM9Z1FVwAAAGAShBkAAGA0wgwAADAaYQYAABiNMAMAAIxGmAEAAEYjzAAAAKMRZgAAgNEIMwBuvSAIFl0FADNEmAFw6+VyOYVhuOhqAJgRwgyAmdjf39fm5qbW1ta0tramdDodv5LJZPz+rPm+L8uylEgklrJ+ACb31qIrAOB22t3d1dnZmarVqnZ3d1UqlTqOB0GgdDo983pUKhUVCoWlrR+AydEzA2BmTk9PJalvKLAsS6lUauZ18Dxv4H2WoX4AJrfGrtkAZiUaphn0MROGYc/wzzTVajXV63VVKpW+xxddPwDTQc8MgJnwPE+Seno3arVa/OtZB4XDw8O+Q0zSctQPwHQQZgDMxPHxsaTOIZwwDHV4eDiX+4dhqCAIZNv2UtYPwPQQZgDMRNTzcXh4KMdxlEwmtbm5qXfffXcu9z86OtKTJ0+Wtn4ApoenmQBMXdQrkkgk1Gg04vcePXo09qTaMAx1dHSkRqOhUql07RBQpVLR8+fPp1a/QqGgZDKpL7/8Uu+++66y2exYvw8A00eYATB1R0dHkjrnoyQSCaVSqYHDPtdJJBLa2trS0dHRwAm9kSAItLW1NTDw3LR+uVxOlmVpd3dXkuQ4Tnw+gMVjmAnA1NXrdUm9jzw/e/ZsonJfvHihx48fX3veoLVlxqlfEASq1Wod5T158qRnXRoAi0OYATB10XyU7uBxtackOuem5Y6ykF2tVhs6DHST+vm+L+ly3ZmIbdvyPI8tEoAlQZgBMFVBECgMw75bCESq1WrP5o/R9gK1Wk37+/tKJpNyXTc+HoahfN9XKpVSrVZTMpns2/sybJG8cer34sWLnvO2trYkSc1mc+B9AMwPYQbAVEXrtFztyYiEYahCoaBCodDTK2LbdtzTsbu7q0qlov39/fg9z/NkWZZOT09lWZZc141X8L3quiGmm9YvDMM4vHRjN25gOTABGMDU7O/vx70pnufJcRxtbW2p2WzGTxBJUjab7entqNfrsm174PBQvV6XZVna2tqSbdsqFova3t7uOc/3/YGTjMepXzKZjCcMd+sXiADMH2EGwNTs7u7GT/zclOd5HevCdO92HQ0fRUHF87x44btItVod2iszTv0sy+qZGxMNLxFmgOXA3kwAlsLa2prOzs7igJBMJlWpVJRKpRSGoTY3N+PjQRAomUz27KnkOI6eP38+1W0Iontdrdv+/r4ODw/jNWoALBZzZgAsnOd5SiQSHWEhm83GE3k9z5Nt2/HxqJfG9/241+S6tWXGZVmWstlsx55Nh4eHPJoNLBGGmQAsXL1e19bWljzPUxAEHQvUSZdPFF0dggrDUM1mU81mMx52um7i7ySOj49VKBS0v7+vL7/8UoVCgQXzgCXCMBOAhXMcR4VCQfl8fuwycrlczxwaAKuBMANg4brnywDATTBnBsBCRUND0Uq7AHBTK9Ez88UXX+hnP/uZ3n77bW1sbCy6OgAAYAStVku/+MUv9P777+t73/vewPNWYgLwz372M/3oRz9adDUAAMAYPvnkE/3whz8ceHwlwszbb78t6bIxvv/970+t3PPzc7333nv67LPPdOfOnamVG8lkMjo5OTGm3FmVTTvPr+xZtrWJ7UE7z6ds2tnssmfZzn/3d3+nH/3oR/H3+CArEWaioaXvf//7A5c5H8ebN28kSQ8fPtTdu3enVm5kY2NjqvWddbmzKpt2nl/Zs2xrE9uDdp5P2bSz2WXP+jNa0rVTRGY2AfgnP/mJfvrTn86qeAAAAEkzCjOvXr1SpVIZe48WAACAUc1kmOnBgweqVCpLt2ZEJpMZ2FW1s7OjnZ2dOdcIAIDVVi6XVS6X+x5rtVojlTGzOTNPnz6dVdFjOzk5mdk4JAAAuLlhnQm+78txnGvLmNmcmffff18vX76cVfEAAACSJuiZubrpW7cwDOV5no6OjvTw4cNxb7HyZjXsNcvhNBOH6mjn+TCxPWjn+ZRNO9+Oshdp7BWAv/Od6zt1ksmk/uEf/mGc4qcq6qZqNBpTfzT73r17+uqrr2b2OBpo53mireeDdp4P2nk+ZtnOo35/jz3MlM1mdXZ2ptevX/e8Tk9Plc/nlyLIAACA223sMFMoFPTgwQPdu3ev52XbthzH0Z/+6Z9Os64AAAA9xg4zjx49GnrcsixVKpVxiwcAABjJ2BOAhz2pFASBXNcdt2gAAICRjR1mbNvW2trawOPtdlv7+/vjFg8AADCSscNMIpHQ48ePlUgkeo7dv39ftm1fOxQFAAAwqbHDzMHBgTKZzDTrAgAAcGNjTwAmyEjr6+v68MMPtb6+vuiq3Gq08/zQ1vNBO88H7Twfy9DOYy+ad52f/OQn2t7e1o9//ONZFH8js1o0T5L29kZ7DwAA3MzMF80b5tWrV6pUKtrd3Z1F8QAAALGZ7Jr94MEDVSoVWZY1i+IBAABiMwkzkvT48WPdu3dvVsWPJZPJaGNjo++xYVuQAwCA2SiXyyqXy32PtVqtkcqYWZh5/vy5Xrx4oWKxOKtb3NjJycnU58wAAIDxDetMiObMXGeiMPNXf/VXqtfrCsOw4/1msynf99VsNpcqzAAAgNtnonVmCoXC0HPy+fy4xQMAAIxk7KeZKpWK6vW6Xr9+rb/8y79UqVTSb3/7W/32t79Vs9lUPp/XX/zFX0yzrgAAAD3GDjOpVEqPHj3SvXv3lEqldHp6Gh9LJBJyHEfPnj2bSiUBAAAGGTvMfPXVVx0/P378WH/+53/e8V6tVhu3eAAAgJGMPWfGsiz9zu/8jjY3N3V6eqpMJqPt7W3V63UlEgnVarW+m1ACAABM09hh5k/+5E/0xRdf6G//9m+1tbUlSTo6OlI6ndarV68kSaVSaTq1BADcXn+9t+gaXO8P9xZdAwwx0aPZ3WHFsiydnZ3p1atX2traWrpF8wAAwO0zs+0MAADAt3zf1+HhoTzPkyQ1Go0F1+j2mMlGkwAAoJNt23ry5Il835/pfYIg6FnM9rYjzAAAMCfz2FInl8up2WzO/D7LhDADAMAtkcvlZt7zs4xmttEkAAAYXRiGcl1XiUQiDiSu6yqVSvU9JwxDeZ4n13WVz+dVq9Xi6wqFghKJhJ49e7YSGywTZgAAWDDf9/Xo0SM9f/48Dh/ValXpdFqlUkm7u7uSpKdPn8qyrPhp4mq1Gs+PyWazevHihfb391WpVGRZ1kJ+L4uwUsNMmUxG77zzTt9XuVxedPUAACvq6dOn2t7e7uhFyefzsm1brusqCAJJip+EunqO6crl8sDv5kwmM1IZK9Uzc3JyshLdbQAAcwRBIN/3496XqwqFggqFgiqVikqlkizL0v7+vu7fvx+f3+86k+zs7GhnZ6fvMd/35TjOtWWsVM8MAADLZtiE3e3tbUmKe2aOj4+VSCTkuq6SyeRKTvbthzADAMAS6Lc2TLTHYbRtkGVZevXqlVKplIIgkOM4qlarc6zlciLMAACwQNH0h+75MNK3ASeZTEq67KFJJBKq1+s6Pj6WdDkUteoIMwAALJBlWbJtW0EQxMNJkdPTUyUSiXii79U9EbPZrCqViiT1XMcKwAAAYK6iuTBXe1nCMFSpVNLBwUE83HR0dNQRXMIwlGVZ8WPYUQ9OpVJREASq1Wrz+00s0Eo9zQQAWEJ/uLfoGsyF7/txT4rv+9rf31c+n1cikYjnwjx9+lTpdDoOJ8fHxx1P4W5vbyudTiubzUq67JG5umFlPp9XpVLR0dGRJMX3u+0IMwAAzIFt26pUKgMDRiKRiOfBDFKv16+9zyruxs0wEwAAMNpShxnP87S5udnzvu/7yuVycl1XhUJhZcYEAQBAr6UeZur3uFn0XH2j0YjHEZPJpJrN5q1Y1hkAANzM0vbMuK7bd5OsQqGgVCrVMSEq6qEBAACrZynDjOd5un//fs8+StF25+l0uuP9aLlnVkEEAGD1LGWYqVQqfTfOOj09laSeHpso9IwyyxsAANwuSzdnxnXdjhUOr4oWCooWDxp0fJDz83O9efNm7Lqtr69rfX197OsBAFglFxcXuri4GPv68/Pzkc5bqjDj+77u37/fd66MJJ2dnUn6dsOtbtct3/zee+9NVL8PP/xQe3t7E5UBAMCqKBaL+uijj2Z+n6UKM8ViceiCQdEyzc1ms+/xQSEo8tlnn+nhw4dj149eGQAARvfs2TN98MEHY1//8uXLkToilibMuK6rdDrdMVQU/Tr6bxRWBvXAXBdm7ty5o7t3706htgAA4DqTTs+4c+fOSOctTZjxPE/7+/t9jyWTSdm2refPn0vqnRsT/ew4zmwrCQAAls7SPM3UaDTUbrc7Xru7u0okEmq322o0GkokErJtu+epJc/zJEmPHz9eRNUBAMACLU2YGdXBwYE8z+vonSmVSiqVSgOfcgIAALfX0gwzjcq2bTUajXiF4CAI5LouWxkAgKFMeEjUhDpOm+/7Oj09NeL7danDTNTj0s227Wu3SQcAYFn5vq/Dw0MFQSDf91UoFPouFrsIUSdBrVaTbduEGQAA0Mn3fT169EivX7+WdPk0b7SO2jKwLEvHx8daW1tbdFVGRpgBAGCOisVix+Kvg1a9x+iMmwAMAIDJfN9fdBVuHcIMAABzUK1WlcvlFASBgiBQLpdTLpeLlxeRLheFLRQK8UKy6XS643itVtPm5qbW1tbiUOR5nnK5nNbW1pTL5eJyqtWqHMdRrVaT53lyHKfjnKui+0avQeu+LSvCDAAAc5DP53V8fCzLsuJ5KcfHx0qlUpIue2wePHigQqGgUqmker2uXC6ndDodh4tsNtuzploqleoZqmo2m6rX6/J9X5VKRfV6XQcHB8rn86rVah1hJQgCPXjwQLlcTpVKRZVKZcYtMX2EGQAAlsDTp0+1vb0t27bj9/L5vGzbluu68fpq/dZU696A2bIsPXnyRJKUTqdVKpVk23YcVK4uPuu6rra3t+NQJWlpnqwaFWEGAIAFix7RvhpkIoVCQZLG7jHpF36iDZuDIFCtVlM6nR6r7GWxUk8zZTIZbWxs9D22s7OjnZ2dOdcIAIDhk4K3t7cl9e5LOA3dGzkvQrlcVrlc7nus1WqNVMZKhZmTk5O+qRcAgGUQhmHPe1HPSvdQ0jREYSbqqVmEYZ0Jvu+PtIk0w0wAACxY9A/tq08uRaKAk0wmp37fqEem0WhMvex5IswAADBHzWazpyfEsizZth0/tn3V6empEolEvK3A/fv3JXUOO0W/7tezM0w0hFWtVvtee9PyFoUwAwDAEjg+PlYikYgn/EqXYaJUKung4CAebop6cVzXled5qlar8eRgz/PiybyjDB0lEon4ySXHceR5Xrw3k3QZkkxYc2al5swAAJbPquxIHa35EvV2FAoF5XK5+JFoy7L06tUrPX36VOl0Oh4COj4+7pjvGa0rUywWlcvllM/nValU5Hmestmsnjx5Et9LutwuwbIsbW9vxyHF933t7+9rd3dXpVJJyWRSpVJJ6XQ63sy5Vqspm80qm83OsZXGs9Zut9uLrsSsRROIGo3G1CcA9/tLuCp/MQEAmKVRv78ZZgIAAEYjzAAAAKMRZgAAgNEIMwAAwGiEGQAAYDTCDAAAMBphBgAAGI0wAwAAjMYKwJP6/NM+b/5gvnUAAGCFrVSYyWQy2tjY6Hts2BbkAABgNsrlssrlct9jrVZrpDJWKsycnJxMfTsDAAAwvmGdCdF2BtdhzgwAADAaYQYAABiNMAMAAIxGmAEAAEYjzAAAAKMRZgAAgNEIMwAAwGiEGQAAYDTCDAAAMBphBgAAGI0wAwAAjEaYAQAARiPMAAAAoxFmAACA0d5adAXmKZPJaGNjo++xYVuQAwCA2SiXyyqXy32PtVqtkcpYqTBzcnIi27YXXQ0AAPCNYZ0Jvu/LcZxry2CYCQAAGI0wAwAAjEaYAQAARiPMAAAAoxFmAACA0QgzAADAaIQZAABgNMIMAAAwGmEGAAAYjTADAACMRpgBAABGI8wAAACjEWYAAIDRCDMAAMBoby26AvOUyWS0sbHR99iwLcgBAMBslMtllcvlvsdardZIZaxUmDk5OZFt24uuBgAA+MawzgTf9+U4zrVlMMwEAACMRpgBAABGI8wAAACjEWYAAIDRCDMAAMBohBkAAGA0wgwAADAaYQYAABht6cJMrVaT4zhaW1tTMpmU53k95/i+r1wuJ9d1VSgUVKvVFlBTAACwDJZqBeBqtapGo6FSqSRJcl1X6XRaZ2dnsixLkhQEgRzHUaPRiFfzTSaTajabyufzC6s7AABYjKXqmQnDUJVKRalUSqlUSgcHB5Iue2IihUJBqVSqY1uCqIcGAACsnqUKM7u7ux0/JxIJSYqDSxiG8jxP6XS647zt7W1Jlz07AABgtSxVmOlWq9VUKpXiIabT01NJin+ORGGnXq/Pt4IAAGDhlmrOzFWu66parcZDTdLlfBnp2x6bbtHxQc7Pz/XmzZux67S+vq719fWxrwcAYJVcXFzo4uJi7OvPz89HOm8pw8z+/r6CIFAYhsrlcqpUKsrn8zo7O5MkbW1t9b0uDMOh5b733nsT1evDDz/U3t7eRGUAALAqisWiPvroo5nfZynDTDR3xvM85XI5lUol5fN5JZNJSVKz2ex7XffwU7fPPvtMDx8+HLte9MoAADC6Z8+e6YMPPhj7+pcvX47UEbGUYSaSSqWUz+e1v78v6duwMqgH5rowc+fOHd29e3eqdQQAAP1NOj3jzp07I5231BOAJendd9+NQ0r01FL33JjoZ8dx5ls5AACwcEsfZoIgUCqVknQ58de27Z6nlqJVgh8/fjz3+gEAgMVamjATTfa9ujVBEASq1+uqVCrxewcHB/I8r6N3plQqqVQqDXzKCQAA3F5LM2cmkUgoDEM9ffpUlUpF6XRalmX19MLYtq1GoyHXdWVZloIgkOu6bGUAAMCKWpowI42+6J1t2zo+Pp5xbQAAgAmWZpgJAABgHIQZAABgNMIMAAAwGmEGAAAYjTADAACMRpgBAABGI8wAAACjEWYAAIDRlmrRvFnLZDLa2Njoe2xnZ0c7OztzrhEAAKutXC6rXC73PdZqtUYqY6XCzMnJiWzbXnQ1AADAN4Z1Jvi+L8dxri2DYSYAAGA0wgwAADAaYQYAABiNMAMAAIxGmAEAAEYjzAAAAKMRZgAAgNEIMwAAwGiEGQAAYDTCDAAAMBphBgAAGI0wAwAAjEaYAQAARiPMAAAAo7216ArMUyaT0cbGRt9jw7YgBwAAs1Eul1Uul/sea7VaI5WxUmHm5OREtm0vuhoAAOAbwzoTfN+X4zjXlsEwEwAAMBphBgAAGI0wAwAAjEaYAQAARiPMAAAAoxFmAACA0QgzAADAaIQZAABgNMIMAAAwGmEGAAAYjTADAACMRpgBAABGI8wAAACjrdSu2ZlMRhsbG32PDdu1EwAAzEa5XFa5XO57rNVqjVTGSoWZk5MT2ba96GoAAIBvDOtM8H1fjuNcWwbDTAAAwGiEGQAAYDTCDAAAMBphBgAAGI0wAwAAjEaYAQAARiPMAAAAoxFmAACA0QgzAADAaIQZAABgNMIMAAAwGmEGAAAYjTADAACMRpgBAABGe2vRFZinTCajjY2NvseGbUEOAABmo1wuq1wu9z3WarVGKmOlwszJyYls2150NQAAwDeGdSb4vi/Hca4tg2EmAABgNMIMAAAwGmEGAAAYjTADAACMRpgBAABGI8wAAACjEWYAAIDRCDMAAMBoSxdmarWaHMfR2tqaHMeR53k95/i+r1wuJ9d1VSgUVKvVFlBTAACwDJZqBeD9/X3V63UVCgWdnZ1pf39f6XRa9XpdqVRKkhQEgRzHUaPRiFfzTSaTajabyufzi6w+AABYgKXqmXnx4oXq9bry+bxKpZIajYYkqVQqxecUCgWlUqmObQmiHhoAALB6libMeJ7XEVokybZt2batIAgkSWEYyvM8pdPpjvO2t7clSdVqdT6VBQAAS2NpwkwqlZJlWX2PRe+fnp52/ByJemnq9foMawgAAJbRUs2Z6ScIgngIKeqhSSQSA88d5vz8XG/evBm7Luvr61pfXx/7egAAVsnFxYUuLi7Gvv78/Hyk85Y6zNRqNVmWFU/sPTs7kyRtbW31PT8Mw6HlvffeexPV58MPP9Te3t5EZQAAsCqKxaI++uijmd9nqcNMsVjU8fFx/HMymZQkNZvNvucPGqaKfPbZZ3r48OHY9aFXBgCA0T179kwffPDB2Ne/fPlypI6IpQ0zruvq4OCgI6BEvx7UA3NdmLlz547u3r07tToCAIDBJp2ecefOnZHOW5oJwFdVq1Wl0+mOx6+lb59a6p4bE/3sOM58KggAAJbG0oWZaDXfaJG8iO/7SiQSsm2756mlaJXgx48fz6eSAABgaSzVMJPneSoWiyoUCh1rxjQaDTmOI9u2dXBwIMdxFARBPKxUKpVUKpUGPuUEAABur6UJM77vx4vh9VvN9/Xr15Iu15RpNBpyXVeWZSkIArmuy1YGAACsqKUJM7Ztq91uj3zu1aecAADA6lq6OTMAAAA3QZgBAABGI8wAAACjEWYAAIDRCDMAAMBohBkAAGA0wgwAADAaYQYAABhtaRbNm4dMJqONjY2+x3Z2drSzszPnGgEAsNrK5bLK5XLfY61Wa6QyVirMnJyc9OzEDQAAFmdYZ4Lv+3Ic59oyGGYCAABGI8wAAACjEWYAAIDRCDMAAMBohBkAAGA0wgwAADAaYQYAABiNMAMAAIxGmAEAAEYjzAAAAKMRZgAAgNEIMwAAwGiEGQAAYDTCDAAAMNpbi67APGUyGW1sbPQ9NmwLcgAAMBvlclnlcrnvsVarNVIZKxVmTk5OZNv2oqsBAAC+Mawzwfd9OY5zbRkMMwEAAKMRZgAAgNEIMwAAwGiEGQAAYDTCDAAAMBphBgAAGI0wAwAAjEaYAQAARiPMAAAAoxFmAACA0QgzAADAaIQZAABgNMIMAAAwGmEGAAAY7a1FV2CeMpmMNjY2+h4btgU5AACYjXK5rHK53PdYq9UaqYyVCjMnJyeybXvR1QAAAN8Y1png+74cx7m2DIaZAACA0QgzAADAaIQZAABgNMIMAAAwGmEGAAAYjTADAACMRpgBAABGI8wAAACjEWYAAIDRCDMAAMBohBkAAGA0wgwAADAaYQYAABhtpXbNzmQy2tjY6Hts2K6dAABgNsrlssrlct9jrVZrpDJWKsycnJzItu1FVwMAAHxjWGeC7/tyHOfaMhhmAgAARiPMAAAAoxFmAACA0QgzAADAaIQZAABgNMIMAAAwGmEGAAAYjTADAACMRpgBAABGW6oVgMMwVLFYlCSVSqWe477vq1gsyrIshWGodDqtbDY772oCAIAlsjRhxvM8VSoV1Wo15fP5nuNBEMhxHDUajXhLgmQyqWaz2fd8AACwGpZmmCmVSun4+Hjg8UKhoFQq1bG3kuu6KhQK86geAABYUksTZoYJw1Ce5ymdTne8v729LUmqVquLqBYAAFgCSzPMNMzp6akkybKsjvejXpp6vT7SUNP5+bnevHkzdj3W19e1vr4+9vUAAKySi4sLXVxcjH39+fn5SOcZEWaCIJAkJRKJocev8957701Ujw8//FB7e3sTlQEAwKooFov66KOPZn4fI8LM2dmZJGlra6vv8TAMRyrns88+08OHD8euB70yAACM7tmzZ/rggw/Gvv7ly5cjdUQYEWaSyaQkqdls9j3ePfw0yJ07d3T37t2p1QsAAAw26fSMO3fujHSeEROAo7AyqAdm1DADAABuHyPCTPTUUvfcmOhnx3HmXicAALAcjAgziURCtm2rXq93vO95niTp8ePHi6gWAABYAksVZoZN5D04OJDneR29M6VSSaVSaeBTTgAA4PZbmgnAvu+rUqlIko6OjpROp5VKpeKgYtu2Go2GXNeVZVkKgkCu67KVAQAAK25pwoxt26pUKnGgGXTOsC0PAADA6lmqYSYAAICbIswAAACjEWYAAIDRCDMAAMBohBkAAGA0wgwAADAaYQYAABhtadaZmYdMJqONjY2+x3Z2drSzszPnGgEAsNrK5bLK5XLfY61Wa6QyVirMnJycyLbtRVcDAAB8Y1hngu/7I20mzTATAAAwGmEGAAAYjTADAACMRpgBAABGI8wAAACjEWYAAIDRCDMAAMBohBkAAGA0wgwAADAaYQYAABiNMAMAAIxGmAEAAEYjzAAAAKMRZgAAgNHeWnQF5imTyWhjY6PvsWFbkAMAgNkol8sql8t9j7VarZHKWKkwc3JyItu2F10NAADwjWGdCb7vy3Gca8tgmAkAABiNMAMAAIxGmAEAAEYjzAAAAKMRZgAAgNEIMwAAwGiEGQAAYDTCDAAAMBphBgAAGI0wAwAAjEaYAQAARiPMAAAAoxFmAACA0QgzAADAaG8tugLzlMlktLGx0ffYsC3IAQDAbJTLZZXL5b7HWq3WSGWsVJg5OTmRbduLrgYAAPjGsM4E3/flOM61ZTDMBAAAjEaYAQAARiPMAAAAoxFmAACA0QgzAADAaIQZAABgNMIMAAAwGmEGAAAYjTADAACMRpgBAABGI8wAAACjEWYAAIDRCDMAAMBohJkJXFxc6FP/Y/3m/3296KrcahcXF9rb29PFxcWiq3Lr0dbzQTvPB+08H8vQzmvtdru9sLvPSbSF+Ntvv62NjY2+5wzbgnyQN2/e6N69e/pPP/ofWv/u78Xv7/30B5NUd+b29kZ7b1lE7fzVV1/p7t27i67OrUZbzwftPB+083xM2s7lclnlcrnvsVarpV/84hdqNBqybXtgGW/d+K4GOzk5GdoYq6w7zCxzuAEA3B7DOhOizojrrFSYwehM670BAKwuwswq+vzT3vf+5Q+uvYzeGwDAMmICMAAAMBo9M7j0+aedP4/RUzPuOQAATIIwg/4+/7T3vRECTu91I1wDAMAECDMY3eef3viSvR+PcE2fkLT3R3vf/vDry7ULikVpff3KOXsdl4w9aZm5QABgNsLMEiuXyzde+2YUf/Pz/6Y/eOffTr3cscv+/NOet66u1XPx9a/7XtYTOvqVs/eDnve6/c3flPUHf3BNO/91183+sPvmvWb1/2/WZc+Kie1BO8+n7KmV2/339NezW8RtpDp310fis2NGVmrRvOsW3bmpWS+a98477+jnP//5VMq66p9vvq2df/fx1MuVpPJ//fdTL/vi61/rzz751z3t3NOj8/mnvRePcE75v/9H7ez8fOg5I+m6V7n8Tme5U3R01Ptno6cXrF+P197wckdd/KqnN+uP9vqd1uGd/3A0kz/P0uz+rsyq3Kku5tb1hfnOD8v6+X/p+rIa4Qt0FEvfzl1t8ebXF7r3R39283YeIYSMVOd+5fQzTtljmkXZs1yccNTvbyN7ZnzfV7FYlGVZCsNQ6XRa2Wx20dXCvH3+6XTO+c0/jh9ght2rX7mjBLAR/OqX/zjaEF6X666JesGKO/+zMzh2G2WCeFeo/9Wvjq4d0us7VDhCUOpuj76/z+4v9FG/aLqN0Us3sMfgfxWl31sfv5xRjXNdv/q0ftVZVr9zxmmffkYpZ9Tf19V2Hlf3vbrbYpr6lT2lQHpbGRdmgiDoSWnJZFLNZlP5fH7BtQOu8fmnt+NeXWWP2xs5SiAbreyPr7/mp933ur7cX/3y4z517Lqup9xeez++9pQRw+kPrj1D6r8s/EyM8mU+yjmjBINZBYdlME47zjJIGsi4MFMoFJRKpTq6m1zXVaFQIMwAy2xaPWAG6g5XcQ/Yf/5Xw3vAxvCr8PemM9Q9Skgb4T6jhLR+dR6n53GQq+08zXIXalpB8pYwKsyEYSjP81QqlTre397eliRVq1UCDQDMyDhBaZyetdGvG67fwwPTmtP4q/DjmQawmRmlF8zAHh2jwszp6akkybKsjvejXpp6vU6YAQAsxK0JSgYOVxkVZoIgkCQlEomhx7u1Wi1JlxOHz8/Px77/d7/7XX33u9+Nf47K+j9f/m99959txO/7/nRmc7daLfm+P5WyrvrNby70yy/+furlzqrsr//v5f+/7naellm1h2ntLM22rU1sD9p5PmXTzteXXSj9i6mU/csv3rpxWYV/Uxh6/Lz1tSTp5cuXunPnTsexr7/+Wl9//fXNKnnF3//9ZTtE3+MDtQ2yu7vbltRuNBo9xyS1Lcvqe90nn3zSlsSLFy9evHjxMvD1ySefDM0HRvXMJJNJSVKz2ex7vHv4KfL+++/r448/1u///u/rd3/3d8e+f3fPDAAAGGzSnpl/+qd/0i9/+Uu9//77Q88zKsxEYSUMw6HHu33ve9/TH//xH8+qWgAAYIG+s+gK3ET01FL33JjoZ8dx5l4nAACwWEaFmUQiIdu2Va/XO973PE+S9Pjx40VUCwAALJBxezNF+zScnZ3Fw0rJZFKFQkG7u7tTvc84Wyaw1cLNjNtetVpNxWJRvu/Ltm2VSiWlUqk51Nhc0/iz6XmecrmcXr9+PaNamm8a7RwEgWq1miQpn88PfIJzlU3y2VGv15VIJBQEgSzL6lm7DJfCMFSxWJSkkdtoYd+BU3jIaO4ajUY7m822d3d329lstl2pVKZa/tnZWVvqfGrKsqxr7zPudatq3PYqlUrtVCrVrlQq8RNuktr1en3WVTbWtP5sWpbVTiQS067erTFpO5+dnbWz2Ww7lUq1z87OZlVN443bzsfHx23btjveS6VS7d3d3ZnU02T1er2dzWbbktr5fH6kaxb5HWhkmJm1VCrVTqVSHe9VKpX2ddlv3OtW1bjtlc1mO35uNBptST1l4VvT+LO5u7vbTqVShJkhJmnnRqPRTiQSI39xrLJJPqO727dUKg1c1gPtG4WZRX4HGjVnZh6iLRPS6XTH+1e3TJjmdatq3Pbqt52FbduybXvgoomrbhp/Nj3P0/379zv2REOnSdo5DEM9evRIlmWpUqnMtJ6mm6Sdm81mPMcycnXKAsa36O9AwkyXUbZMmOZ1q2rc9kqlUgM/ePhA6m8afzYrlcpU56TdRpO0s+u6CsOQuRsjmKSdC4WCgiBQLpeTdDm/4+joiHafgkV/BxJmuoy7ZcK4162qabfX1Q8odJq0rV3X5cN+BJO0c/Sv1nq9LsdxtLm5qXQ6zedGH5O0cz6fVz6fV61WUzKZlOu6evXqFT2OU7Do70DCTJezszNJ0tbWVt/jgxbsG/e6VTXN9qrVarIsi01GB5ikrX3f1/379+n1GsG47Rztv2bbtgqFghqNhhqNhoIgUDKZ5LOjy6SfHZVKJR6W9jyvZ9gJ41n0dyBhpsu4WyaMe92qmmZ7FYtFHR8fT6Vet9EkbV0sFhleGtG47Rz9i7VQKMTnXJ07Ez0ai0uTfnak02kVCoX48excLhc/Bo/xLfo70KjtDOZh3C0Txr1uVU2rvVzX1cHBAe07xLht7bpuz1BH9Ovov7T7t8Zt50Hd8tG6SQw1dZrks6NQuNz9