diff --git a/B_rework.ipynb b/B_rework.ipynb index 73fe9d4..900c609 100644 --- a/B_rework.ipynb +++ b/B_rework.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 106, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -22,7 +22,7 @@ }, { "cell_type": "code", - "execution_count": 107, + "execution_count": 2, "metadata": {}, "outputs": [ { @@ -31,7 +31,7 @@ "10522" ] }, - "execution_count": 107, + "execution_count": 2, "metadata": {}, "output_type": "execute_result" } @@ -50,7 +50,7 @@ }, { "cell_type": "code", - "execution_count": 108, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -78,195 +78,177 @@ }, { "cell_type": "code", - "execution_count": 115, + "execution_count": 36, "metadata": {}, "outputs": [ { "data": { + "text/html": [ + "
{energy: 4.62e+04,\n",
+       " photon_length: 10,\n",
+       " brem_photons_pe: [3.26e+03, 4.45e+03, 178, ..., 825, 8.99e+03, 3.48e+03],\n",
+       " brem_vtx_z: [162, 187, 387, 487, ..., 9.49e+03, 1.21e+04, 1.21e+04, 1.21e+04]}\n",
+       "-------------------------------------------------------------------------------\n",
+       "type: {\n",
+       "    energy: float64,\n",
+       "    photon_length: int64,\n",
+       "    brem_photons_pe: var * float64,\n",
+       "    brem_vtx_z: var * float64\n",
+       "}
" + ], "text/plain": [ - "{'energy': 46180.704276008204,\n", - " 'brem_photons_pe': [3264.454345703125,\n", - " 4453.86376953125,\n", - " 178.029052734375,\n", - " 14471.001953125,\n", - " 1095.5640869140625,\n", - " 3793.752685546875,\n", - " 357.2669982910156,\n", - " 825.275634765625,\n", - " 8990.57421875,\n", - " 3479.052490234375],\n", - " 'brem_vtx_z': [161.9427032470703,\n", - " 186.9705047607422,\n", - " 387.3406982421875,\n", - " 486.6791076660156,\n", - " 1340.39501953125,\n", - " 2322.552490234375,\n", - " 9494.216796875,\n", - " 12068.0263671875,\n", - " 12118.072265625,\n", - " 12129.564453125]}" + "" ] }, - "execution_count": 115, + "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#try excluding all photons that originate from a vtx @ z>9500mm\n", + "#ignore all brem vertices @ z>9500mm \n", + "\n", + "#found\n", "\n", "brem_e_f = found[\"brem_photons_pe\"]\n", "brem_z_f = found[\"brem_vtx_z\"]\n", "e_f = found[\"energy\"]\n", - "\n", - "\n", + "length_f = found[\"brem_vtx_z_length\"]\n", "\n", "brem_f = ak.ArrayBuilder()\n", "\n", - "for itr in range(4):#range(ak.num(found,axis=0)):\n", + "for itr in range(ak.num(found,axis=0)):\n", " brem_f.begin_record()\n", - " #[:,0] energy\n", + " #[:,\"energy\"] energy\n", " brem_f.field(\"energy\").append(e_f[itr])\n", - " #[:,1] photon energy \n", + " #[:,\"photon_length\"] number of vertices\n", + " brem_f.field(\"photon_length\").integer(length_f[itr])\n", + " #[:,\"brem_photons_pe\",:] photon energy \n", " brem_f.field(\"brem_photons_pe\").append(brem_e_f[itr])\n", - " #[:,2] brem vtx z\n", + " #[:,\"brem_vtx_z\",:] brem vtx z\n", " brem_f.field(\"brem_vtx_z\").append(brem_z_f[itr])\n", " brem_f.end_record()\n", "\n", "brem_f = ak.Array(brem_f)\n", - "#this is a event cut! not suitable\n", - "cut = (brem_f[\"brem_vtx_z\"]<9500)\n", - "brem_f[0].tolist()" + "\n", + "#lost\n", + "\n", + "brem_e_l = lost[\"brem_photons_pe\"]\n", + "brem_z_l = lost[\"brem_vtx_z\"]\n", + "e_l = lost[\"energy\"]\n", + "length_l = lost[\"brem_vtx_z_length\"]\n", + "\n", + "brem_l = ak.ArrayBuilder()\n", + "\n", + "for itr in range(ak.num(lost,axis=0)):\n", + " brem_l.begin_record()\n", + " #[:,\"energy\"] energy\n", + " brem_l.field(\"energy\").append(e_l[itr])\n", + " #[:,\"photon_length\"] number of vertices\n", + " brem_l.field(\"photon_length\").integer(length_l[itr])\n", + " #[:,\"brem_photons_pe\",:] photon energy \n", + " brem_l.field(\"brem_photons_pe\").append(brem_e_l[itr])\n", + " #[:,\"brem_vtx_z\",:] brem vtx z\n", + " brem_l.field(\"brem_vtx_z\").append(brem_z_l[itr])\n", + " brem_l.end_record()\n", + "\n", + "brem_l = ak.Array(brem_l)\n", + "\n", + "\n", + "\n", + "\n", + "brem_f[0]" ] }, { "cell_type": "code", - "execution_count": 116, + "execution_count": 37, + "metadata": {}, + "outputs": [], + "source": [ + "acc_brem_found = ak.ArrayBuilder()\n", + "\n", + "for itr in range(ak.num(brem_f, axis=0)):\n", + " acc_brem_found.begin_record()\n", + " acc_brem_found.field(\"energy\").real(brem_f[itr,\"energy\"])\n", + " \n", + " acc_brem_found.field(\"brem_photons_pe\")\n", + " acc_brem_found.begin_list()\n", + " for jentry in range(brem_f[itr, \"photon_length\"]):\n", + " if brem_f[itr, \"brem_vtx_z\", jentry]>9500:\n", + " continue\n", + " else:\n", + " acc_brem_found.real(brem_f[itr,\"brem_photons_pe\", jentry])\n", + " \n", + " #acc_brem_found.field(\"brem_vtx_z\").real(brem_f[itr, \"brem_vtx_z\",jentry])\n", + " acc_brem_found.end_list()\n", + " \n", + " acc_brem_found.field(\"brem_vtx_z\")\n", + " acc_brem_found.begin_list()\n", + " for jentry in range(brem_f[itr, \"photon_length\"]):\n", + " if brem_f[itr, \"brem_vtx_z\", jentry]>9500:\n", + " continue\n", + " else:\n", + " acc_brem_found.real(brem_f[itr, \"brem_vtx_z\",jentry])\n", + " acc_brem_found.end_list()\n", + " \n", + " \n", + " acc_brem_found.end_record()\n", + "\n", + "acc_brem_found = ak.Array(acc_brem_found)\n", + "\n", + "\n", + "\n", + "acc_brem_lost = ak.ArrayBuilder()\n", + "\n", + "for itr in range(ak.num(brem_l, axis=0)):\n", + " acc_brem_lost.begin_record()\n", + " acc_brem_lost.field(\"energy\").real(brem_l[itr,\"energy\"])\n", + " \n", + " acc_brem_lost.field(\"brem_photons_pe\")\n", + " acc_brem_lost.begin_list()\n", + " for jentry in range(brem_l[itr, \"photon_length\"]):\n", + " if brem_l[itr, \"brem_vtx_z\", jentry]>9500:\n", + " continue\n", + " else:\n", + " acc_brem_lost.real(brem_l[itr,\"brem_photons_pe\", jentry])\n", + " \n", + " #acc_brem_found.field(\"brem_vtx_z\").real(brem_f[itr, \"brem_vtx_z\",jentry])\n", + " acc_brem_lost.end_list()\n", + " \n", + " acc_brem_lost.field(\"brem_vtx_z\")\n", + " acc_brem_lost.begin_list()\n", + " for jentry in range(brem_l[itr, \"photon_length\"]):\n", + " if brem_l[itr, \"brem_vtx_z\", jentry]>9500:\n", + " continue\n", + " else:\n", + " acc_brem_lost.real(brem_l[itr, \"brem_vtx_z\",jentry])\n", + " acc_brem_lost.end_list()\n", + " \n", + " acc_brem_lost.end_record()\n", + "\n", + "acc_brem_lost = ak.Array(acc_brem_lost)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 38, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[{'energy': 134321.90632702777,\n", - " 'brem_photons_pe': [1881.1756591796875,\n", - " 17914.712890625,\n", - " 479.9449768066406,\n", - " 3987.47119140625,\n", - " 4792.82421875,\n", - " 19725.302734375,\n", - " 2376.974853515625,\n", - " 6870.6201171875,\n", - " 19237.05859375,\n", - " 3409.642822265625],\n", - " 'brem_vtx_z': [184.35940551757812,\n", - " 190.19970703125,\n", - " 929.2517700195312,\n", - " 5855.25390625,\n", - " 8506.958984375,\n", - " 11310.3232421875,\n", - " 12051.8232421875,\n", - " 12121.9033203125,\n", - " 12132.9287109375,\n", - " 12201.8427734375]},\n", - " {'energy': 134321.90632702777,\n", - " 'brem_photons_pe': [1881.1756591796875,\n", - " 17914.712890625,\n", - " 479.9449768066406,\n", - " 3987.47119140625,\n", - " 4792.82421875,\n", - " 19725.302734375,\n", - " 2376.974853515625,\n", - " 6870.6201171875,\n", - " 19237.05859375,\n", - " 3409.642822265625],\n", - " 'brem_vtx_z': [184.35940551757812,\n", - " 190.19970703125,\n", - " 929.2517700195312,\n", - " 5855.25390625,\n", - " 8506.958984375,\n", - " 11310.3232421875,\n", - " 12051.8232421875,\n", - " 12121.9033203125,\n", - " 12132.9287109375,\n", - " 12201.8427734375]},\n", - " {'energy': 134321.90632702777,\n", - " 'brem_photons_pe': [1881.1756591796875,\n", - " 17914.712890625,\n", - " 479.9449768066406,\n", - " 3987.47119140625,\n", - " 4792.82421875,\n", - " 19725.302734375,\n", - " 2376.974853515625,\n", - " 6870.6201171875,\n", - " 19237.05859375,\n", - " 3409.642822265625],\n", - " 'brem_vtx_z': [184.35940551757812,\n", - " 190.19970703125,\n", - " 929.2517700195312,\n", - " 5855.25390625,\n", - " 8506.958984375,\n", - " 11310.3232421875,\n", - " 12051.8232421875,\n", - " 12121.9033203125,\n", - " 12132.9287109375,\n", - " 12201.8427734375]},\n", - " {'energy': 134321.90632702777,\n", - " 'brem_photons_pe': [1881.1756591796875,\n", - " 17914.712890625,\n", - " 479.9449768066406,\n", - " 3987.47119140625,\n", - " 4792.82421875,\n", - " 19725.302734375,\n", - " 2376.974853515625,\n", - " 6870.6201171875,\n", - " 19237.05859375,\n", - " 3409.642822265625],\n", - " 'brem_vtx_z': [184.35940551757812,\n", - " 190.19970703125,\n", - " 929.2517700195312,\n", - " 5855.25390625,\n", - " 8506.958984375,\n", - " 11310.3232421875,\n", - " 12051.8232421875,\n", - " 12121.9033203125,\n", - " 12132.9287109375,\n", - " 12201.8427734375]},\n", - " {'energy': 134321.90632702777,\n", - " 'brem_photons_pe': [1881.1756591796875,\n", - " 17914.712890625,\n", - " 479.9449768066406,\n", - " 3987.47119140625,\n", - " 4792.82421875,\n", - " 19725.302734375,\n", - " 2376.974853515625,\n", - " 6870.6201171875,\n", - " 19237.05859375,\n", - " 3409.642822265625],\n", - " 'brem_vtx_z': [184.35940551757812,\n", - " 190.19970703125,\n", - " 929.2517700195312,\n", - " 5855.25390625,\n", - " 8506.958984375,\n", - " 11310.3232421875,\n", - " 12051.8232421875,\n", - " 12121.9033203125,\n", - " 12132.9287109375,\n", - " 12201.8427734375]},\n", - " None,\n", - " None,\n", - " None,\n", - " None,\n", - " None]" + "9056" ] }, - "execution_count": 116, + "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "msa = ak.mask(brem_f,cut)\n", - "msa[2].tolist()" + "ak.num(acc_brem_found,axis=0)" ] }, { @@ -276,25 +258,26 @@ "outputs": [], "source": [] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ - "#ignore all brem vertices @ z>9500mm \n", "\n", "\"\"\"\n", "ph_e = found[\"brem_photons_pe\"]\n", "event_cut = ak.all(ph_e cutoff_energy are not included\n", "\"\"\"\n", - "ph_e = found[\"brem_photons_pe\"]\n", + "ph_e = acc_brem_found[\"brem_photons_pe\"]\n", "event_cut = ak.all(ph_e[{energy: 2.58e+04, brem_photons_pe: [9.97e+03, ...], brem_vtx_z: [...]},\n", + " {energy: 8.03e+04, brem_photons_pe: [4.91e+03, ...], brem_vtx_z: [...]},\n", + " {energy: 5.6e+03, brem_photons_pe: [320, ..., 392], brem_vtx_z: [...]},\n", + " {energy: 6.36e+03, brem_photons_pe: [273, ...], brem_vtx_z: [...]},\n", + " {energy: 4.67e+04, brem_photons_pe: [8.96e+03, ...], brem_vtx_z: [...]},\n", + " {energy: 7.16e+04, brem_photons_pe: [544, ..., 142], brem_vtx_z: [...]},\n", + " {energy: 5.15e+04, brem_photons_pe: [384, ...], brem_vtx_z: [...]},\n", + " {energy: 4.07e+04, brem_photons_pe: [2.7e+04, ...], brem_vtx_z: [...]},\n", + " {energy: 2.77e+04, brem_photons_pe: [2.24e+03, ...], brem_vtx_z: [...]},\n", + " {energy: 6.4e+04, brem_photons_pe: [686, ..., 796], brem_vtx_z: [...]},\n", + " ...,\n", + " {energy: 5.59e+03, brem_photons_pe: [901, ...], brem_vtx_z: [...]},\n", + " {energy: 2.13e+04, brem_photons_pe: [787, ...], brem_vtx_z: [...]},\n", + " {energy: 9.34e+03, brem_photons_pe: [762, ...], brem_vtx_z: [...]},\n", + " {energy: 5.08e+04, brem_photons_pe: [711, ...], brem_vtx_z: [...]},\n", + " {energy: 6.41e+04, brem_photons_pe: [4.17e+03, ...], brem_vtx_z: [...]},\n", + " {energy: 1.01e+04, brem_photons_pe: [220, ..., 156], brem_vtx_z: [...]},\n", + " {energy: 1.96e+04, brem_photons_pe: [1.66e+03, ...], brem_vtx_z: [...]},\n", + " {energy: 2.98e+04, brem_photons_pe: [8.32e+03, ...], brem_vtx_z: [...]},\n", + " {energy: 3.97e+04, brem_photons_pe: [9.36e+03, ...], brem_vtx_z: [...]}]\n", + "-------------------------------------------------------------------------\n", + "type: 1418 * {\n", + " energy: float64,\n", + " brem_photons_pe: var * float64,\n", + " brem_vtx_z: var * float64\n", + "}" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "#wie viel energie relativ zur anfangsenergie verlieren die elektronen durch bremstrahlung und hat das einen einfluss darauf ob wir sie finden oder nicht?\n", "#if any photon of an electron has an energy higher the cutoff then it is included\n", "cutoff_energy=350\n", "\n", - "brem_found = found[ak.any(found[\"brem_photons_pe\"]>=cutoff_energy,axis=1)]\n", + "brem_found = acc_brem_found[ak.any(acc_brem_found[\"brem_photons_pe\"]>=cutoff_energy,axis=1)]\n", "energy_found = ak.to_numpy(brem_found[\"energy\"])\n", "eph_found = ak.to_numpy(ak.sum(brem_found[\"brem_photons_pe\"], axis=-1, keepdims=False))\n", "residual_found = energy_found - eph_found\n", "energyloss_found = eph_found/energy_found\n", "\n", - "brem_lost = lost[ak.any(lost[\"brem_photons_pe\"]>=cutoff_energy,axis=1)]\n", + "brem_lost = acc_brem_lost[ak.any(acc_brem_lost[\"brem_photons_pe\"]>=cutoff_energy,axis=1)]\n", "energy_lost = ak.to_numpy(brem_lost[\"energy\"])\n", "eph_lost = ak.to_numpy(ak.sum(brem_lost[\"brem_photons_pe\"], axis=-1, keepdims=False))\n", "residual_lost = energy_lost - eph_lost\n", @@ -388,9 +469,18 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 42, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "mean energyloss relative to initial energy (found): 0.4107345449771658\n", + "mean energyloss relative to initial energy (lost): 0.7300783757368142\n" + ] + } + ], "source": [ "mean_energyloss_found = ak.mean(energyloss_found)\n", "mean_energyloss_lost = ak.mean(energyloss_lost)\n", @@ -400,9 +490,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 43, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHMCAYAAAD7xYOxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/vklEQVR4nO3deXxTZdr/8W/aphulBQqFApV9kUUYQbG4gWNBUNFnHFxQRHAd+YmIjyButC6D6OO4jaKigqMy4sgioyhUpQVEFgs6siiIKMUBS1naQqVNm/P7AxtJ0yVJk5zT9vN+vfKiuc997nOdq4Fc3GezGYZhCAAAwILCzA4AAACgOhQqAADAsihUAACAZVGoAAAAy6JQAQAAlkWhAgAALItCBQAAWBaFCgAAsCwKFQAAYFkUKgAAwLIoVAAAgGVRqACos2XLlslms1X7eu211wKynfLyciUlJenpp58O+bYBmCPC7AAA1H+bNm2SJL3//vtKSkryWN6rV6+AbGfVqlU6cOCA/vSnP4V82wDMQaECoM42bdqk+Ph4XXrppbLZbEHbznvvvaeBAweqQ4cOId82AHNw6AdAneXk5Khfv35BLRQMw9DixYt1xRVXhHzbAMxDoQKgTg4ePKg9e/aob9++Kisr83gZhhGQ7axdu1b79u1zK1RCtW0A5qFQAVAnFeeIvPjii7Lb7R6vbdu21TqGYRiKj49Xfn5+tX3ee+899e3bV926dfN52wcOHNDFF1+sJk2aqHv37srMzKzLLgMIIc5RAVAnOTk5kqRFixYpJSXFY7k3J7Pu3LlTrVq1UsuWLavts2jRIk2YMMGvbU+cOFFt2rTRgQMH9Mknn+jKK6/U999/r8TExFpjA2AuChUAdbJp0yZFR0dr1KhRCg8Pr7bfyy+/rH/961+y2+1av3692rZtq3fffVe9evXSpk2b1L9/f916661asGCB2rZtq6VLl6pr166SpA0bNmjPnj0e56d4s+2jR49qyZIl2rVrl2JjYzVq1Cj169dP77//vkfhA8B6OPQDoE42bdqkPn361FikSNKWLVu0ceNGTZ48Wb/88osGDRqkBx54QJK0efNmffnllxo/frwOHTqk008/XXPmzHGtu3DhQnXv3l19+vTxeds7d+5UXFyc24xL3759tXXrVn92F0CIUagA8FtBQYF++OEH9evXr9a+W7Zs0QMPPKDhw4fLbrfr2muv1Y4dOySdKFQyMjJ01llnKSwsTF26dHE7EXbhwoUesynebvvo0aOKj493a4uPj9fRo0e93U0AJuLQDwC/bdq0SYZhqEmTJlq3bp3H8nbt2rlmMrZu3ep2l9i8vDzXOSmbN2/WW2+95Vq2detWjRw5UpL01VdfadeuXVUe9vFm23FxcSosLHRbVlhYqLi4OD/3GkAoMaMCwG8VV90899xzSk1N9XitWLFC0omi5MCBA253jl28eLFGjBih3NxcRUREuC37z3/+o9NOO03SidmUDh06aMCAAX5tu1u3bjp69Kj27t3rWnfLli3q3bt3EDICINBsBjcaABBkn376qYYPH66XXnpJ48aN0z/+8Q898sgj+vrrr5Wdna0XXnhBy5cvlyQVFxerWbNmKigoUExMjHr16qURI0boqaee8nv7o0ePVkJCgp5//nl9+umnGjt2rHbu3FnjVUYArIFDPwCCbsuWLZowYYLeeecdTZkyRQMGDFBmZqYSEhK0efNm1+yJdOKwT5cuXRQTEyNJXt2HpTYvvviixo0bp8TERLVr104LFiygSAHqCWZUAATdzTffrIEDB+rWW281OxQA9QznqAAIui1btqhnz55mhwGgHmJGBUDQJSQkaMeOHWrdurXZoQCoZ0ydUSkqKtLkyZPVoUMHxcTEaPDgwdq4caOZIQEIgoKCAooUAH4xtVC56aablJmZqTfffFPffPONhg0bpgsvvFA///yzmWEBAACLMO3Qz6+//qqmTZvq/fff18UXX+xq79+/vy655BI9+uijZoQFAAAsxLTLk8vKylReXq7o6Gi39piYGK1Zs6bKdUpKSlRSUuJ673Q6dejQISUmJspmswU1XgAAEBiGYaioqEht27ZVWFgtB3cME6Wmphrnn3++8fPPPxtlZWXGm2++adhsNqN79+5V9p8xY4YhiRcvXrx48eLVAF65ubm11gqmXvWza9cuTZgwQatWrVJ4eLhOP/10de/eXZs2baryJk+VZ1QKCgp0yimnaPfu3WratGnA4nI4HFq5cqWGDh0qu90esHHhjjyHDrkODfIcOuQ6NIKV56KiInXq1ElHjhxRQkJCjX1NvTNtly5dlJ2drWPHjqmwsFDJycm66qqr1KlTpyr7R0VFKSoqyqO9RYsWHk9HrQuHw6HY2FglJibyFyCIyHPokOvQIM+hQ65DI1h5rhjLm9M2LHHDtyZNmig5OVmHDx/W8uXLddlll5kdEgAAsABTZ1SWL18uwzDUo0cPff/997rnnnvUo0cPjR8/3sywAACARZg6o1JQUKCJEyeqZ8+euv7663XOOedoxYoVTOMBAABJJs+oXHnllbryyivNDAEA0IiVl5fL4XCYHYZlORwORURE6Pjx4yovL/d6PbvdrvDw8IDEYGqhAgCAGQzD0P79+3XkyBGzQ7E0wzDUpk0b5ebm+ny/smbNmqlNmzZ1vs8ZhQoAoNGpKFKSkpIUGxvLTUOr4XQ6dfToUcXFxdV+Y7bfGIah4uJi5eXlSZKSk5PrFAOFCgCgUSkvL3cVKYmJiWaHY2lOp1OlpaWKjo72ulCRTtxlXpLy8vKUlJRUp8NAlrg8GQCAUKk4JyU2NtbkSBq2ivzW9RwgChUAQKPE4Z7gClR+KVQAAIBlUagAAFBPDBkyRJMnTzY7jJDiZFoAACqsTQ/t9gaHeHu/ycrK0tChQ3X48GE1a9bMlBi8xYwKAACwLAoVAADqocOHD+v6669X8+bNFRsbqxEjRmjnzp2u5T/99JMuvfRSNW/eXE2aNFHv3r21bNky/fjjjxo6dKgkqXnz5rLZbLrhhhtM2ovacegHAIB66IYbbtDOnTu1dOlSxcfHa9q0aRo5cqS2bdsmu92uiRMnqrS0VKtWrVKTJk20bds2xcXFKSUlRQsXLtQVV1yh7777TvHx8a77nlgRhQoAAPVMRYHy+eefa/DgwZKkt99+WykpKVqyZIlGjx6tPXv26IorrlDfvn0lSZ07d3at36JFC0lSUlIS56gAAIDA2r59uyIiIjRo0CBXW2Jionr06KHt27dLkiZNmqRHH31UZ599tmbMmKH//Oc/ZoVbJxQqAADUM4ZhVNtecaO1m266ST/88IPGjh2rb775RgMHDtTzzz8fyjADgkIFAIB6plevXiorK9P69etdbQcPHtSOHTt06qmnutpSUlJ02223adGiRbr77rs1Z84cSVJkZKSkE889sjoKFQAA6plu3brpsssu080336w1a9bo66+/1nXXXad27drpsssukyRNnjxZy5cv1+7du7Vp0yZ99tlnriKmQ4cOstls+uCDD3TgwAEdPXrUzN2pESfTAgBQwaQbsPlj7ty5uvPOO3XJJZeotLRU5513npYtWya73S7pxGzJxIkTtXfvXsXHx+uiiy7S008/LUlq166dMjIydO+992r8+PG6/vrrNW/ePBP3pnoUKgAA1BNZWVmun5s3b65//OMf1fat7XyUBx98UA8++GCgQgsaDv0AAADLolABAACWRaECAAAsi0IFAABYFoUKAACwLAoVAABgWRQqAADAsihUAACAZVGoAAAAy6JQAQCgnjAMQ7fccotatGghm82mr776yrRYhgwZosmTJwd9O9xCHwCA36SnW3t7H3/8sebNm6esrCx17txZLVu2DEpcVkKhAgBAPbFr1y4lJydr8ODBZocSMqYe+ikrK9MDDzygTp06KSYmRp07d9bDDz8sp9NpZlgAAFjODTfcoDvuuEN79uyRzWZTx44dVVJSokmTJikpKUnR0dE655xztHHjRtc68+bNU7NmzdzGWbJkiWw2m+t9enq6+vfvrzfffFMdO3ZUQkKCrr76ahUVFbn6HDt2TNdff73i4uKUnJysp556Kuj7W8HUQmXWrFl66aWX9Pe//13bt2/XE088oSeffLLWJz4CANDYPPvss3r44YfVvn177du3Txs3btTUqVO1cOFCvfHGG9q0aZO6du2q4cOH69ChQz6NvWvXLi1ZskQffPCBPvjgA2VnZ+vxxx93LZ86dapWrlypxYsXa8WKFcrKylJOTk6gd7FKphYqX3zxhS677DJdfPHF6tixo/785z9r2LBh+vLLL80MCwAAy0lISFDTpk0VHh6uNm3aKDY2VrNnz9aTTz6pESNGqFevXpozZ45iYmL02muv+TS20+nUvHnz1KdPH5177rkaO3asPv30U0