OerFffXqlR48eKCnT5+yHtiEFv0dSM9Ml3G3TGCrhZuZRntVq1Wl02nGu68xblt7nqdCoaBkMhm/arWawjBUMplkjlKXST87om76boO67VfVJJ8dR0dHHZ8XiURCpVJJYRjGw30Yz6K/AwkzXcbdMoGtFm5m0vaKuoW7V/3lA6nXuG3daDTUvlyLKn7t7u4qkUio3W6r0WjMvO4mmeSzI5VK9czdiP6Fyz+EOk3y2bG1tdXTcxB9hrDK8mQW/h0485VsDBQtwnZ1BU7LstqlUin++ezsrG1ZVseqs6Nch2+N2871er1t23a7Uql0vPL5PKstDzBuW3fb3d1l0bwhJv3suPpeqVTqWa0Wl8Zt51Kp1E4kEu3Xr193vEc79/f69euBi+Yt23cgc2b6sG1bjUZDruvKsiwFQSDXdTuelgnDUM1msyPlj3IdvjVOO/u+Hy/KFI1/X8WeQf2N+2caNzONz47j42MlEgmFYUjv1wDjtnPUs5jL5eLhpjAM9fz583n/Fpae7/vxJPSjoyOl02mlUqm4B2vZvgON22gSAADgKubMAAAAoxFmAACA0QgzAADAaIQZAABgNMIMAAAwGmEGAAAYjTADAACMRpgBAAATW+SmqIQZAAAwsVwut7AVxAkzAADcYvv7+9rc3NTa2prW1taUTqfjVzKZjN+fhO/7siyrZ8POedxbktibCQCAW2x3d1dnZ2eqVqva3d1VqVTqOB4EQbzn3bgqlUrf/fLmcW+JnhkAAG6909NTSeobHCzLUiqVmqh8z/MGljHre0tsNAkAwK0XDeUM+soPw7BniGhUtVpN9Xo93mV7nveO0DMDAMAt5nmeJPX0gNRqtfjXk4SJw8PDvkNM87h3hDADAMAtdnx8LKlzmCcMQx0eHk5cdhiGCoJAtm3P/d5XEWYAALjFot6Rw8NDOY6jZDKpzc1NvfvuuxOXfXR0pCdPnizk3lfxNBMAALdU1HOSSCTUaDTi9x49ejSVibeVSkXPnz+f2r0LhYKSyaS+/PJLvfvuu8pmsyPVgzADAMAtdXR0JKlzzkoikVAqlRo4NDSqIAi0tbU1cM7LTe+dy+VkWZZ2d3clSY7jxOdfh2EmAABuqXq9Lqn3sehnz55NXPagtWXGuXcQBKrVah3lPXnypGddmkEIMwAA3FLRnJXHjx93vH+1NyU6R7oMFclkUo7jxO+FYSjHcTqeQJIun0gaNgx0k3v7vi/pct2ZiG3b8jxvpC0SCDMAANxCQRAoDMO+2wxEqtVqxwaRruuqVCopDMM4aBSLRYVh2BFchi2SN869X7x40XPe1taWJKnZbF73W2XODAAAt1HUk3K1tyMShqFc11W1WtXr16/j9588eaJsNhuHkTAMtb+/Hw8ZRSqVytChqpveOwzDOLx0C4KgbzlXEWYAALhl9vf35bqupMteFMdxtLW1pWazGT9lJEnZbLajRyTqfbFtW0EQqFgsKpvN9vTC+L4/cALxOPdOJpPxhOFu1wUZie0MAABAF9/3dXh4qFqtpkaj0RF4qtWqwjCMnzqahlqtplwu17Hlged5SqfTA7dBuIqeGQAA0CGRSGh/f1/Hx8c9c1mGrS0zrqiX5+qQ0rDen25MAAYAAB3CMFQqlep5Wum6tWXGZVmWstlsxxNTh4eHIz+azTATAADo4Lqu7t+/3zOU5LrujVbmvamrKwAnk0nl8/mRriPMAACAWBiG2tzcVKVS6QkTuVwu3jxymTDMBAAAYtVqVVL/p4iWMchIhBkAAHDF2dmZLMuaykaU88IwEwAA6BCG4dQn+c4SYQYAABiNYSYAAGA0wgwAADAaYQYAABiNMAMAAIxGmAEAAEYjzAAAAKMRZgAAgNEIMwAAwGj/HyNhBgmm/u/dAAAAAElFTkSuQmCC",
"text/plain": [
"