nS0aNH9frrr+v//u//lJaWpr59++qNN95QeXl5MHbTg6nnqJxzzjl66aWXtGPHDnXv3l1ff/211qxZo2eeeabK/iUlJSopKXG9LywslCQ5HA45HI6AxVUxViDHhCfyHDrkOjTIc+jUJdcOh0OGYcjpdHqcamAYtmrWCg6n0/Cpv2EYv63n1M6dO+VwOJSamuraj/DwcJ1xxhnatm2b2/6dvJ+V2wzDUMeOHdWkSRNXW5s2bZSXlyfDMLR7926VlpZq0KBBruXNmjVTjx49XHmset+cMgxDDodD4eHhbst8+b2ZWqhMmzZNBQUF6tmzp8LDw1VeXq7HHntM11xzTZX9Z86cqYyMDI/2FStWKDY2NuDxZWZmBnxMeCLPoUOuQ4M8h44/uY6IiFCbNm109OhRlZaWui0rKYkOVGheKSw87lP/48ePy+l0qrCw0HUOydGjR13/cZdOFAFlZWUqLCxUaWmpq//v2yx0+7OkpERhYWFufUpKSlRWVuZ2nkpRUZFbn/LycpWWlrq1nay0tFS//vqrVq1apbKyMrdlxcXFXu+zqYXKggUL9NZbb2n+/Pnq3bu3vvrqK02ePFlt27bVuHHjPPpPnz5dU6ZMcb0vLCxUSkqKhg0bpvj4+IDF5XA4lJmZqbS0NNnt9oCNC3fkOXTIdWiQ59CpS66PHz+u3NxcxcXFKTravTCJigrtjEp8fKRP/aOjoxUWFqb4+Hj1799fkZGR+vrrr9W7d29JJ/Ly9ddf684771R8fLxSUlJ09OhRhYeHq0mTJpKkHTt2/LbtE9+bUVFRCg8Pd/serdhO06ZN1alTJ9ntdm3dutW1ncOHD2vXrl0aOnRotd+/x48fV0xMjM477zyPPFdX3FTF1ELlnnvu0b333qurr75aktS3b1/99NNPmjlzZpWFSlRUlKKiojza7XZ7UP5RCNa4cEeeQ4dchwZ5Dh1/cl1eXi6bzaawsDCFhbmfqmkLbZ2isDDfNlhxtU5FEfGXv/xF06ZNU8uWLXXKKafoiSeeUHFxsW666SaFhYUpNTVVsbGxeuCBB3THHXdow4YNeuONN1xjVB6z8nZsNpvi4uI0YcIETZs2Ta1atVLr1q11//33KywszJXHqvftxPKqfke+/M5MLVSKi4s9djA8PJzLkwEApgj1Dd/q6vHHH5fT6dTYsWNVVFSkgQMHavny5WrevLkkqUWLFnrrrbd0zz336JVXXtGFF16o9PR03XLLLT5t54knntCxY8c0atQoNW3aVHfffbcKCgqCsUsebEbFmTkmuOGGG/TJJ5/o5ZdfVu/evbV582bdcsstmjBhgmbNmlXr+oWFhUpISFBBQUHAD/0sW7ZMI0eO5H9FQUSeQ4dchwZ5Dp265Pr48ePavXu3OnXq5HFIAu4qzm+Jj4+vduakOjXl2Zfvb1NnVJ5//nk9+OCDuv3225WXl6e2bdvq1ltv1UMPPWRmWAAAwCJMLVSaNm2qZ555ptrLkQEAQOPG05MBAIBlUagAAADLolABADRKJl5L0igEKr8UKgCARqXiKiFf7o4K31Xkt65XwJl6Mi0AAKEWHh6uZs2aKS8vT5IUGxvrusEZ3DmdTpWWlur48eNeX55sGIaKi4uVl5enZs2aeTznx1cUKgCARqdNmzaS5CpWUDXDMPTrr78qJibG52KuWbNmrjzXBYUKAKDRsdlsSk5OVlJSEk+7roHD4dCqVat03nnn+XQIx26313kmpQKFCgCg0QoPDw/YF2pDFB4errKyMkVHR5t2t2VOpgUAAJZFoQIAACyLQgUAAFgWhQoAALAsChUAAGBZFCoAAMCyKFQAAIBlUagAAADLolABAACWRaECAAAsi0IFAABYFoUKAACwLAoVAABgWRQqAADAsihUAACAZVGoAAAAy6JQAQAAlkWhAgAALItCBQAAWBaFCgAAsCwKFQAAYFkUKgAAwLJMLVQ6duwom83m8Zo4caKZYQEAAIuIMHPjGzduVHl5uev9li1blJaWptGjR5sYFQAAsApTC5VWrVq5vX/88cfVpUsXnX/++SZFBAAArMTUQuVkpaWleuuttzRlyhTZbLYq+5SUlKikpMT1vrCwUJLkcDjkcDgCFkvFWIEcE57Ic+iQ69Agz6FDrkMjWHn2ZTybYRhGQLfup3fffVdjxozRnj171LZt2yr7pKenKyMjw6N9/vz5io2NDXaIAAAgAIqLizVmzBgVFBQoPj6+xr6WKVSGDx+uyMhI/fvf/662T1UzKikpKcrPz691R33hcDiUmZmptLQ02e32gI0Ld+Q5dMh1aJDn0CHXoRGsPBcWFqply5ZeFSqWOPTz008/6ZNPPtGiRYtq7BcVFaWoqCiPdrvdHpQParDGhTvyHDrkOjTIc+iQ69AIdJ59GcsS91GZO3eukpKSdPHFF5sdCgAAsBDTCxWn06m5c+dq3LhxioiwxAQPAACwCNMLlU8++UR79uzRhAkTzA4FAABYjOlTGMOGDZNFzucFAAAWY/qMCgAAQHUoVAAAgGVRqAAAAMuiUAEAAJZFoQIAACyLQgUAAFgWhQoAALAsChUAAGBZFCoAAMCyKFQAAIBlUagAAADLolABAACWRaECAAAsi0IFAABYFoUKAACwLAoVAABgWRQqAADAsihUAACAZVGoAAAAy6JQAQAAlkWhAgAALItCBQAAWBaFCgAAsCwKFQAAYFkUKgAAwLIoVAAAgGVRqAAAAMuiUAEAAJZFoQIAACyLQgUAAFiW6YXKzz//rOuuu06JiYmKjY1V//79lZOTY3ZYAADAAiLM3Pjhw4d19tlna+jQofroo4+UlJSkXbt2qVmzZmaGBQAALMLUQmXWrFlKSUnR3LlzXW0dO3Y0LyAAAGApphYqS5cu1fDhwzV69GhlZ2erXbt2uv3223XzzTdX2b+kpEQlJSWu94WFhZIkh8Mhh8MRsLgqxgrkmPBEnkOHXIcGeQ4dch0awcqzL+PZDMMwArp1H0RHR0uSpkyZotGjR2vDhg2aPHmyXn75ZV1//fUe/dPT05WRkeHRPn/+fMXGxgY9XgAAUHfFxcUaM2aMCgoKFB8fX2NfUwuVyMhIDRw4UGvXrnW1TZo0SRs3btQXX3zh0b+qGZWUlBTl5+fXuqO+cDgcyszMVFpamux2e8DGhTvyHDrkOjTIc+iQ69AIVp4LCwvVsmVLrwoVUw/9JCcnq1evXm5tp556qhYuXFhl/6ioKEVFRXm02+32oHxQgzUu3JHn0CHXoUGeQ4dch0ag8+zLWKZennz22Wfru+++c2vbsWOHOnToYFJEAADASkwtVO666y6tW7dOf/3rX/X9999r/vz5euWVVzRx4kQzwwIAABZhaqFyxhlnaPHixfrnP/+pPn366JFHHtEzzzyja6+91sywAACARZh6jookXXLJJbrkkkvMDgMAAFiQz4XKd999p3/+859avXq1fvzxRxUXF6tVq1b6wx/+oOHDh+uKK66o8oRXAAAAX3l96Gfz5s1KS0tTv379tGrVKp1xxhmaPHmyHnnkEV133XUyDEP333+/2rZtq1mzZrldRgwAAOAPr2dULr/8ct1zzz1asGCBWrRoUW2/L774Qk8//bSeeuop3XfffQEJEgAANE5eFyo7d+5UZGRkrf1SU1OVmpqq0tLSOgUGAADg9aEfb4qUuvQHAACozOsZleeee87rQSdNmuRXMAAAACfzulB5+umn3d4fOHBAxcXFatasmSTpyJEjio2NVVJSEoUKAAAICK8P/ezevdv1euyxx9S/f39t375dhw4d0qFDh7R9+3adfvrpeuSRR4IZLwAAaET8ujPtgw8+qOeff149evRwtfXo0UNPP/20HnjggYAFBwAAGje/CpV9+/bJ4XB4tJeXl+uXX36pc1AAAACSn4XKH//4R91888368ssvZRiGJOnLL7/UrbfeqgsvvDCgAQIAgMbLr0Ll9ddfV7t27XTmmWcqOjpaUVFRGjRokJKTk/Xqq68GOkYAANBI+fVQwlatWmnZsmXasWOHvv32WxmGoVNPPVXdu3cPdHwAAKARq9PTkzt27CjDMNSlSxdFRJj+IGYAANDA+HXop7i4WDfeeKNiY2PVu3dv7dmzR9KJG709/vjjAQ0QAAA0Xn4VKtOnT9fXX3+trKwsRUdHu9ovvPBCLViwIGDBAQCAxs2v4zVLlizRggULdNZZZ8lms7nae/XqpV27dgUsOAAA0Lj5NaNy4MABJSUlebQfO3bMrXABAACoC78KlTPOOEMffvih631FcTJnzhylpqYGJjIAANDo+XXoZ+bMmbrooou0bds2lZWV6dlnn9XWrVv1xRdfKDs7O9AxAgCARsqvGZXBgwfr888/V3Fxsbp06aIVK1aodevW+uKLLzRgwIBAxwgAABopv29+0rdvX73xxhuBjAUAAMBNne7SlpeXp7y8PDmdTrf20047rU5BAQAASH4WKjk5ORo3bpy2b9/ueihhBZvNpvLy8oAEBwAAGje/CpXx48ere/fueu2119S6dWsuSQYAAEHhV6Gye/duLVq0SF27dg10PAAAAC5+XfXzxz/+UV9//XWgYwEAAHDj14zKq6++qnHjxmnLli3q06eP7Ha72/JRo0YFJDgAANC4+VWorF27VmvWrNFHH33ksYyTaQEAsLC16b//PDi9ul6W4dehn0mTJmns2LHat2+fnE6n24siBQAABIpfhcrBgwd11113qXXr1nXaeHp6umw2m9urTZs2dRoTAAA0HH4d+vnTn/6klStXqkuXLnUOoHfv3vrkk09c78PDw+s8JgAAaBj8KlS6d++u6dOna82aNerbt6/HybSTJk3yPoCICGZRAABAlfy+6icuLk7Z2dkeT0u22Ww+FSo7d+5U27ZtFRUVpUGDBumvf/2rOnfuXGXfkpISlZSUuN4XFhZKkhwOhxwOhx97UrWKsQI5JjyR59Ah16FBnkOHXNeB86SzPmrJX7Dy7Mt4NqPyPfBrYRiGfvrpJyUlJSk2Ntbn4E720Ucfqbi4WN27d9cvv/yiRx99VN9++622bt2qxMREj/7p6enKyMjwaJ8/f36dYwEAAKFRXFysMWPGqKCgQPHx8TX29blQcTqdio6O1tatW9WtW7c6BVrZsWPH1KVLF02dOlVTpkzxWF7VjEpKSory8/Nr3VFfOBwOZWZmKi0tzeOwFgKHPIcOuQ4N8hw65LoO1s/8/edB02vsGqw8FxYWqmXLll4VKj4f+gkLC1O3bt108ODBgBcqTZo0Ud++fbVz584ql0dFRSkqKsqj3W63B+WDGqxx4Y48hw65Dg3yHDrk2g9hzt9/9jJ3gc6zL2P5dXnyE088oXvuuUdbtmzxZ/VqlZSUaPv27UpOTg7ouAAAoH7y62Ta6667TsXFxerXr58iIyMVExPjtvzQoUNejfO///u/uvTSS3XKKacoLy9Pjz76qAoLCzVu3Dh/wgIAAA2MX4XKM888E5CN7927V9dcc43y8/PVqlUrnXXWWVq3bp06dOgQkPEBAED95lehEqgZj3feeScg4wAAgDqoeP6PBZ/941ehIknl5eVasmSJtm/fLpvNpl69emnUqFHcWRYAAASMX4XK999/r5EjR+rnn39Wjx49ZBiGduzYoZSUFH344YcBubU+AACA309P7tKli3Jzc7Vp0yZt3rxZe/bsUadOnXy6Ky0AAEBN/JpRyc7O1rp169SiRQtXW2Jioh5//HGdffbZAQsOAAA0bn7NqERFRamoqMij/ejRo4qMjKxzUAAAAJKfhcoll1yiW265RevXr5dhGDIMQ+vWrdNtt92mUaNGBTpGAAAan7Xpv1+N04j5Vag899xz6tKli1JTUxUdHa3o6GidffbZ6tq1q5599tlAxwgAABopv85Radasmd5//33t3LlT3377rQzDUK9evdS1a9dAxwcAABoxv++jIkndunUL+IMJAQAAKvhVqJSXl2vevHn69NNPlZeXJ6fT6bb8s88+C0hwAACgcfOrULnzzjs1b948XXzxxerTp49sNlug4wIAAPCvUHnnnXf07rvvauTIkYGOBwAAwMWvq34iIyM5cRYAAASdX4XK3XffrWeffVaGYQQ6HgAAABe/Dv2sWbNGK1eu1EcffaTevXvLbre7LV+0aFFAggMAAI2b3/dR+Z//+Z9AxwIAAODGr0Jl7ty5gY4DAADAg1/nqAAAAItrIM8K8rpQueiii7R27dpa+xUVFWnWrFl64YUX6hQYAACA14d+Ro8erSuvvFJNmzbVqFGjNHDgQLVt21bR0dE6fPiwtm3bpjVr1mjZsmW65JJL9OSTTwYzbgAA0Ah4XajceOONGjt2rN577z0tWLBAc+bM0ZEjRyRJNptNvXr10vDhw5WTk6MePXoEK14AANCI+HQybWRkpMaMGaMxY8ZIkgoKCvTrr78qMTHR4xJlAACAuqrT05MTEhKUkJAQqFgAAADccNUPAACwLAoVAABgWRQqAADAsihUAACAZflVqOTm5mrv3r2u9xs2bNDkyZP1yiuvBCwwAAAAvwqVMWPGaOXKlZKk/fv3Ky0tTRs2bNB9992nhx9+OKABAgCAxsuvQmXLli0688wzJUnvvvuu+vTpo7Vr12r+/PmaN29eIOMDAACNmF+FisPhUFRUlCTpk08+0ahRoyRJPXv21L59+/wKZObMmbLZbJo8ebJf6wMAgIbHr0Kld+/eeumll7R69WplZmbqoosukiT997//VWJios/jbdy4Ua+88opOO+00f8IBAAANlF+FyqxZs/Tyyy9ryJAhuuaaa9SvXz9J0tKlS12HhLx19OhRXXvttZozZ46aN2/uTzgAAKCB8usW+kOGDFF+fr4KCwvdiotbbrlFTZo08WmsiRMn6uKLL9aFF16oRx99tMa+JSUlKikpcb0vLCyUdOJQlMPh8Gm7NakYK5BjwhN5Dh1yHRrkOXQaRa6dv80l+LuP1a3vPGmOomJZNX2DlWdfxrMZhmH4uoELLrhAixYtUrNmzdzaCwsLdfnll+uzzz7zapx33nlHjz32mDZu3Kjo6GgNGTJE/fv31zPPPFNl//T0dGVkZHi0z58/X7Gxsb7uBgAAMEFxcbHGjBmjgoICxcfH19jXr0IlLCxM+/fvV1JSklt7Xl6e2rVr51WllJubq4EDB2rFihWuQ0e1FSpVzaikpKQoPz+/1h31hcPhUGZmptLS0ngqdBCR59Ah16FBnkOnUeR6/cwTfw6aXrf1K1SMc3J75bZK2wpWngsLC9WyZUuvChWfDv385z//cf28bds27d+/3/W+vLxcH3/8sdq1a+fVWDk5OcrLy9OAAQPcxli1apX+/ve/q6SkROHh4W7rREVFua42Opndbg/KBzVY48IdeQ4dch0a5Dl0GnSuw5wn/vR3/yrWr1Axzsntlduq2Vag8+zLWD4VKv3795fNZpPNZtMFF1zgsTwmJkbPP/+8V2P98Y9/1DfffOPWNn78ePXs2VPTpk3zKFIAAEDj41Ohsnv3bhmGoc6dO2vDhg1q1aqVa1lkZKSSkpK8LjCaNm2qPn36uLU1adJEiYmJHu0AAKBx8qlQ6dChgyTJ6XTW0hMAAKDu/Lo8WZJ27NihrKws5eXleRQuDz30kF9jZmVl+RsOAACoydp079osxq9CZc6cOfrLX/6ili1bqk2bNrLZbK5lNpvN70IFAADgZH4VKo8++qgee+wxTZs2LdDxAAAAuPh1C/3Dhw9r9OjRgY4FAADAjV+FyujRo7VixYpAxwIAAODGr0M/Xbt21YMPPqh169apb9++HjdumTRpUkCCAwAAjZtfhcorr7yiuLg4ZWdnKzs7222ZzWajUAEAIFBqujJncA3LGgi/CpXdu3cHOg4AAAAPfp2jAgAAEAp+zahMmDChxuWvv/66X8EAAACczK9C5fDhw27vHQ6HtmzZoiNHjlT5sEIAAAB/+FWoLF682KPN6XTq9ttvV+fOnescFAAAgFSHZ/1UFhYWprvuuktDhgzR1KlTAzUsAAANR8UVPIG+WqcePLPHXwE9mXbXrl0qKysL5JAAAKAR82tGZcqUKW7vDcPQvn379OGHH2rcuHEBCQwAAMCvQmXz5s1u78PCwtSqVSs99dRTtV4RBAAA4C2/CpWVK1cGOg4AAAAPdTqZ9sCBA/ruu+9ks9nUvXt3tWrVKlBxAQAA+Hcy7bFjxzRhwgQlJyfrvPPO07nnnqu2bdvqxhtvVHFxcaBjBADAGtame15hU1UbAsavQmXKlCnKzs7Wv//9bx05ckRHjhzR+++/r+zsbN19992BjhEAADRSfh36Wbhwod577z0NGTLE1TZy5EjFxMToyiuv1OzZswMVHwAAaMT8mlEpLi5W69atPdqTkpI49AMAAALGr0IlNTVVM2bM0PHjx11tv/76qzIyMpSamhqw4AAAQOPm16GfZ599VhdddJHat2+vfv36yWaz6auvvlJ0dLSWL18e6BgBAEAj5Veh0qdPH+3cuVNvvfWWvv32WxmGoauvvlrXXnutYmJiAh0jAABopPy+j0pMTIxuvvnmQMYCAADgxq9zVGbOnKnXX3/do/3111/XrFmz6hwUAACA5Geh8vLLL6tnz54e7b1799ZLL71U56AAAAAkPwuV/fv3Kzk52aO9VatW2rdvX52DAgAAkPw8RyUlJUWff/65OnXq5Nb++eefq23btgEJDACAkDr5NviD06vrZS2N4Nb9fhUqN910kyZPniyHw6ELLrhAkvTpp59q6tSp3EIfAAAEjF+FytSpU3Xo0CHdfvvtKi0tlSRFR0dr2rRpmj59utfjzJ49W7Nnz9aPP/4o6cQ5Lg899JBGjBjhT1gAAKCB8atQsdlsmjVrlh588EFt375dMTEx6tatm6Kionwap3379nr88cfVtWtXSdIbb7yhyy67TJs3b1bv3r39CQ0AADQgft9HRZLi4uJ0xhln+L3+pZde6vb+scce0+zZs7Vu3ToKFQAAULdCJZDKy8v1r3/9S8eOHav2eUElJSUqKSlxvS8sLJQkORwOORyOgMVSMVYgx4Qn8hw65Do0yHPoBCXXzpMuhK1u3Io+Jy+vqq22bfjSN5QqxRWsz7Qv49kMwzACunUfffPNN0pNTdXx48cVFxen+fPna+TIkVX2TU9PV0ZGhkf7/PnzFRsbG+xQAQBAABQXF2vMmDEqKChQfHx8jX1NL1RKS0u1Z88eHTlyRAsXLtSrr76q7Oxs9erVy6NvVTMqKSkpys/Pr3VHfeFwOJSZmam0tDTZ7faAjQt35Dl0yHVokOfQCUqu18/8/edB1VwYUtHn5OVVtdW2DV/6muG3+IL1mS4sLFTLli29KlRMP/QTGRnpOpl24MCB2rhxo5599lm9/PLLHn2joqKqPGHXbrcH5R+FYI0Ld+Q5dMh1aJDn0AlorsOcJw9cc5+Tl1fVVts2fOlrhkrxBfoz7ctYJhwAq5lhGG6zJgAAoPEydUblvvvu04gRI5SSkqKioiK98847ysrK0scff2xmWAAAwCJMLVR++eUXjR07Vvv27VNCQoJOO+00ffzxx0pLSzMzLAAAYBGmFiqvvfaamZsHAAAWZ7lzVAAAACpQqAAAAMuiUAEAAJZFoQIAACyLQgUAAFgWhQoAALAsChUAAGBZFCoAAMCyKFQAAIBlUagAAADLolABAACWRaECAAAsi0IFAABYFoUKAACwLAoVAABgWRQqAADAsihUAACAZUWYHQAAAA3e2vSq3w9Or7kNzKgAAADrolABAACWRaECAAAsi0IFAABYFoUKAACwLK76AQDUD4G+Kqam8fzZVuUre7xZt/I68MCMCgAAsCwKFQAAYFkUKgAAwLIoVAAAgGVxMi0AoO64/XvgcIKtG2ZUAACAZZlaqMycOVNnnHGGmjZtqqSkJF1++eX67rvvzAwJAABYiKmFSnZ2tiZOnKh169YpMzNTZWVlGjZsmI4dO2ZmWAAAwCJMPUfl448/dns/d+5cJSUlKScnR+edd55JUQEAAKuw1Mm0BQUFkqQWLVpUubykpEQlJSWu94WFhZIkh8Mhh8MRsDgqxgrkmPBEnkOHXIdGo86z87cJ+mDu+0nbCEiuK8fsrOIgQ+Xxq9rPqtbzto9VVcpvoD/TvoxnMwzDCOjW/WQYhi677DIdPnxYq1evrrJPenq6MjIyPNrnz5+v2NjYYIcIAAACoLi4WGPGjFFBQYHi4+Nr7GuZQmXixIn68MMPtWbNGrVv377KPlXNqKSkpCg/P7/WHfWFw+FQZmam0tLSZLfbAzYu3JHn0CHXodGo87x+pmfboOnB2cag6YHJ9Unjub2vSuU+J+9bdet508eqfos9WJ/pwsJCtWzZ0qtCxRKHfu644w4tXbpUq1atqrZIkaSoqChFRUV5tNvt9qD8oxCsceGOPIcOuQ6NRpnnMKdnW6BzULGNk8atU64rj1fVPvy+oWpjqHY9b/pYVaWcBvoz7ctYphYqhmHojjvu0OLFi5WVlaVOnTqZGQ4AALAYUwuViRMnav78+Xr//ffVtGlT7d+/X5KUkJCgmJgYM0MDAAAWYOppyLNnz1ZBQYGGDBmi5ORk12vBggVmhgUAACzC9EM/AAAETVXPzQnE84i8eR5PfX5mT0XszjBJ/cyMhGf9AAAA66JQAQAAlmWJy5PhKT3duzYAABoyChWLoAgBAMAThUoIVC5CKEoAAPAOhQoAwH/+XNly8jr+XIGzNt0SV6MgNChUGhhvZm+Y4QEA1BcUKiagMAAAwDtcngwAACyLGZV6jJkZAEBDx4wKAACwLGZU6sjqsxpmx8eJuwCCav1M6ZyHfFun8pVK9fmZPI0AhUo9wpc8AKCx4dAPAACwLGZUwHOFAACWRaGCKnHjOACAFVCowCsUIQAAM1CoAIBZKq428ed5N4GOQQpeHHXZT67IafQ4mRYAAFgWMyoIGA4PAQACjUIFCBGurgIA31GowHL4QgcAVKBQQb3ApdAA0DhRqMB0M2dKTmfgx2VmBqijmq7WCdbVOFzlg0ooVBBSJxcKYWFSv351H6emNgBA/cblyQAAwLKYUUGD4c+MSn2cmamPMfurMe0rgKpRqKBR8eZLjhN3AcA6KFSAIKHAqVm9mS0JxS3mveHLbeitcGt+yfPE2FCeKMtJuQ0GhQpQi2B+ofozwxNM/u6rP0/bBgBvmFqorFq1Sk8++aRycnK0b98+LV68WJdffrmZIQFe4fAQAISGqYXKsWPH1K9fP40fP15XXHGFmaF4hS8jVIfPBgAEh6mFyogRIzRixAgzQwAalco316PAAmB19eoclZKSEpWUlLjeFxYWSpIcDoccDkfAtlMxVuUxw7jrTECFhTnc/kTVKn+0q/oc1vbxr/gsV861P2PPnOnZp/J6VcXjzd+fQOxrwDlPCqKWjVfkedYsh1tBOH16LWN7s1PB7ltV/5rGcQboH8Tqtlnbar/1czjDghufa4OO4Ixrca48B/gvni/j2QzDMAK6dT/ZbLZaz1FJT09XRkaGR/v8+fMVGxsbxOgAAECgFBcXa8yYMSooKFB8fHyNfetVoVLVjEpKSory8/Nr3VFfOBwOZWZmKi0tTXa73dVe1f8kTfPzmt9/bneOeXHUQViYQ337Zuqbb9LkdNprX6GxqPjdBvD3Wl2uK/9P3/UZP+nzNf3v51TdJwiqjaeGPlWpvF5V63jTR5K0/qSOg2reeMW/HbXl2WPsWsattW/lZSfFPPPNc0/8cNLnyS2eqvZvfaXk1LTNuqo8tpfjOpxhyjzcV2nNv5E9dZpnh0DF18i58lzp+7CuCgsL1bJlS68KlXp16CcqKkpRUVEe7Xa7PaAJrG7cYDw4z29ltt9/rudf8k6nnULlZBW/2yDkpHKuK/+1cX3GT/p8Vf67Fcy/B9XGU0OfqlRer6p1vOkjSQpzetGp8tg159ljbG/Gralv5WUnxeys4vPkNkRV+xfmRXIq9/FX5bF9HNce5qz63/9AxQdJgf+e9WWselWoAEBD4DqJOXfIiT9XWO/E5vTXhvz+xoLxofEwtVA5evSovv/+e9f73bt366uvvlKLFi10yimnmBgZAKsK1j1sAnGzu7o8EbzWbecOUfqNWVX3MangcStmJI/4gEAwtVD58ssvNXToUNf7KVOmSJLGjRunefPmmRQVgJPxP2nrSH9tiLTC7CiA0DK1UBkyZIgsci4vrCo36/efU4aYFIRJcrNO/BnE/W50RYiPz8BJT9fvsxXS70VCblbVK0QYkj8zKrlZ0tqs3+Nam/77dn35/VeMU92yk8fz5Vk4FePWkrfKMyxV9rkxy/vteovn+jRonKMCoF5rdMVWLbwpFoD6hEIFgGU01KKjIeyXx2Gnk2eagrGtym03ZgVte7Vtn3NvzEWhAgCNnOuL2XVoa4hJkTQ+FEW1o1ABACAIKEICg0IFACzA7dBKkGc0PE4SNpnboTELxQVroFBpyHKzfv85EFeOBHq8+iA368SfVtvf3Cz391aJLzfrxJ8V8VR+H8xxauhT1f1GTJWbVfd1g/E7rxg7lE6+wskHM988V/1GFmrmm+e67r7rcZ8Zk891QWBQqAAAGg1/DsdQ8JiLQgUAEDL+Xj5deb2wCGvdg4vLwoOHQgUAgBDw6oZ4zN54CDM7AAAAgOowowIAaBD8OfzCIRvro1AJtdys33/25oqGmpb50seXdQK1TW/61LauWWrb/snLrXLFjWTduGqSm3XiT3+vDPK23dfx6pK/n9dIv12J4vH33Gy5Weas28BQ4IQOh34AAIBlUagAAADL4tAPAAD1XEO+XT8zKgAAwLKYUanBzJmS02l2FAAANF4UKr7IzTrxZ+WrASraq+LNVTGBUjFeoK/2qBjX323XtMyXbVUex99xq/v9BSpvVY3nzTYq+ngztr9xVB7Dl89ybePWNE5V43qzbW/GCZaqthXs7ZuxTTRIDenGcRQqAABYWEM+/8QbFCoAANQjje0eLpxMCwAALItCBQAAWBaFCgAAsCzOUamL3KzA9q3oU9crZ3wZ25tt+rMdb5ZFGFI/nXguSvLQ4Gwj0LmsattVtfkzTiD6Vrd+Ra4DPXagx2mIcrPq17hosOrrSbnMqAAAAMtiRgUAgEbIm6uH7h+/KviB1IIZFQAAYFkUKgAAwLIoVAAAgGVxjoo/crPMG9+bbXvTJxDr1GW9UMnN8n5ZTX2tLjcr9GPXdZt1XT8QcrPMjgBALUyfUXnxxRfVqVMnRUdHa8CAAVq9erXZIQEAAIswtVBZsGCBJk+erPvvv1+bN2/WueeeqxEjRmjPnj1mhgUAACzC1ELlb3/7m2688UbddNNNOvXUU/XMM88oJSVFs2fPNjMsAABgEaado1JaWqqcnBzde++9bu3Dhg3T2rVrq1ynpKREJSUlrvcFBQWSpEOHDsnhcAQsNofDoeLiYpWWHpTTaf99gfOo74OVHvR/3WCwUDxhTuNEnp1hctYlrop1/V3fl234Mn5VcZmUf1euSw/KaYHfvemC9Htw+0w7bQEdG+7IdWgcLCpVcXGxDh48KLvdXvsKXioqKpIkGYZRa1/TCpX8/HyVl5erdevWbu2tW7fW/v37q1xn5syZysjI8Gjv1KlTUGJECLxqdgCNCLkODfIcOuQ66GbOC+74RUVFSkhIqLGP6Vf92GzulbBhGB5tFaZPn64pU6a43judTh06dEiJiYnVruOPwsJCpaSkKDc3V/Hx8QEbN9jOOOMMbdy40ewwvEaeQ4dchwZ5Dh1yHRrByrNhGCoqKlLbtm1r7WtaodKyZUuFh4d7zJ7k5eV5zLJUiIqKUlRUlFtbs2bNghWi4uPj69VfgPDw8HoVbwXyHDrkOjTIc+iQ69AIRp5rm0mpYNrJtJGRkRowYIAyMzPd2jMzMzV48GCToqrfJk6caHYIjQJ5Dh1yHRrkOXTIte9shjdnsgTJggULNHbsWL300ktKTU3VK6+8ojlz5mjr1q3q0KGDWWGpsLBQCQkJKigoqJeVb31BnkOHXIcGeQ4dch0aVsizqeeoXHXVVTp48KAefvhh7du3T3369NGyZctMLVKkE4eYZsyY4XGYCYFFnkOHXIcGeQ4dch0aVsizqTMqAAAANTH9FvoAAADVoVABAACWRaECAAAsi0IFAABYFoUKAACwrEZZqLz44ovq1KmToqOjNWDAAK1evbrG/tnZ2RowYICio6PVuXNnvfTSSyGKtP7zJdeLFi1SWlqaWrVqpfj4eKWmpmr58uUhjLb+8vUzXeHzzz9XRESE+vfvH9wAGxBfc11SUqL7779fHTp0UFRUlLp06aLXX389RNHWX77m+e2331a/fv0UGxur5ORkjR8/XgcPHqxxHUirVq3SpZdeqrZt28pms2nJkiW1rhPy70SjkXnnnXcMu91uzJkzx9i2bZtx5513Gk2aNDF++umnKvv/8MMPRmxsrHHnnXca27ZtM+bMmWPY7XbjvffeC3Hk9Y+vub7zzjuNWbNmGRs2bDB27NhhTJ8+3bDb7camTZtCHHn94mueKxw5csTo3LmzMWzYMKNfv36hCbae8yfXo0aNMgYNGmRkZmYau3fvNtavX298/vnnIYy6/vE1z6tXrzbCwsKMZ5991vjhhx+M1atXG7179zYuv/zyEEde/yxbtsy4//77jYULFxqSjMWLF9fY34zvxEZXqJx55pnGbbfd5tbWs2dP4957762y/9SpU42ePXu6td16663GWWedFbQYGwpfc12VXr16GRkZGYEOrUHxN89XXXWV8cADDxgzZsygUPGSr7n+6KOPjISEBOPgwYOhCK/B8DXPTz75pNG5c2e3tueee85o37590GJsiLwpVMz4TmxUh35KS0uVk5OjYcOGubUPGzZMa9eurXKdL774wqP/8OHD9eWXX8rhcAQt1vrOn1xX5nQ6VVRUpBYtWgQjxAbB3zzPnTtXu3bt0owZM4IdYoPhT66XLl2qgQMH6oknnlC7du3UvXt3/e///q9+/fXXUIRcL/mT58GDB2vv3r1atmyZDMPQL7/8ovfee08XX3xxKEJuVMz4TjT1Fvqhlp+fr/Lyco+nM7du3drjKc4V9u/fX2X/srIy5efnKzk5OWjx1mf+5Lqyp556SseOHdOVV14ZjBAbBH/yvHPnTt17771avXq1IiIa1T8BdeJPrn/44QetWbNG0dHRWrx4sfLz83X77bfr0KFDnKdSDX/yPHjwYL399tu66qqrdPz4cZWVlWnUqFF6/vnnQxFyo2LGd2KjmlGpYLPZ3N4bhuHRVlv/qtrhyddcV/jnP/+p9PR0LViwQElJScEKr8HwNs/l5eUaM2aMMjIy1L1791CF16D48pl2Op2y2Wx6++23deaZZ2rkyJH629/+pnnz5jGrUgtf8rxt2zZNmjRJDz30kHJycvTxxx9r9+7duu2220IRaqMT6u/ERvXfqZYtWyo8PNyjKs/Ly/OoECu0adOmyv4RERFKTEwMWqz1nT+5rrBgwQLdeOON+te//qULL7wwmGHWe77muaioSF9++aU2b96s//f//p+kE1+mhmEoIiJCK1as0AUXXBCS2Osbfz7TycnJateunRISElxtp556qgzD0N69e9WtW7egxlwf+ZPnmTNn6uyzz9Y999wjSTrttNPUpEkTnXvuuXr00UeZ+Q4gM74TG9WMSmRkpAYMGKDMzEy39szMTA0ePLjKdVJTUz36r1ixQgMHDpTdbg9arPWdP7mWTsyk3HDDDZo/fz7Hl73ga57j4+P1zTff6KuvvnK9brvtNvXo0UNfffWVBg0aFKrQ6x1/PtNnn322/vvf/+ro0aOuth07digsLEzt27cParz1lT95Li4uVliY+9dZeHi4pN//t4/AMOU7MWin6VpUxWVvr732mrFt2zZj8uTJRpMmTYwff/zRMAzDuPfee42xY8e6+ldcinXXXXcZ27ZtM1577TUuT/aSr7meP3++ERERYbzwwgvGvn37XK8jR46YtQv1gq95royrfrzna66LioqM9u3bG3/+85+NrVu3GtnZ2Ua3bt2Mm266yaxdqBd8zfPcuXONiIgI48UXXzR27dplrFmzxhg4cKBx5plnmrUL9UZRUZGxefNmY/PmzYYk429/+5uxefNm16XgVvhObHSFimEYxgsvvGB06NDBiIyMNE4//XQjOzvbtWzcuHHG+eef79Y/KyvL+MMf/mBERkYaHTt2NGbPnh3iiOsvX3J9/vnnG5I8XuPGjQt94PWMr5/pk1Go+MbXXG/fvt248MILjZiYGKN9+/bGlClTjOLi4hBHXf/4mufnnnvO6NWrlxETE2MkJycb1157rbF3794QR13/rFy5ssZ/d63wnWgzDObFAACANTWqc1QAAED9QqECAAAsi0IFAABYFoUKAACwLAoVAABgWRQqAADAsihUAACAZVGoAAAAy6JQARBU5513nmw2m8fr2muvrXXdG264Qffee29AxgJQP3FnWgBBYxiGEhISNGPGDI9iIi4uTnFxcdWu63Q61bp1ay1dulSpqal1GgtA/RVhdgAAGq6dO3eqqKhI5513ntq0aePTup9//rnCwsJcT3Suy1gA6i8O/QAImpycHEVEROi0007zed2lS5fq0ksvVVhYWJ3HAlB/UagACJpNmzapvLxciYmJrsMzcXFxuvnmm2tdd+nSpbrssst8GuuDDz5Qjx491K1bN7366qtB2ScAocU5KgCC5oILLlCrVq302GOPubU3b95ciYmJ1a63fft2DRw4UPn5+YqJifFqrLKyMvXq1UsrV65UfHy8Tj/9dK1fv14tWrQI/I4BCBlmVAAEzebNm3XOOeeoa9eubq/ExERt2bJFXbp00f79+yVJ+fn56t+/v0pLS7V06VKlpaW5ipTaxpKkDRs2qHfv3mrXrp2aNm2qkSNHavny5absN4DAoVABEBQ//PCDjhw5oj/84Q9VLu/Tp4+uvvpqffbZZ5KkjIwMTZs2TZGRkXr//fc1atQor8eSpP/+979q166d63379u31888/B2hvAJiFq34ABEVOTo4kqXXr1q5ZkwpJSUkKCwtT7969tWPHDn3//ffKycnRc889p7y8PG3cuFFLlizxaayqjmLbbLYA7xWAUKNQARAUmzZtkiR1797drd1ut6uoqEhRUVHq1q2bPvjgA91333167LHHZLPZ9O9//1uDBg1SUlKST2O1a9fObQZl7969rkubAdRfnEwLwDRHjhxRt27dNGjQIH3wwQeSpFGjRumcc87R1KlTfRqrrKxMp556qrKyslwn065bt67Gk3YBWB8zKgBM06xZM0nS448/7mo755xzdM011/g8VkREhJ566ikNHTpUTqdTU6dOpUgBGgBmVACYxuFwqE+fPvruu+/MDgWARXHVDwDTfPvtt+rRo4fZYQCwMGZUAACAZTGjAgAALItCBQAAWBaFCgAAsCwKFQAAYFkUKgAAwLIoVAAAgGVRqAAAAMuiUAEAAJZFoQIAACyLQgUAAFgWhQoAALAsChUAAGBZ/x8NpWlB1kdT5gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "#in abhängigkeit von der energie der elektronen\n", "plt.hist(energyloss_lost, bins=200, density=True, alpha=0.5, histtype='bar', color=\"darkorange\", label=\"lost\")\n", @@ -424,29 +525,40 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 58, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABjYAAAJOCAYAAAAUHj4bAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAADYY0lEQVR4nOzdd3xUxf7/8feSkEJIllBDlKqIVEFQmld6u0SuBVBQpCiigIiCBZVioSiI3gti4SooXS7CVUGkKYpUQUTKFQsKSlVCAkiAJPP7g1/265J2Njmbba/n47EP5ezsnJlz5pyds5OZj8MYYwQAAAAAAAAAABAAivm6AAAAAAAAAAAAAFYxsAEAAAAAAAAAAAIGAxsAAAAAAAAAACBgMLABAAAAAAAAAAACBgMbAAAAAAAAAAAgYDCwAQAAAAAAAAAAAgYDGwAAAAAAAAAAIGAwsAEAAAAAAAAAAAIGAxsAAAAAAAAAACBgMLABAAAAAAAAAAACBgMbAAAg6PXt21ezZs3ydTFg0c6dO3XgwAFfFwMAAAAA4KcY2AAAAIBfefPNN7V27VpfFwMAAAAA4KcY2AAAAMjHwoULVadOHUVHR8vhcGjHjh2+LlKeli9fLofD4faKi4tTo0aN9N577xXZ/t9991237cnJyercubMiIiI0bdo0t/c+//xzDRgwQMeOHXNt27Nnj2699VYdPXrU62UOJJ999lm285v12rRpU7b0O3fu1D333KMrrrhC0dHRio6OVo0aNTRw4EB99dVXBSrDLbfcoujoaJ08eTLXNHfeeaeKFy/u8/M3a9YsORwO/fzzz0W+77Fjx8rhcOj333+3Lc8NGzZo7NixeR77QJaRkaHy5cvr5ZdfzjWNN45rIAjmc79lyxZ17NhRsbGxKlmypFq3bq0vv/wyWzpP73+nT5/WsGHDlJiYqKioKDVo0EALFiwocDoAAOA/GNgAAABBKSkpSaVKlVKpUqU0b948DRo0yPXviRMnWs7n+PHj6t27t6644gqtWLFCGzdu1FVXXeXFkhfe9u3bJUn//e9/tXHjRm3YsEEzZszQmTNn1LNnT+3cubNI9t+oUSPXtp07d6px48b6+uuvtXbtWg0ZMsTtM40aNVKFChVUv359rVmzRtOmTVP79u3VqVMnlStXzqvlDVTjx4/Xxo0b3V5169Z1S/PGG2+oUaNG2rx5sx566CF99NFHWrZsmYYNG6bdu3fruuuu048//ujxvu+55x6lpaVp3rx5Ob6fkpKiJUuWKCkpSRUqVChQ/ZCzDRs26JlnngnKH7eli4Ocx48f16233urrovidYD33W7du1Y033qizZ89q9uzZmj17ttLS0tS2bVtt3Lgxx89Yuf9J0q233qp33nlHY8aM0ccff6zrrrtOPXv2zHbvspoOAAD4j3BfFwAAAMAbPvroI9f/9+3bV61atVLfvn09zmffvn26cOGC7rrrLrVs2TLXdH/++adKlChRkKLabvv27XI6neratatrW7NmzZSenq677rpLX3/9terXr+/V/UdHR+vqq6+WJC1YsED33HOP6tevr8WLFysxMTHbZ2JiYvTss88qMzNTEyZMULFixTR37lzdcccdXiunL5w4cUKZmZkqW7ZsofOqUaOGmjZtmuv7X375pQYNGqQuXbroP//5jyIiIlzvtWnTRoMHD9aiRYsUHR3t8b47d+6sxMREvf322xo0aFC29+fPn6+zZ8/qnnvu8ThvhLb//Oc/aty4sapUqeK1ffjT/TpUHD58WDExMYqLi8v23qhRo1SqVCmtWLHCdV7atWun6tWra8SIETnO3Mjv/iddnD24atUqzZs3Tz179pQktW7dWr/88oseffRR3X777QoLC7OcDgAA+BdmbAAAgICxfv16dejQQU6nU/Hx8erSpYu+//57r+2vb9++uuGGGyRJt99+uxwOh1q1auVaBmX79u3q1q2b4uPjdcUVV7iVs23btoqNjVWJEiXUvHlzLVu2zC3vrDx27typ7t27y+l0qnTp0nrkkUeUnp6u7777Tp06dVJsbKyqVq2qF1980XK5t23bpgYNGmTb/uuvv0qSatWqVYCjIb388staunSpR/sfMWKEevbsqTvvvFPr1q3LcVBDkr799ltde+212r59u/7+97+rf//+GjdunLp06ZLvcjNW24Xd7eemm25S48aNNWPGDF1zzTWKjo5WpUqVNGbMGGVmZub4mZ07d6pixYrq3Lmz3n33XZ06darA+8/P+PHjFRYWpjfeeMNtUOOvunfvnu2cfP/99+rVq5fKly+vyMhI1apVS6+++qpbmrCwMPXp00fbtm3Tt99+my3fmTNnuupZEJ5cQ7t371bPnj3ldDpVoUIF9e/fXykpKbnm/cUXX8jhcGj+/PnZ3nv33XflcDi0devWXD+ftd+vv/5at956q+Li4uR0OnXXXXfp+PHjOX7m6NGj+ZbRap0fffRRSVK1atVcS/B89tlnXjlux48f13333adKlSopMjJS5cqVU4sWLbR69epcj8/u3bvlcDi0aNEi17Zt27bJ4XCoTp06bmm7du3qNrPLGKMlS5botttuyzX/vzp48GC+5yC/+7WV9u7N+7UkLV26VA6HQ2vWrMn23muvvSaHw6Fbb70113Oflpamhg0b6sorr3Q7h0eOHFFCQoJatWqljIwMS2XJbZmngiznlpycrLfeekvt2rXT5Zdfrp9++inHdF9++aVatWrlNtgUGxurG2+8URs2bNDhw4c92m+WJUuWqGTJkurevbvb9n79+unQoUPavHmzR+mkwrcFb7clAABCigEAAAgAY8aMMcWKFTP9+/c3y5YtM//5z39MvXr1TKVKlcypU6e8ss8ffvjBvPrqq0aSGT9+vNm4caPZvXu3GTNmjJFkqlSpYh5//HGzatUqs3TpUmOMMZ999pkpXry4adSokVm4cKFZunSp6dChg3E4HGbBggVu9ZFkatasaZ577jmzatUq89hjjxlJZsiQIebqq682//rXv8yqVatMv379jCSzePHifMv8+++/G0lm6NCh5sKFC+bChQvm6NGj5t133zWxsbHm3nvvLfDx6NWrlylevLhZsmRJvvu//fbbTZs2bUxkZKSZMWNGvnkfPHjQfPjhh8YYYwYPHmxmzpxp0tPTzaxZs8z58+dz/ZzVduGN9lOxYkUTExNjatWqZWbPnm1Wrlxp7rjjDiMp1zqfPXvWzJ0719x0000mIiLCREVFmW7dupnFixebtLQ0S/v99NNPjSRTvnx5ExYWZmJjY02HDh3MF1984UqTnp5uoqOjTbNmzTyq0+7du43T6TT16tUz7777rlm5cqUZPny4KVasmBk7dqxb2u+//944HA4zbNiwbHlIMk888YRH+85SkGto9OjRZtWqVWbKlCkmMjLS9OvXz5Vu5syZRpLZv3+/a1vDhg1NixYtsu37uuuuM9ddd12e5fvr9f/oo4+aTz75xEyZMsXExMSYhg0burVXq2W0WueDBw+aBx980Egy77//vtm4caPZuHGjSUlJsf24GWNMx44dTbly5cybb75pPvvsM7N06VIzevRot/xyUrFiRXPfffe5/j1x4kQTHR1tJJnffvvNGGPMhQsXTFxcnHnsscdc6davX28kmX379tl+DnK6X1tt7966X2e5cOGCKV++vLnzzjuzvXf99deba6+9Ns9zb4wx+/btM7GxsebWW281xhiTkZFh2rRpY8qXL28OHTpkuSxZ+Wa91q5day677DKTkJDg2ldezpw5YxYsWGC6du1qIiIiTHR0tLntttvMokWLzLlz53L8TEREhLn77ruzbe/Zs6eRZD755BPXNiv3vyxNmzbN8XretWuXkWTeeOMNj9IZU/i24O22BABAKGFgAwAA+L0PP/zQSDIvvvii2/Z9+/YZSWbOnDnZPtOpUycTExOT42vcuHGW9531I8qiRYtc27J+mBg9enS29E2bNjXly5d3+7E8PT3d1K1b11x++eUmMzPTLY+XXnrJ7fMNGjRw/XCV5cKFC6ZcuXKuH6zysnLlSiMp2ys8PNw8//zzluudk/T09HwHN/66/6ioKLNp0yaP95M1sJEfq+2iIO0nP7/++quRZKpXr25Onjzp2n7+/HmTkJBgkpKS8s0jOTnZvP3226ZDhw4mPDzcOJ1O07dvX/PJJ5+Y9PT0XD+3fft289BDD5klS5aYzz//3Lz99tumVq1aJiwszKxYscIYY8yRI0eMJHPHHXdk+3x6erpr0OvChQuuNmnMxR+yL7/88mw/YA4ZMsRERUWZEydOuG1v2bKlKVu2rNsPycOHD7f043RuPL2GLj2vgwYNMlFRUa50OQ1sZG37+uuvXdu2bNliJJl33nknz/Jl7ffhhx922z537txs7clqGa3W2RhjJk2alK0+3jhuxhhTsmTJbANXVtx1112mevXqrn+3a9fODBgwwMTHx7uO75dffmkkmZUrV7rSDRs2zNSrVy/f/AtyDnK6X1tt7966X//VI488YqKjo93uJ3v27DGSzNSpU40xuZ/7LAsXLjSSzCuvvGJGjx5tihUr5nZ8PZWenm7+8Y9/mJIlS5pt27blmu78+fPmo48+Mr169TIxMTEmIiLCJCUlmTlz5lgaOG7QoIG56qqrTEZGhmvbhQsXTPXq1Y0kM2/ePNd2K/e/LDVq1DAdO3bMtr9Dhw65/mDBk3TGFL4tFEVbAgAgVLAUFQAA8HujR4/WFVdcoYceekjp6emuV7Vq1RQdHZ3j8hYff/yxTp8+nePrySeftKVcly6XcubMGW3evFndunVTyZIlXdvDwsLUu3dv/frrr/ruu+/cPpOUlOT271q1asnhcLgt4RMeHq4rr7xSv/zyS75l2rZtmyTp/fff19atW7V161atWLFCXbp00ejRo/X+++/n+Lnff/89zyVIHA6HwsPDNW/ePF24cEE9evTQ0aNHc91/7969lZaWps8//zzfMl9q2rRpluKhWG0XBWk/+claqmjs2LFyOp2u7cWLF9eVV16Z7/JZklSqVCn169dPn3zyiQ4fPqyJEydq//796tSpkxITE3MtV8OGDfXKK6/o5ptv1t/+9jf169dPGzZsUMWKFfXYY4/lu99GjRqpePHirtdLL70kSUpLS9OaNWt0yy23qESJEm7H6u9//7vS0tK0adMmt7zuuece/f777/rggw8kSenp6ZozZ47+9re/qUaNGvmW5VIFuYb+GktGkurXr6+0tDQdO3Ys1/307NlT5cuXd1tyaOrUqSpXrpxuv/12S2W988473f7do0cPhYeH69NPP82WNq8yFqTOl/LWcbv++us1a9YsPf/889q0aZMuXLiQZzmytG3bVj/99JP279+vtLQ0rV+/Xp06dVLr1q21atUqSdLq1asVGRnpWu5PunjfsroMleTZObg034K0d7vv13/Vv39/nT17VgsXLnRtmzlzpiIjI9WrVy9LefTo0UMPPPCAHn30UT3//PN68skn1b59e4/K8VdDhgzRsmXLtGjRIl177bU5ptm5c6cSEhL0j3/8Q7///rv+9a9/6ejRo/rwww915513urXH3Dz44IPat2+fhgwZot9++00HDx7U/fff7zqGxYr9388Wnt7/HA5Hrvv963tW02UpbFvwZlsCACBUEDwcAAD4tSNHjujrr7+WJEVGRuaYplSpUkVYov9TsWJFt38nJyfLGJNtuyRXHIM//vjDbXvp0qXd/h0REaESJUooKioq2/bU1NR8y5QVuLtr165uwU5btmypuLg4zZgxQ7feemu2z8XGxmrGjBn55r9ixQotXrxY//jHP1SmTJkc9x8VFaW3335bkvTEE0+oZs2a2X5ELSyr7cJb7eerr75S8eLFs63JLkmHDh1yixtgRWpqqk6ePKmUlBQZY1SqVCmFh1vvqpcqVUpJSUl6/fXXdfbsWZUtW1bR0dE5/iA2b948/fnnnzp8+LDbefnjjz+Unp6uqVOnaurUqTnu59IBm27duunBBx/UzJkzddttt2n58uU6evSoXnjhBctl/6uCXEOXtsOs83z27Nlc9xMZGamBAwfqpZde0qRJk3ThwgW99957euSRR3JtJ5dKSEhw+3d4eLjKlCmTrXz5lfHChQse1/lS3jpuCxcu1PPPP69///vfGjVqlEqWLKlbbrlFL774Yrb6/1W7du0kXRy8qFatmi5cuKA2bdro6NGjeu6551zvtWjRwhW8fsuWLTpw4IBHAxuenINLj01B2rvd9+u/qlOnjq677jrNnDlT9913nzIyMjRnzhz94x//yLbfvPTv31+vvfaaIiIiNHToUI/K8FfPP/+8Xn/9db311lvq1KlTrumKFy8up9OpEydOKCUlRSkpKTp9+rRH99X+/fvr+PHjev755/Xaa69Jkpo1a6YRI0bohRde0GWXXZbn5y+9/2W1qdzawokTJyT93/m0mu6vCtsWvNmWAAAIFQxsAAAAv3bw4EFJFwNX//Uve//qr4Fgi9Klf8UZHx+vYsWK5Rjo9NChQ5KksmXLerVM27dvV7169dwGNaSLPz6FhYXl+mNvZGSk7r333jzzXrZsmT766CN169ZN8+fPz/GH9+3bt+uaa65ReHi4ZsyY4QrMu379+hwDmheU1Xbxww8/WErnqa+++kply5bN9iPU5s2b9dNPP2nUqFH55nHw4EEtWrRICxYs0NatW3XZZZfp9ttv14wZM9S4cWOPy2SMkXSxXYaFhalNmzZauXKlDh8+7Pajbu3atSUpWyDg+Ph411/4Dx48OMd9VKtWze3f0dHR6tmzp2bMmKHDhw/r7bffVmxsbI4DPlYU5TX0wAMPaOLEiXr77beVlpam9PR03X///ZY/f+TIEbcfXNPT0/XHH3/kOOCXFzvq7K3jVrZsWb3yyit65ZVXdODAAX3wwQd64okndOzYMa1YsSLXz11++eW66qqrtHr1alWtWlWNGzdWqVKl1LZtWw0aNEibN2/Wpk2b9Mwzz7g+s3jxYl111VWqW7eu5fJ5cg5yul972t69rV+/fho0aJD27t2rn376SYcPH1a/fv0sf/7MmTPq3bu3rrrqKh09elT33nuv/vvf/3pcjlmzZmnUqFEaO3as+vfvn2faWrVq6aefftLGjRs1b948TZw4UcOHD1eLFi10++23q1u3bnkOgmV5/PHHNWzYMH3//feKjY1VlSpVNHDgQMXExFgaKP7r/S9LvXr1NH/+fKWnp7t9X3377beS5GprVtMBAAD/wlJUAADAr2X9VaPD4VDjxo1zfMXHx/u4lBfFxMSoSZMmev/9990GEDIzMzVnzhzXj33ekpKSop9++inHAYT//ve/SktL04033ljg/CdNmqSbbrop10GNrP1nLVkSGRmpJUuWqHTp0uratauOHDlS4H1fymq78Fb7+eqrr3T8+HGdPHnStS0jI0OPP/64qlatmuvSMadOndLUqVN1ww03qEqVKho3bpwaNGigtWvX6sCBA3rppZcKNKiRnJysjz76SA0aNHANtowcOVIZGRm6//77LS0hVKJECbVu3Vpff/216tevn+OxyukH43vuuUcZGRmaNGmSli9frjvuuEMlSpTwuA5S0V5DFStWVPfu3TV9+nS9/vrruummm1S5cmXLn587d67bv9977z2lp6erVatWHpXD0zrnNLOiKI5b5cqVNWTIELVv317bt2/PN327du20du1arVq1yrUc0lVXXaXKlStr9OjRunDhgmtmh3RxYMOT2RpS4c5BQdu7N/Xs2VNRUVGaNWuWZs2apcsuu0wdOnRwvZ/fbKT7779fBw4c0Pvvv6+33npLH3zwgV5++WWPyrBixQoNGDBA/fv315gxYyx/rlmzZpo6daoOHTqkFStW6IorrtBTTz2lyy67TG3atNEbb7yR5ywq6WL96tatqypVqujAgQNauHChBgwY4JqBkZuc7n+SdMstt+j06dNavHixW/p33nlHiYmJatKkiUfpAACAf2HGBgAA8GtXXHGFWrduraefflqnT59WkyZNZIzR4cOH9emnn6pPnz4e/5DoTRMmTFD79u3VunVrjRgxQhEREZo+fbp27dql+fPn57mOd2Ft375dxhjFxMS41oZPTk7Whg0b9PLLL6t+/foaMWJEgfP/8MMPFR0dnesSSVn7/+tf1yYkJOi///2vbrjhBnXt2lXr1q3L90cqK6y2C0/bj8PhUMuWLfXZZ5/luu/9+/frjz/+UOXKldW9e3cNHz5caWlp+te//qVt27bps88+U0RERI6f3bZtm5544gl17dpVS5cuVefOnVW8eHGP6t6rVy9VrlxZjRs3VtmyZfX999/rpZde0tGjRzVr1ixXuhYtWujVV1/Vgw8+qGuvvVb33Xef6tSp4/rL/qwf8eLi4lyf+ec//6kbbrhBf/vb3/TAAw+oatWqOnXqlH744Qd9+OGHWrt2bbbyNG7cWPXr19crr7wiY4zuueeeHMtt5dhKRXsNPfTQQ64fLWfOnOnRZ99//32Fh4erffv22r17t0aNGqVrrrlGPXr08LgcntS5Xr16ki6eqz59+qh48eKqWbOm7cctJSVFrVu3Vq9evXT11VcrNjbWFbMnp+XsLtW2bVtNnz5dv//+u1555RW37TNnzlR8fLzrXrFjxw79+OOPHg9sFPYcFKS9e1OpUqV0yy23aNasWTp58qRGjBjhFl8it3MfGxurf//735ozZ45mzpypOnXqqE6dOhoyZIgef/xxtWjRQtdff32++9+/f7+6d++u6tWrq1+/ftlijDRs2DDfpdrCwsLUoUMHdejQQa+//rqWLVumefPmadiwYWrSpEmOA++7du3S4sWL1bhxY0VGRuqbb77RxIkTVaNGDdfSZVms3v8kqXPnzmrfvr0eeOABpaam6sorr9T8+fO1YsUKzZkzxzWz0Wo6AADgZ3wSshwAAMADKSkpZuTIkeaqq64yUVFRJj4+3lxzzTXmwQcfNMnJyV7d96effmokmUWLFrm2jRkzxkgyx48fz/EzX3zxhWnTpo2JiYkx0dHRpmnTpubDDz90S5NbHn369DExMTHZ8mzZsqWpU6dOnmWdPHmykeT2iomJMQ0bNjTjxo0zZ86csVrtAsna//bt27O9t2jRIuNwOEz37t1NZmamLfuz2i6spjt16pSRZO6444489/vee+8ZSWbDhg2md+/eJi4uzsTGxpp//OMfZs+ePfmW+fTp04WptpkwYYJp0KCBcTqdJiwszJQrV87ccsstZsuWLTmm37Fjh+nXr5+pVq2aiYyMNFFRUebKK680d999t1mzZk229Pv37zf9+/c3l112mSlevLgpV66cad68uXn++edzLdM///lPI8nUrl07x/etHtsshbmGZs6caSSZ/fv35/jvS1WtWtXUqlXLUrn+ut9t27aZm266yZQsWdLExsaanj17mqNHjxaojFbrnGXkyJEmMTHRFCtWzEgyn376qeU8rJYpLS3N3H///aZ+/fomLi7OREdHm5o1a5oxY8ZYupckJyebYsWKmZiYGHP+/HnX9rlz5xpJ5tZbb3Vte/rpp02VKlXyzfPSOhTmHGSx0t69cb/OzcqVK13373379mV7P6dzv3PnThMdHW369OnjljYtLc00atTIVK1a1dJ3Zdb3XW6v3K4hK/K693333XfmxhtvNKVLlzYRERHmyiuvNE8//XSO6T29/506dcoMHTrUJCQkmIiICFO/fn0zf/78AqcrbFsoyrYEAECwcxjz/xejBAAAAELY8uXLlZSUpG+++cb1l9E5eeyxxzR9+nSlpKTwl7wWWT22RW3nzp265ppr9Oqrr2rQoEGWPjN27Fg988wzOn78uNdj5oSK2rVrq3PnznrppZd8XRQAAAAECJaiAgAAACR9+umnuuOOO/L94f2rr77Stddey6CGB6we26Ly448/6pdfftGTTz6pihUrqm/fvr4uUkjbs2ePr4sAAACAAMPABgAAAKCLwdHzY4zR9u3b1b9//yIoUfCwcmyL0nPPPafZs2erVq1aWrRoUYGDnQP5SU9Pz/P9YsWKucXRCJWyAAAAFBZLUQEAAAAAYLOff/5Z1apVyzPNmDFjNHbs2JAqCwAAgB0Y2AAAAAAAwGbnz5/Xzp0780yTmJioxMTEkCoLAACAHRjYAAAAAAAAAAAAAYMFNAEAAAAAAAAAQMBgYAMAAAAAAAAAAAQMBjYAAAAAAAAAAEDAYGADAAAAAAAAAAAEDAY2AAAAAAAAAABAwGBgAwAAAAAAAAAABAwGNgAAAAAAAAAAQMBgYAMAAAAAAAAAAAQMBjYAAAAAAAAAAEDAYGADAAAAAAAAAAAEDAY2AAAAAAAAAABAwGBgAwAAAAAAAAAABAwGNgAAAAAAAAAAQMBgYAMAAAAAAAAAAAQMBjYAAAAAAAAAAEDAYGADAAAAAAAAAAAEDAY2AAAAAAAAAABAwGBgAwAAAAAAAAAABAwGNgAAAAAAAAAAQMBgYAOAX1m4cKHq1Kmj6OhoORwO7dixw9dFytHYsWPlcDh8XQy/0bdvX1WtWtXXxfC65cuXa+zYsbbnO2vWLDkcDv3888+25y1Je/bs0dixY72WPwAAgC94uw81ffp0zZo1yyt5B7KqVauqb9++vi6G13nr/Hv72clbzywA4G8Y2ADgN44fP67evXvriiuu0IoVK7Rx40ZdddVVvi4W4LJ8+XI988wzvi6Gx/bs2aNnnnmGgQ0AAAAPMLAR2gL1/AfqMwsAeIqBDQB+Y9++fbpw4YLuuusutWzZUk2bNlWJEiV8Xayg8ueff/q6CAEp1I5bqNX3r86ePStjjK+LAQAAUCjGGJ09e9bXxQhIodQXDvV2EkrnGghGDGwA8At9+/bVDTfcIEm6/fbb5XA41KpVK9f7H3zwgZo1a6YSJUooNjZW7du318aNG7PlkdOU3pyWjXI4HBoyZIhmz56tWrVqqUSJErrmmmv00UcfZfv8smXL1KBBA0VGRqpatWqaPHmyR3VbvXq12rZtq7i4OJUoUUItWrTQmjVrcizj7t271bNnTzmdTlWoUEH9+/dXSkqKW1pjjKZPn64GDRooOjpa8fHx6tatm3766Se3dK1atVLdunX1+eefq3nz5ipRooT69+8vSfr111/VrVs3xcbGqlSpUrrzzju1detWORwO118lzZ49Ww6HI9txlqRnn31WxYsX16FDh3Ktd1pamkaOHKlq1aopIiJCl112mQYPHqyTJ0+6pVu7dq1atWqlMmXKKDo6WpUrV9Ztt93m1sl87bXXdM0116hkyZKKjY3V1VdfrSeffDLP437dddepS5cubtvq1asnh8OhrVu3ura9//77cjgc+vbbbyX937nYvn27unXrpvj4eF1xxRXq27evXn31VUkX20/WK79ZEFbOf2E/+7///U89e/ZUhQoVFBkZqcqVK+vuu+/WuXPnNGvWLHXv3l2S1Lp1a1e5s85zXu3kwIEDuuuuu1S+fHlFRkaqVq1aeumll5SZmena988//yyHw6HJkydrypQpqlatmkqWLKlmzZpp06ZNlup55MgRDRw4UJdffrkiIiJUrVo1PfPMM0pPTy/wfr766it17dpVpUuXVlRUlBo2bKj33nvPLU3W8hUrV65U//79Va5cOZUoUULnzp2TMUbjx49XlSpVFBUVpcaNG2vVqlVq1aqV6950+vRplSpVSgMHDsy2/59//llhYWGaNGmSpWMAAADs8/bbb+uaa65RVFSUSpcurVtuuUV79+51S/PTTz/pjjvuUGJioiIjI1WhQgW1bdvWtRRu1apVtXv3bq1bt87Vf8pv+SBP++lbt27V3/72N5UoUULVq1fXxIkT3fpZkpSamqoRI0a49amHDRumM2fOuKXLer55/fXXVatWLUVGRuqdd96RJK1fv17NmjVTVFSULrvsMo0aNUr//ve/3fqy99xzj0qXLp3jD71t2rRRnTp18qy7lX6jlH+//s8//3TVN+v8NW7cWPPnz89136mpqQoPD3frd/3+++8qVqyYnE6nW59y6NChKleunOsPWXLrC3vz/Bf2sytWrFDbtm3ldDpVokQJ1apVSxMmTJCkfJ9Z8msnbdu2VWxsrEqUKKHmzZtr2bJlbvvO6j9/+umneuCBB1S2bFmVKVNGt956a57Phn/lST/d6n4WLlyoZs2aKSYmRiVLllTHjh319ddfu6Xp27evSpYsqW+//VYdOnRQbGys2rZtK0k6efKk6xooWbKkunTpop9++kkOh8O1rNcXX3whh8ORY1t89913sz1nAigCBgD8wA8//GBeffVVI8mMHz/ebNy40ezevdsYY8zcuXONJNOhQwezdOlSs3DhQtOoUSMTERFhvvjiC1ceffr0MVWqVMmW95gxY8yltztJpmrVqub666837733nlm+fLlp1aqVCQ8PNz/++KMr3erVq01YWJi54YYbzPvvv28WLVpkrrvuOlO5cuVseeZk9uzZxuFwmJtvvtm8//775sMPPzRJSUkmLCzMrF69OlsZa9asaUaPHm1WrVplpkyZYiIjI02/fv3c8hwwYIApXry4GT58uFmxYoWZN2+eufrqq02FChXMkSNHXOlatmxpSpcubSpVqmSmTp1qPv30U7Nu3Tpz+vRpc+WVV5rSpUubV1991XzyySfm4YcfNtWqVTOSzMyZM40xxpw7d84kJCSYO++8023/Fy5cMImJiaZ79+65HvvMzEzTsWNHEx4ebkaNGmVWrlxpJk+ebGJiYkzDhg1NWlqaMcaY/fv3m6ioKNO+fXuzdOlS89lnn5m5c+ea3r17m+TkZGOMMfPnzzeSzIMPPmhWrlxpVq9ebV5//XUzdOjQPI/9E088YUqWLGnOnz9vjDHmyJEjRpKJjo4248aNc6V74IEHTIUKFbKdiypVqpjHH3/crFq1yixdutT88MMPplu3bkaS2bhxo+uVVZecWD3/M2fONJLM/v37Pf7sjh07TMmSJU3VqlXN66+/btasWWPmzJljevToYVJTU82xY8fM+PHjjSTz6quvusp97NgxY0zu7eTYsWPmsssuM+XKlTOvv/66WbFihRkyZIiRZB544AHX/vfv3++6njp16mSWLl1qli5daurVq2fi4+PNyZMn8zxPhw8fNpUqVTJVqlQxb7zxhlm9erV57rnnTGRkpOnbt2+B9rN27VoTERFh/va3v5mFCxeaFStWmL59+7q1778e98suu8zcd9995uOPPzb/+c9/THp6uhk5cqSRZO677z6zYsUKM2PGDFO5cmVTsWJF07JlS1ceDz/8sImJiclWz0cffdRERUWZ33//Pc/6AwCAgsupD5XV7+nZs6dZtmyZeffdd0316tWN0+k0+/btc6WrWbOmufLKK83s2bPNunXrzOLFi83w4cPNp59+aowxZvv27aZ69eqmYcOGrv7T9u3b8yyPJ/30MmXKmBo1apjXX3/drFq1ygwaNMhIMu+8844r3ZkzZ0yDBg1M2bJlzZQpU8zq1avNP//5T+N0Ok2bNm1MZmamK21Wn6Z+/fpm3rx5Zu3atWbXrl3mm2++MVFRUaZ+/fpmwYIF5oMPPjB///vfTdWqVd2O3TfffGMkmRkzZrjVaffu3a5+ZJYqVaqYPn36uP5ttd9opV8/cOBAU6JECTNlyhTz6aefmo8++shMnDjRTJ06Nc9j37RpU9OhQwfXvxcsWGCioqKMw+EwX375pWt7rVq1TI8ePdzORU59YW+e/5yeW61+9t///rdxOBymVatWZt68eWb16tVm+vTpZtCgQcYYk+8zS27t5LPPPjPFixc3jRo1MgsXLjRLly41HTp0MA6HwyxYsMC1/6xrrnr16ubBBx80n3zyifn3v/9t4uPjTevWrfM8PsZ43k+3sp9x48YZh8Nh+vfvbz766CPz/vvvm2bNmpmYmBjXbwpZx7148eKmatWqZsKECWbNmjXmk08+MRkZGeaGG24wUVFRZuLEiWblypXmmWeeMTVq1DCSzJgxY1x5NGzY0LRo0SJbva677jpz3XXX5Vt/APZiYAOA3/j000+NJLNo0SLXtoyMDJOYmGjq1atnMjIyXNtPnTplypcvb5o3b+7a5unARoUKFUxqaqpr25EjR0yxYsXMhAkTXNuaNGliEhMTzdmzZ13bUlNTTenSpfMd2Dhz5owpXbq0uemmm9y2Z2RkmGuuucZcf/312cr44osvuqUdNGiQiYqKcj20bNy40UgyL730klu6gwcPmujoaPPYY4+5trVs2dJIMmvWrHFLmzWA9PHHH7ttHzhwYLYO5ZgxY0xERIQ5evSoa9vChQuNJLNu3TrXtkuP/YoVK3KsT9Zn33zzTWOMMf/5z3+MJLNjxw6TmyFDhphSpUrl+n5uVq9ebSSZzz//3BhjzJw5c0xsbKwZNGiQW2e4Ro0aplevXm51lmRGjx6dLc/BgwdbGtAyxrPzf+lDuSefbdOmjSlVqpRroCInixYtMpJcD+p/lVs7eeKJJ4wks3nzZrftDzzwgHE4HOa7774zxvzfgEO9evVMenq6K92WLVuMJDN//vxcy2XMxXZXsmRJ88svv7htnzx5spHkehjxZD9XX321adiwoblw4YJbnklJSaZixYque0nWcb/77rvd0p04ccJERkaa22+/3W171vX314GNH3/80RQrVsy8/PLLrm1nz541ZcqUyTYoCQAA7HVpHyo5OdlER0ebv//9727pDhw4YCIjI119vt9//91IMq+88kqe+depU8ftez8vBemnX9rPql27tunYsaPr3xMmTDDFihUzW7dudUuX1Ydevny5a5sk43Q6zYkTJ9zSdu/e3cTExJjjx4+7tmVkZJjatWtnGxRq2bKladCggdvnH3jgARMXF2dOnTrl2nbpwIbVfqOVfn3dunXNzTffnGeanDz99NMmOjra9QP+vffeazp16mTq169vnnnmGWOMMb/99pvbs0hWnXPqCxvjvfN/6bOT1c+eOnXKxMXFmRtuuMFtUOtSeT2z5NZOmjZtasqXL+92ntPT003dunXN5Zdf7tpf1jWXNZCS5cUXXzSSzOHDh3MtlzGe99Pz28+BAwdMeHi4efDBB93SnTp1yiQkJLgNYvXp08dIMm+//bZb2mXLlhlJ5rXXXnPbPmHChGwDG1nl+vrrr13bsp5H/jooCaBosBQVAL/23Xff6dChQ+rdu7eKFfu/W1bJkiV12223adOmTQVeF7N169aKjY11/btChQoqX768fvnlF0nSmTNntHXrVt16662KiopypYuNjdVNN92Ub/4bNmzQiRMn1KdPH6Wnp7temZmZ6tSpk7Zu3ZptCnnXrl3d/l2/fn2lpaXp2LFjkqSPPvpIDodDd911l1ueCQkJuuaaa/TZZ5+5fT4+Pl5t2rRx27Zu3TrFxsaqU6dObtt79uyZrQ4PPPCAJGnGjBmubdOmTVO9evV044035lr3tWvXSro43fevunfvrpiYGNdySg0aNFBERITuu+8+vfPOOzlOtb7++ut18uRJ9ezZU//973/1+++/57rfv2rRooWioqK0evVqSXItI9SpUydt2LBBf/75pw4ePKjvv/9e7dq1y/b52267zdJ+clOQ8+/pZ//880+tW7dOPXr0ULly5Qpc1pzaydq1a1W7dm1df/31btv79u0rY4zrHGfp0qWLwsLCXP+uX7++JLmup9x89NFHat26tRITE93q2rlzZ0kX26sn+/nhhx/0v//9T3feeackueX597//XYcPH9Z3333nluel53rTpk06d+6cevTo4ba9adOm2ZYgqF69upKSkjR9+nTXkgbz5s3TH3/8oSFDhuRZdwAAYK+NGzfq7Nmz2fqglSpVUps2bVx90NKlS+uKK67QpEmTNGXKFH399dfZlkzylKf99ISEhGz9rPr167v1nT766CPVrVtXDRo0cMuzY8eOcjgc2fJs06aN4uPj3batW7dObdq0UdmyZV3bihUrlq2fI0kPPfSQduzYoS+//FLSxSWeZs+erT59+qhkyZK51t1qv9FKv/7666/Xxx9/rCeeeEKfffaZ5fgPbdu21dmzZ7VhwwZJF5d0bd++vdq1a6dVq1a5tknK1vfPqS/sKU/Pf0E+u2HDBqWmpmrQoEHZllr2xKXt5MyZM9q8ebO6devmdp7DwsLUu3dv/frrr9n6zzk9t0p59/0L0k/Pbz+ffPKJ0tPTdffdd7vlFxUVpZYtW+Z43C/t+2c9b1x6TeT0fNyzZ0+VL1/etdyXJE2dOlXlypXT7bffnmvdAXgHAxsA/Noff/whSapYsWK29xITE5WZmank5OQC5V2mTJls2yIjI12d5+TkZGVmZiohISFbupy2Xero0aOSpG7duql48eJurxdeeEHGGJ04cSLPMkVGRkqSq0xHjx6VMUYVKlTIluemTZuyPRzkdNz++OMPVahQIdv23LbdfvvteuONN5SRkaGdO3fqiy++yPcH2z/++EPh4eHZfmx3OBxKSEhwndcrrrhCq1evVvny5TV48GBdccUVuuKKK/TPf/7T9ZnevXvr7bff1i+//KLbbrtN5cuXV5MmTVwPKLmJiopSixYtXA8wa9asUfv27dWqVStlZGToiy++cOWR08BGTsfOEwU5/55+Njk5WRkZGbr88ssLVdbc2klu113W+3+VX9vNzdGjR/Xhhx9mq2fWOs6Xtmkr14gkjRgxIluegwYNyjHPS+uZVTer18lDDz2k77//3tWeXn31VTVr1kzXXnttnnUHAAD2yu/ZIet9h8OhNWvWqGPHjnrxxRd17bXXqly5cho6dKhOnTpVoH172k/P71kkK8+dO3dmyy82NlbGGNv7/v/4xz9UtWpV14+2s2bN0pkzZzR48OA8626132ilX/+vf/1Ljz/+uJYuXarWrVurdOnSuvnmm/X999/nWYas+BirV6/WDz/8oJ9//tk1sLF582adPn1aq1evVvXq1VWtWjW3zxa23y95fv4L8tnjx49Lku19/+TkZBljvN73L0g/3Wrf/7rrrsuW58KFC7PlV6JECcXFxblty3p2LV26tNv2nK6RyMhIDRw4UPPmzdPJkyd1/Phxvffee7r33ntdZQNQdMJ9XQAAyEtWR+bw4cPZ3jt06JCKFSvm+muTqKgonTt3Lls6q3/hf6n4+Hg5HA4dOXIk23s5bbtU1l9FTZ06VU2bNs0xTU6dpfzydDgc+uKLL3LsOF26Lae/5ClTpoy2bNmSbXtudXrooYc0e/Zs/fe//9WKFStcwcbzUqZMGaWnp+v48eNugxvGGB05ckTXXXeda9vf/vY3/e1vf1NGRoa++uorTZ06VcOGDVOFChV0xx13SJL69eunfv366cyZM/r88881ZswYJSUlad++fapSpUqu5Wjbtq1Gjx6tLVu26Ndff1X79u0VGxur6667TqtWrdKhQ4d01VVXqVKlStk+W5i/gpIKd/6tfjYjI0NhYWH69ddfC1XW3NpJbtfdX8tYWGXLllX9+vU1bty4HN/PepjyJD9JGjlypG699dYc09SsWdPt35fWP+u+k/Wg9FdHjhzJNmujTZs2qlu3rqZNm6aSJUtq+/btmjNnjkflBgAAhZffs8Nf+y9VqlTRW2+9JUnat2+f3nvvPY0dO1bnz5/X66+/7vG+Pe2nW80zOjpab7/9dq7v/1Vufbrc+jSXKlasmAYPHqwnn3xSL730kqZPn662bdtm6zvltA+r/cb8+vUxMTF65pln9Mwzz+jo0aOu2Rs33XST/ve//+VahoiICN1www1avXq1Lr/8ciUkJKhevXqqXr26JOmzzz7TmjVrlJSUlO2zhe33Z9WxoOff6meznqvs7vvHx8erWLFiXu/7F6SfbjXP//znP3k+F2bJ7RpJT0/XiRMn3AY3cns+fuCBBzRx4kS9/fbbSktLU3p6uu6//36Pyg3AHgxsAPBrNWvW1GWXXaZ58+ZpxIgRro7ImTNntHjxYjVr1kwlSpSQJFWtWlXHjh3T0aNHXT8Ynz9/Xp988kmB9h0TE6Prr79e77//viZNmuRajurUqVP68MMP8/18ixYtVKpUKe3Zs8e2JWmSkpI0ceJE/fbbbzlOH7eiZcuWeu+99/Txxx+7lvuRpAULFuSYvlGjRmrevLleeOEF7dq1S/fdd59iYmLy3Efbtm314osvas6cOXr44Ydd2xcvXqwzZ86obdu22T4TFhamJk2a6Oqrr9bcuXO1fft218BGlpiYGHXu3Fnnz5/XzTffrN27d+fZgW3Xrp2efPJJjRo1Spdffrmuvvpq1/YPPvhAR44c8WjJqb/+hVB0dHSeaQtz/j35bMuWLbVo0SKNGzcu1wcOq7Mn/qpt27aaMGGCtm/f7jbz4N1335XD4VDr1q0t55WXpKQkLV++XFdccUW2pRMKombNmqpRo4a++eYbjR8/vkB5NGnSRJGRkVq4cKHbQ9emTZv0yy+/ZBvYkKShQ4fq/vvvV0pKiipUqKDu3bsXtAoAAKCAmjVrpujoaM2ZM8ftu/jXX3/V2rVr1a1btxw/d9VVV+npp5/W4sWLtX37dtf2S2dQ5MWOfnpOeY4fP15lypTJNsvAqpYtW2r58uX6/fffXX3FzMxMLVq0KMf09957r8aOHas777xT3333nV544YV891GQfqOVfn2FChXUt29fffPNN3rllVf0559/up79ctKuXTuNHDlSsbGxrhnZMTExatq0qaZOnapDhw7lOFM7N0V1/q1+tnnz5nI6nXr99dd1xx135Dog48kzi3TxGDVp0kTvv/++Jk+e7PpMZmam5syZo8svv1xXXXWVR3XKiR399Et17NhR4eHh+vHHHwu8lHDLli314osvauHCha6lmKXcn48rVqyo7t27a/r06Tp//rxuuukmVa5cuUD7BlA4DGwA8GvFihXTiy++qDvvvFNJSUkaOHCgzp07p0mTJunkyZOaOHGiK+3tt9+u0aNH64477tCjjz6qtLQ0/etf/1JGRkaB9//cc8+pU6dOat++vYYPH66MjAy98MILiomJyXUZoSwlS5bU1KlT1adPH504cULdunVT+fLldfz4cX3zzTc6fvy4XnvtNY/K06JFC913333q16+fvvrqK914442KiYnR4cOHtX79etWrV8+tM5aTPn366OWXX9Zdd92l559/XldeeaU+/vhj1wDQX2OZZHnooYd0++23y+FwuKYJ56V9+/bq2LGjHn/8caWmpqpFixbauXOnxowZo4YNG6p3796SpNdff11r165Vly5dVLlyZaWlpbn+Ii3roWPAgAGKjo5WixYtVLFiRR05ckQTJkyQ0+l0m/mRk0aNGik+Pl4rV65Uv379XNvbtWun5557zm0/VtSrV0+S9MILL6hz584KCwtT/fr1FRERkS1tYc6/J5+dMmWKbrjhBjVp0kRPPPGErrzySh09elQffPCB3njjDcXGxqpu3bqSpDfffFOxsbGKiopStWrVclwCIcvDDz+sd999V126dNGzzz6rKlWqaNmyZZo+fboeeOABWx5uJOnZZ5/VqlWr1Lx5cw0dOlQ1a9ZUWlqafv75Zy1fvlyvv/66x9Pt33jjDXXu3FkdO3ZU3759ddlll+nEiRPau3evtm/fnuuDfJbSpUvrkUce0YQJExQfH69bbrlFv/76q5555hlVrFgxx2vkrrvu0siRI/X555/r6aefzrFNAAAA7ypVqpRGjRqlJ598Unfffbd69uypP/74Q88884yioqI0ZswYSdLOnTs1ZMgQde/eXTVq1FBERITWrl2rnTt36oknnnDlV69ePS1YsEALFy5U9erVFRUV5eoPXsqOfvqlhg0bpsWLF+vGG2/Uww8/rPr16yszM1MHDhzQypUrNXz4cDVp0iTPPJ566il9+OGHatu2rZ566ilFR0fr9ddfd8V6u7RfU6pUKd1999167bXXVKVKFUuxBa32G63065s0aaKkpCTVr19f8fHx2rt3r2bPnu32B225adu2rTIyMrRmzRq98847ru3t2rXTmDFj5HA4PIqlUVTn3+pnS5YsqZdeekn33nuv2rVrpwEDBqhChQr64Ycf9M0332jatGmuckvWnlmyTJgwQe3bt1fr1q01YsQIRUREaPr06dq1a5fmz59vy6wWqfD99EtVrVpVzz77rJ566in99NNP6tSpk+Lj43X06FFt2bLFNQMoL506dVKLFi00fPhwpaamqlGjRtq4caPeffddSbk/H2ddezNnzvSozABs5JOQ5QCQg08//dRIMosWLcr23tKlS02TJk1MVFSUiYmJMW3btjVffvlltnTLly83DRo0MNHR0aZ69epm2rRpZsyYMebS250kM3jw4Gyfr1KliunTp4/btg8++MDUr1/fREREmMqVK5uJEyfmmGdu1q1bZ7p06WJKly5tihcvbi677DLTpUsXt3pm5Xf8+HG3z86cOdNIMvv373fb/vbbb5smTZqYmJgYEx0dba644gpz9913m6+++sqVpmXLlqZOnTo5lunAgQPm1ltvNSVLljSxsbHmtttuM8uXLzeSzH//+99s6c+dO2ciIyNNp06dcsyvT58+pkqVKm7bzp49ax5//HFTpUoVU7x4cVOxYkXzwAMPmOTkZFeajRs3mltuucVUqVLFREZGmjJlypiWLVuaDz74wJXmnXfeMa1btzYVKlQwERERJjEx0fTo0cPs3Lkzx7Jc6pZbbjGSzNy5c13bzp8/b2JiYkyxYsXcymNM7uci6zjce++9ply5csbhcOR4bi5l5fzndp6tfNYYY/bs2WO6d+9uypQp42qnffv2NWlpaa40r7zyiqlWrZoJCwszkszMmTONMXm3k19++cX06tXLlClTxhQvXtzUrFnTTJo0yWRkZLjS7N+/30gykyZNyvZ5SWbMmDF5Hh9jjDl+/LgZOnSoqVatmilevLgpXbq0adSokXnqqafM6dOnC7Sfb775xvTo0cOUL1/eFC9e3CQkJJg2bdqY119/3ZUm67hv3bo1W56ZmZnm+eefN5dffrmJiIgw9evXNx999JG55pprzC233JJjPfr27WvCw8PNr7/+mm+dAQBA4eXWh/r3v//t6r87nU7zj3/8w+zevdv1/tGjR03fvn3N1VdfbWJiYkzJkiVN/fr1zcsvv2zS09Nd6X7++WfToUMHExsbayRl6+/mpDD99Jz61KdPnzZPP/20qVmzpqs+9erVMw8//LA5cuSIK11uzzfGGPPFF1+YJk2amMjISJOQkGAeffRR88ILLxhJ5uTJk9nSf/bZZ0aSmThxYo755fTMZKXfaKVf/8QTT5jGjRub+Ph4ExkZaapXr24efvhh8/vvv+dYlr/KzMw0ZcuWNZLMb7/95tr+5ZdfGknm2muvzfaZvPrC3jr/OZ1nq5815uIzb8uWLU1MTIwpUaKEqV27tnnhhRdc7+f1zJJfO2nTpo1r/02bNjUffvihW5rc+s9Zz/KffvppvseoMP303PazdOlS07p1axMXF2ciIyNNlSpVTLdu3czq1atdafr06WNiYmJyLNOJEydMv379TKlSpUyJEiVM+/btzaZNm4wk889//jPHz1StWtXUqlUr3/oC8B6HMcZ4f/gEAODvxo8fr6effloHDhzI9hfyH374obp27aply5bp73//u49KCPjW/v37dfXVV2vMmDF68skn3d47f/68qlatqhtuuEHvvfeej0oIAABgTYcOHfTzzz9r37592d4bPny4XnvtNR08eDDPGb5AMJs3b57uvPNOffnll2revLnbezt37tQ111yjV1991dKKBgC8g6WoACAEZU1Tvvrqq3XhwgWtXbtW//rXv3TXXXe5DWrs2bNHv/zyi4YPH64GDRq4xeQAgtk333yj+fPnq3nz5oqLi9N3332nF198UXFxcbrnnntc6Y4fP67vvvtOM2fO1NGjR92WrwAAAPAHjzzyiBo2bKhKlSrpxIkTmjt3rlatWuUKnp5l06ZN2rdvn6ZPn66BAwcyqIGQMX/+fP3222+qV6+eihUrpk2bNmnSpEm68cYb3QY1fvzxR/3yyy968sknVbFiRfXt29d3hQbAwAYAhKISJUro5Zdf1s8//6xz586pcuXKevzxx/X000+7pRs0aJC+/PJLXXvttXrnnXdsW1sV8HcxMTH66quv9NZbb+nkyZNyOp1q1aqVxo0bpwoVKrjSLVu2TP369VPFihU1ffp0t4CZAAAA/iAjI0OjR4/WkSNH5HA4VLt2bc2ePVt33XWXW7qsOBZJSUl6/vnnfVRaoOjFxsZqwYIFev7553XmzBnXoMWl18Fzzz2n2bNnq1atWlq0aFG+cV8AeBdLUQEAAAAAAAAAgIBRzNcFAAAAAAAAAAAAoaFq1apyOBzZXoMHD7acB0tRAQAAAAAAAACAIrF161ZlZGS4/r1r1y61b99e3bt3t5wHS1H5SGZmpg4dOqTY2FjWrAcAAEDQM8bo1KlTSkxMVLFiTBxH/nhmAgAAgc7f+sBpaWk6f/68V/I2xmTrs0VGRioyMjLfzw4bNkwfffSRvv/+e8v9PmZs+MihQ4dUqVIlXxcDAAAAKFIHDx7U5Zdf7utiIADwzAQAAIKFP/SB09LSVC46Wqe9lH/JkiV1+rR77mPGjNHYsWPz/Nz58+c1Z84cPfLIIx79MQsDGz4SGxsr6WKjjouL83Fpcud0TrCULiVlpJdLErisHkOJ4wgECu6N8Be0RXibnW0sNTVVlSpVcvWDgfwEyjMTAAAIbPn1eQvzPOVPfeDz58/rtKSHJeU/h8Iz5yS9fPp0tn6bldkaS5cu1cmTJ9W3b1+P9snAho9kjT7FxcX5eSc9ylIq/66Dr1k7hhLHEQgc3BvhL2iL8Db72xhLCsGqwHlmAgAAgS3vPq8d/RB/6gPHyJNfK63JGmQoSL/trbfeUufOnZWYmFigfQIAAAAAAAAAABSJX375RatXr9b777/v8WcZ2AAAAAAAAAAAIAQU//8vO2UU8HMzZ85U+fLl1aVLF48/y8AG8mTMGFvzczie8cl+PREIZbQqmOoC+BOumcLj/mQPjk/RsrvdOmpb26/ZYy2dN9DGAAAAEOzo8/pGZmamZs6cqT59+ig83PNhCgY2AAAAAAAAAAAIAeGyf1CgIPmtXr1aBw4cUP/+/YtsnwAAAAAAAAAAAAXSoUMHGWMK/HkGNgAAAAAAAAAACAHhsj/GRrrN+VnBwAaKVCCsWWd3GX1ZZ2KV5C0QymhVMNUFoSEU26LV61QKzeMTCGzvI/gwdgYAAAAQDPJ7zuLZKjt/WYqqsIr5YJ8AAAAAAAAAAAAFwowNAAAAAAAAAABCQHEFx1JUzNgAAAAAAAAAAAABgxkbAAAAAAAAAACEgGCJscHARgAgKLB/8iQIrFXBdA4DoS6BUEar/L0uBE1GUfD370tP9uvvdYE9OM8AAADwplAIrG1HHULhOAUjBjYAAAAAAAAAAAgB4bI/xsYFm/OzghgbAAAAAAAAAAAgYDBjAwAAAAAAAACAEECMDdjC6ZwgKcrXxUABsL4eYB3XC4qCr9qZN+IkcM0EtmCKnRFMdQEAAAg19NGsCbXjVFz2L0Vld35WsBQVAAAAAAAAAAAIGMzYAAAAAAAAAAAgBDBjAwAAAAAAAAAAoIgxYwMAAAAAAAAAgBBA8HDYIiVlpOLi4nxdjEIjsCQQXALhmg7FMgZCnUMRxxvBjPYNAACAYJffs3Z+feK8P59WgBLBCgY2AAAAAAAAAAAIAeGyPyaGLwYZiLEBAAAAAAAAAAACBjM2AAAAAAAAAAAIAcTYsNnnn3+uSZMmadu2bTp8+LCWLFmim2++Oce0AwcO1JtvvqmXX35Zw4YNc20/d+6cRowYofnz5+vs2bNq27atpk+frssvv9yVJjk5WUOHDtUHH3wgSerataumTp2qUqVKudIcOHBAgwcP1tq1axUdHa1evXpp8uTJioiIcKX59ttvNWTIEG3ZskWlS5fWwIEDNWrUKDkcDo/q7XROkBSVZxrWh7cnT6tCcS1pT46hvx+fYKqLLwXCsbG7jN5oO4FwHIMJMUhCQyCc50C4PzlqW8xvj+VdowiE6jMTAADeUNi4CrCHP5yHwsXQyPvzqampcjonFqhc3lJc9i9FZXd+VvjNUlRnzpzRNddco2nTpuWZbunSpdq8ebMSExOzvTds2DAtWbJECxYs0Pr163X69GklJSUpIyPDlaZXr17asWOHVqxYoRUrVmjHjh3q3bu36/2MjAx16dJFZ86c0fr167VgwQItXrxYw4cPd6VJTU1V+/btlZiYqK1bt2rq1KmaPHmypkyZYsORAAAAAIDseGYCAAAALvKbGRudO3dW586d80zz22+/aciQIfrkk0/UpUsXt/dSUlL01ltvafbs2WrXrp0kac6cOapUqZJWr16tjh07au/evVqxYoU2bdqkJk2aSJJmzJihZs2a6bvvvlPNmjW1cuVK7dmzRwcPHnQ9CLz00kvq27evxo0bp7i4OM2dO1dpaWmaNWuWIiMjVbduXe3bt09TpkzRI488wl8gAQAAALAdz0wAAAAorGBZispvZmzkJzMzU71799ajjz6qOnXqZHt/27ZtunDhgjp06ODalpiYqLp162rDhg2SpI0bN8rpdLo66JLUtGlTOZ1OtzR169Z1++umjh076ty5c9q2bZsrTcuWLRUZGemW5tChQ/r5559zLP+5c+eUmprq9gIAAAAAu/DMBAAAgFARMAMbL7zwgsLDwzV06NAc3z9y5IgiIiIUHx/vtr1ChQo6cuSIK0358uWzfbZ8+fJuaSpUqOD2fnx8vCIiIvJMk/XvrDSXmjBhgpxOp+tVqVKl/KoMAAAAAJbxzAQAAID8hOv/4mzY9Qrp4OF52bZtm/75z39q+/btHk9ZNsa4fSanz9uRxhiT62claeTIkXrkkUdc/05NTVWlSpWUkjJScXFxedbBanBH7fX/wLfeCPjjq2BOgRC81KpAKKNVwVQXFK1AaDuBUEZf4vgULbu/B4Ppe9VuXqmz5X5j6B3vQBXMz0wAAHhDKPYr/ZE/nAerzyLwLwExY+OLL77QsWPHVLlyZYWHhys8PFy//PKLhg8frqpVq0qSEhISdP78eSUnJ7t99tixY66/DEpISNDRo0ez5X/8+HG3NJf+BVFycrIuXLiQZ5pjx45JUra/SsoSGRmpuLg4txcAAAAA2IFnJgAAAFgR7qVXUQuIgY3evXtr586d2rFjh+uVmJioRx99VJ988okkqVGjRipevLhWrVrl+tzhw4e1a9cuNW/eXJLUrFkzpaSkaMuWLa40mzdvVkpKiluaXbt26fDhw640K1euVGRkpBo1auRK8/nnn+v8+fNuaRITE10PDQAAAABQVHhmAgAAQCjxm6WoTp8+rR9++MH17/3792vHjh0qXbq0KleurDJlyrilL168uBISElSzZk1JktPp1D333KPhw4erTJkyKl26tEaMGKF69eqpXbt2kqRatWqpU6dOGjBggN544w1J0n333aekpCRXPh06dFDt2rXVu3dvTZo0SSdOnNCIESM0YMAA118M9erVS88884z69u2rJ598Ut9//73Gjx+v0aNHezztGwAAAACs4JkJAAAAhZUVF8PuPIua3wxsfPXVV2rdurXr31lrq/bp00ezZs2ylMfLL7+s8PBw9ejRQ2fPnlXbtm01a9YshYWFudLMnTtXQ4cOVYcOHSRJXbt21bRp01zvh4WFadmyZRo0aJBatGih6Oho9erVS5MnT3alcTqdWrVqlQYPHqzGjRsrPj5ejzzyiNt6sHYye6ym9P2adMGANb5Dh7+fa0/WePT3MnK9+C9/P4dcB/4r2OoTajh/gYlnJgAAgKJH39k/OUxWBDcUqdTUVDmdTqWkpLB2rJ8J1R+oQpG/n2t+0EVR8PdzyHUQOjiOwY/+LzxFmwEAAEUhv2eRwjyD+FN/Jqss2yWVtDnv05KulYq0nn4zYwMAAAAAAAAAAHhPuOxfOorg4QAAAAAAAAAAAHlgxgZwCavTy4JpyYxQXerF38+Nv5dPsv968STPQBBM9wlf8caxsfu8BEIZA0Ew1QUAEJy8uVQJEGq4nuBPCtve8m7PaYXK2xuCJXg4MzYAAAAAAAAAAEDAYMYGAAAAAAAAAAAhIFz2DwoQYwMAAAAAAAAAACAPzNgAAAAAAAAAACAEhIdJxR0252kkZdibZ34cxhhTtLuEJKWmpsrpdEp6QlJUnml9GTApFIOXBoJAOC+O2hYT7vX/uoQiX7axQGjfgLeF4nUQinUONVn935SUFMXFxfm6OAgAtBkAABDo/Kk/k1WW/WFSnM0DG6lGqpahIq0nMzYAAAAAAAAAAAgB4eFSeBDM2GBgAwAAAAAAAACAEFDcC0tRFffBmlAEDwcAAAAAAAAAAAGDGRs+lpIy0ufrq9nB7nWxrebniWBak9vu4+iNY2P2WEvnqE0Mmdx4ch3YXUZftrFgulaBggrF6yAU6wwA/iK/Ph33aAAAcpf392hakZXDKq8tRVXEmLEBAAAAAAAAAAACBjM2AAAAAAAAAAAIAcXDpOI2T3conmlvflYwYwMAAAAAAAAAAAQMZmwAAAAAAAAAABAKwmT/dAebY3ZY2qUxxgehPZCamiqn06mUlBTbgof7MtAwipa/B70GLsX9CUB+QvG7LdTq7I3+L4IbbQaAP7Ly/R0s390ACs+f+jOuspSV4mwe2EjNlJy/q0jryYwNAAAAAAAAAABCQbjsn7HhgxgbDGwAAAAAAAAAABAKgmRgg+DhAAAAAAAAAAAgYDBjw8eczgmSomzJizUc8+arday9EVuAc+2fPDnXVnjjPPvqOgiENhsIcUActa2lM3u8W46iFAjnxRuC6TvLV/kFglCsMwAAgY7vb6Bo5feMkt81acdvNUF33TNjAwAAAAAAAAAAoGgxYwMAAAAAAAAAgFBQTFKYrwtReMzYAAAAAAAAAAAAAYMZGwAAAAAAAAAAhIJw2T9jw2FzfhYwsOFjKSkjFRcXZ0tevgz4aXeQ00AIuO2NwK6+ChbrDdTFPwVCGX0lEK7VYAoK7kt2BI/7K29cV766VrlH2COYvjeCqS4AAAAIPIUNDk4/NXgxsAEAAAAAAAAAQChgxgYAAAAAAAAAAAgYYSJ4OAAAAAAAAAAAQFFyGGOMrwsRilJTU+V0OiU9ISkqz7TBtBacL9dpdtS2ls7qGvZ2r9Eu+e5c+zI+iy/5KjZMMB1DAKGLe17RCZbv6az+b0pKim0x5hDcaDMAAOSN+BJFozDH2Z/6M66yNJTibJ6xkZohOb9WkdaTGRsAAAAAAAAAACBgEGMDAAAAAAAAAIBQEKagGBVgxgYAAAAAAAAAAAgYQTA2E9hSUkb6fH21vATT+tlWY2cEE5/GNAmitmNVMNUlEFhec76WtfMSiveIQBBM8YwCQbDEcgg2nhzrUPz+BQAACFX06YpG0B3nsP//spMPongzYwMAAAAAAAAAAAQMBjYAAAAAAAAAAAgF4V56eei3337TXXfdpTJlyqhEiRJq0KCBtm3b5lE1AAAAAAAAAABAsCvgQISdkpOT1aJFC7Vu3Voff/yxypcvrx9//FGlSpWynAcDGwAAAAAAAAAAoEi88MILqlSpkmbOnOnaVrVqVY/ycBhjfBDaA6mpqXI6nUpJSfHr4OGAtxHk1B6heBxDsc7Im92Bxmk7/olr3z9ZOy9pkibS/4VlPDMBAICiUNhnybyePfypP+MqS1spzubpDqnpknONdPDgQbd6RkZGKjIyMlv62rVrq2PHjvr111+1bt06XXbZZRo0aJAGDBhgeZ/E2AAAAAAAAAAAAIVSqVIlOZ1O12vChAk5pvvpp5/02muvqUaNGvrkk090//33a+jQoXr33Xct74ulqAAAAAAAAAAACAXFJIXZnGfmxf/kNGMjx+SZmWrcuLHGjx8vSWrYsKF2796t1157TXfffbelXTJjAwAAAAAAAAAAFEpcXJzbK7eBjYoVK6p27dpu22rVqqUDBw5Y3hczNoKIJ+vBse50aPDlOuSBsAa63WX0ZZ3tzjMQzl8wtR1/32+gCNV6hxrOs3+ycl4uruk7sQhKAwAAgFCR33OylX5qyD1jhMv+UQEPo3i3aNFC3333ndu2ffv2qUqVKpbzYMYGAAAAAAAAAAAoEg8//LA2bdqk8ePH64cfftC8efP05ptvavDgwZbzYMYGAAAAAAAAAAChwA9mbFx33XVasmSJRo4cqWeffVbVqlXTK6+8ojvvvNNyHgxsAAAAAAAAAAAQCsLkteDhnkhKSlJSUlKBd8lSVAAAAAAAAAAAIGAwYyOIeBLoxpNA43bvG7mzOzBwMAV2dtS2uN891vO0u4zBFMzaV0GvvbFvb/BVGQPh2IQiq/cn7fXddWD3977ku/Zo9/0OAAAAgP/yxrOMp/sIumcLP1iKyg7M2AAAAAAAAAAAAAGDGRsAAAAAAAAAAISCMNk/KlCAGBuFxYwNAAAAAAAAAAAQMPxmxsbnn3+uSZMmadu2bTp8+LCWLFmim2++WZJ04cIFPf3001q+fLl++uknOZ1OtWvXThMnTlRiYqIrj3PnzmnEiBGaP3++zp49q7Zt22r69Om6/PLLXWmSk5M1dOhQffDBB5Kkrl27aurUqSpVqpQrzYEDBzR48GCtXbtW0dHR6tWrlyZPnqyIiAhXmm+//VZDhgzRli1bVLp0aQ0cOFCjRo2Sw+Hw7oHKg8MLsQWKYh07/J+gW7PPRp7EzghF/t52gin+iDcEQhlDkf3nxf/PXyC0MW/0YezO01f5eYL7TmDimQkAAMCdHf3V/PLIL65iwP1mFfb/X3bnWcT8ZsbGmTNndM0112jatGnZ3vvzzz+1fft2jRo1Stu3b9f777+vffv2qWvXrm7phg0bpiVLlmjBggVav369Tp8+raSkJGVkZLjS9OrVSzt27NCKFSu0YsUK7dixQ71793a9n5GRoS5duujMmTNav369FixYoMWLF2v48OGuNKmpqWrfvr0SExO1detWTZ06VZMnT9aUKVO8cGQAAAAAgGcmAAAAIIvfzNjo3LmzOnfunON7TqdTq1atcts2depUXX/99Tpw4IAqV66slJQUvfXWW5o9e7batWsnSZozZ44qVaqk1atXq2PHjtq7d69WrFihTZs2qUmTJpKkGTNmqFmzZvruu+9Us2ZNrVy5Unv27NHBgwddf9n00ksvqW/fvho3bpzi4uI0d+5cpaWladasWYqMjFTdunW1b98+TZkyRY888gh/gQQAAADAdjwzAQAAoNDCRYwNX0pJSZHD4XBNh962bZsuXLigDh06uNIkJiaqbt262rBhgyRp48aNcjqdrg66JDVt2lROp9MtTd26dd2ma3fs2FHnzp3Ttm3bXGlatmypyMhItzSHDh3Szz//nGN5z507p9TUVLcXAAAAAHgLz0wAAADIJtxLryIWkAMbaWlpeuKJJ9SrVy/FxcVJko4cOaKIiAjFx8e7pa1QoYKOHDniSlO+fPls+ZUvX94tTYUKFdzej4+PV0RERJ5psv6dleZSEyZMkNPpdL0qVarkabUBAAAAwBKemQAAABDM/GYpKqsuXLigO+64Q5mZmZo+fXq+6Y0xbtOcc5rybEcaY0yun5WkkSNH6pFHHnH9OzU11XJH3RvBHYMpYKS/1yW/AEN/5atgQwRYhT+x+1wHQpuwu4zeuKbt3rcvgyFbZfux8eD7QHtD7zoIBHYfR1+eF9pEcAvFZyYAABCc8g3snc9zoJV+b+GfJQOsb81SVEXvwoUL6tGjh/bv369Vq1a5/vJIkhISEnT+/HklJye7febYsWOuvwxKSEjQ0aNHs+V7/PhxtzSX/gVRcnKyLly4kGeaY8eOSVK2v0rKEhkZqbi4OLcXAAAAANiJZyYAAACEgoAZ2MjqoH///fdavXq1ypQp4/Z+o0aNVLx4cbeAeYcPH9auXbvUvHlzSVKzZs2UkpKiLVu2uNJs3rxZKSkpbml27dqlw4cPu9KsXLlSkZGRatSokSvN559/rvPnz7ulSUxMVNWqVW2vOwAAAADkh2cmAAAA5KuYpDCbXz4YZfCbgY3Tp09rx44d2rFjhyRp//792rFjhw4cOKD09HR169ZNX331lebOnauMjAwdOXJER44ccXWUnU6n7rnnHg0fPlxr1qzR119/rbvuukv16tVTu3btJEm1atVSp06dNGDAAG3atEmbNm3SgAEDlJSUpJo1a0qSOnTooNq1a6t37976+uuvtWbNGo0YMUIDBgxw/cVQr169FBkZqb59+2rXrl1asmSJxo8fr0ceeSTXadUAAAAAUBg8MwEAAAAXOUzWQqc+9tlnn6l169bZtvfp00djx45VtWrVcvzcp59+qlatWkm6GCDv0Ucf1bx583T27Fm1bdtW06dPd1uX9cSJExo6dKg++OADSVLXrl01bdo0lSpVypXmwIEDGjRokNauXavo6Gj16tVLkydPVmRkpCvNt99+q8GDB2vLli2Kj4/X/fffr9GjR1vupKempsrpdColJYUp1gGKmA8oqEBoO4FQRquCqS7BJBDOSyCU0Sqr8T28EevJl/uGf6H/W3g8MwEAAHjGynNdYZ/p8t5HmqSJftGfcfWthkhxkfmn9yjvc5Jzmoq0nn4zsBFq6KQHvmD6wQtFKxDaTiCU0apgqkswCYTzEghltIqBDfgD+r/wFG0GAAAUFgMb/yfYBjbsjn8OAAAAAAAAAAD8UbjsHxXIsDk/CxjYAAAAAAAAAAAgFGQF/LY7zyLmN8HDAQAAAAAAAAAA8sOMDR9zOidIisozjdV13qyuBe6NPO1eXzwQ6uKNNdU9qbcVgbDuu1XeWKM9qNbP91H7DoRjSIwG/xQIdQ6EMtr9vSHZX2diZxSeN/pFAAAAQCiw0j/Ot7+9O+888trHxbgWE/MtQ5EKkqWomLEBAAAAAAAAAAACBjM2AAAAAAAAAAAIBWGyf1Qg3eb8LGDGBgAAAAAAAAAACBjM2ECR8uV6875ac9rhwdri3oinEiy8sUa7r9pEILRvX16rwRSXIhDKCP8UCNcBcaGKjlfutRa/V43FGFfW2kOatcwAIEDldy/kuw4A7GfHvTfk7s/eiLHhg1EGZmwAAAAAAAAAAICAwYwNAAAAAAAAAABCQdj/f9mdZxFjxgYAAAAAAAAAAAgYzNjwsZSUkYqLi8szjS/jKdgd88EbMSR8FjsjBOOFeMJX7TYQjk0g8FXMDm/kGQj3HWKa2COY6uKrmEueHBuug6LjjXtoIFwHABBouLcC8DeOfOKleSOeKQJAkMTYYGADAAAAAAAAAIBQECQDGyxFBQAAAAAAAAAAAgYzNgAAAAAAAAAACAXFZH+wbx9Mn2DGBgAAAAAAAAAACBjM2AhRdgfJtBzkNJ+gRd7kqzqHqkA4Pr4KPu3LYxMIZQyEtmOVNwL++oovg1TbnWcwXft2l9GT82x3fXwVjNwb+7abv5dPslbG1NRUOZ0Ti6A0AAAAkEIjOHgg9JX9DjE2AAAAAAAAAAAAihYzNgAAAAAAAAAACAXM2AAAAAAAAAAAAChazNgIAEG1Hv9e+9chtxq3gzX3cKlAWD/fbr4qozf2Gwhxc3x1vIMptoAnfHWteqV9W/1us3nNXI++f/08VkkwtW0AAAAA3lPYmJIB9+wR9v9fdudZxBjYAAAAAAAAAAAgFLAUFQAAAAAAAAAAQNFixgYAAAAAAAAAAKEgTPaPCvhgKSpmbAAAAAAAAAAAgIDBjI0AUNgANjkJpgDCdgdOBS5lOfCtxbZoLAYFBgrKGwGg7d53MH23eYMvg4LbzVdB3QEAAADAjmfPoHtWIcYGAAAAAAAAAABA0WLGBgAAAAAAAAAAoSBM9sfEIMYGAAAAAAAAAABA7pixEQACYb1y2/e92/radf4er8CTYxNMa/b5at1+n6pjsc5eqEtIrmFfK4jq4kPBFHPJ368Db3wf+LLOvuyf2L3fQDjeAADAHvl9n/M9DqsK25as9C1pjzaw8tvB3sI9s+R9LtMKlbdXBEmMDQY2AAAAAAAAAAAIBUEysMFSVAAAAAAAAAAAIGAwYwMAAAAAAAAAgFBQTPYH+/bB9AlmbAAAAAAAAAAAgIDBjI0A4LAYHNuXgVjt5o2A4L4K+OlJfsEUlNRnwXk9aDtmj7379uV5sXvfDovHxuq16qt7yUW+Oy921zsQrn2772O+bTv2CoTz5w2+CswdTN+/3giEbve+Q7V9AwACD99ZsEth2xJt0ZrCBmm38tuPo3aInQtibAAAAAAAAAAAABQtZmwAAAAAAAAAABAKmLEBAAAAAAAAAABQtJixEQDsjgPg0b59tE6zN/hqjW9PBEIZ/Z0vrxdfsn1tei/EuQlFtt9DrZ6Xvfbfa+2Oa+CN+5ivvmMC4bvNKm/UxRsxMezm77EzQvHYAAAQygobUwCAZwr7W1Je12RqaqqczomF24Hdwv7/y+48ixgDGwAAAAAAAAAAhAKWogIAAAAAAAAAAChazNgAAAAAAAAAACAUhMn+UQEfLEXFjA0AAAAAAAAAABAwmLGBIhUIAa58GYg1EAKs2s3uwKneON4oPF8e60AIzmuV9YBmvgu47cvj7atzGAj3p2C6DoJJIBxv2g4AAEWP71Xg/+R3PeTXX+V6ygExNgAAAAAAAAAAAIoWMzYAAAAAAAAAAAgFYbI/JgYxNgAAAAAAAAAAAHLnMMYYXxciFKWmpsrpdColJUVxcXG+Lo7f8ek65LUt7tfyWvdA8PLl9RII675bvpfVshhfh/tOkfJlGwvF7yK74714wt/X3fXGsfFFnen/wlO0GQAA4A8xNApTBn/qz7jKslWKK2lz3qcl53Uq0nqyFBUAAAAAAAAAAKEgTPaPCrAUFQAAAAAAAAAAQO6YsQEAAAAAAAAAQCgIkuDhfjOw8fnnn2vSpEnatm2bDh8+rCVLlujmm292vW+M0TPPPKM333xTycnJatKkiV599VXVqVPHlebcuXMaMWKE5s+fr7Nnz6pt27aaPn26Lr/8clea5ORkDR06VB988IEkqWvXrpo6dapKlSrlSnPgwAENHjxYa9euVXR0tHr16qXJkycrIiLClebbb7/VkCFDtGXLFpUuXVoDBw7UqFGj5HA4vHeQ/FggrHVvldX1ygNhvetgOi/eYPc59NX582TfdrcJb1wvlvfto/g6kvV6231epNC8Vn3Fp/fGvaHXJuy/XvyfN76ng+n4IDuemQAACB5W+m2h+nvNX/nDMcivDHmfyzR7CxMkxo4dq2eecT9uFSpU0JEjRyzn4TdLUZ05c0bXXHONpk2bluP7L774oqZMmaJp06Zp69atSkhIUPv27XXq1ClXmmHDhmnJkiVasGCB1q9fr9OnTyspKUkZGRmuNL169dKOHTu0YsUKrVixQjt27FDv3r1d72dkZKhLly46c+aM1q9frwULFmjx4sUaPny4K01qaqrat2+vxMREbd26VVOnTtXkyZM1ZcoULxwZAAAAAOCZCQAAADYI99LLQ3Xq1NHhw4ddr2+//dbjaviFzp07q3Pnzjm+Z4zRK6+8oqeeekq33nqrJOmdd95RhQoVNG/ePA0cOFApKSl66623NHv2bLVr106SNGfOHFWqVEmrV69Wx44dtXfvXq1YsUKbNm1SkyZNJEkzZsxQs2bN9N1336lmzZpauXKl9uzZo4MHDyoxMVGS9NJLL6lv374aN26c4uLiNHfuXKWlpWnWrFmKjIxU3bp1tW/fPk2ZMkWPPPJIjn+BdO7cOZ07d87179TUVFuPHwAAAIDgxjMTAAAA/Nml/bfIyEhFRkbmmDY8PFwJCQkF3pffzNjIy/79+3XkyBF16NDBtS0yMlItW7bUhg0bJEnbtm3ThQsX3NIkJiaqbt26rjQbN26U0+l0ddAlqWnTpnI6nW5p6tat6+qgS1LHjh117tw5bdu2zZWmZcuWbielY8eOOnTokH7++ecc6zBhwgQ5nU7Xq1KlSoU8KgAAAABwEc9MAAAAsMSLMzYqVark1p+bMGFCrsX4/vvvlZiYqGrVqumOO+7QTz/95FE1AmJgI2ttrQoVKrht/+u6W0eOHFFERITi4+PzTFO+fPls+ZcvX94tzaX7iY+PV0RERJ5psv6d2zpgI0eOVEpKiut18ODB/CsOAAAAABbwzAQAAABfO3jwoFt/buTIkTmma9Kkid5991198sknmjFjho4cOaLmzZvrjz/+sLwvv1mKyopLpysbY/INPHdpmpzS25HGGJPrZ6W8p93YxRvBeYMlv0Dh78Gsg42/B6r1RrBYn7WJWvbv1/Y6Ww7WLNkdsNlXwd8DgUfXn8V2ZnfQe28c72A6h3YLpmPjy7bjqG0xP4vXC/wHz0wAAAQGf+jX5vfMUxRl9HYZ7AjSXpgypqamyumcmG8ZilQBY2Lkm6ekuLg4xcXF5Zv8r8ur1qtXT82aNdMVV1yhd955R4888oilXQbEjI2stbYu/cueY8eOuf7qJyEhQefPn1dycnKeaY4ePZot/+PHj7uluXQ/ycnJunDhQp5pjh07Jin7X0gBAAAAgLfxzAQAAAArTDHJhNn8KuQoQ0xMjOrVq6fvv//e8mcCYmCjWrVqSkhI0KpVq1zbzp8/r3Xr1ql58+aSpEaNGql48eJuaQ4fPqxdu3a50jRr1kwpKSnasmWLK83mzZuVkpLilmbXrl06fPiwK83KlSsVGRmpRo0audJ8/vnnOn/+vFuaxMREVa1a1f4DAAAAAAB54JkJAAAAgercuXPau3evKlasaPkzfjOwcfr0ae3YsUM7duyQdDH43Y4dO3TgwAE5HA4NGzZM48eP15IlS7Rr1y717dtXJUqUUK9evSRJTqdT99xzj4YPH641a9bo66+/1l133aV69eqpXbt2kqRatWqpU6dOGjBggDZt2qRNmzZpwIABSkpKUs2aNSVJHTp0UO3atdW7d299/fXXWrNmjUaMGKEBAwa4ptH06tVLkZGR6tu3r3bt2qUlS5Zo/PjxeuSRR/Kd5g0AAAAABcEzEwAAAAorI9w7L0+MGDFC69at0/79+7V582Z169ZNqamp6tOnj+U8/CbGxldffaXWrVu7/p21llafPn00a9YsPfbYYzp79qwGDRqk5ORkNWnSRCtXrlRsbKzrMy+//LLCw8PVo0cPnT17Vm3bttWsWbMUFhbmSjN37lwNHTpUHTp0kCR17dpV06ZNc70fFhamZcuWadCgQWrRooWio6PVq1cvTZ482ZXG6XRq1apVGjx4sBo3bqz4+Hg98sgjltf/+ivn/ySVzDuNsbgGsjcEU8wHX60l7Q9rJubHGzEkgqnegVAXX5UxmGIQBMJ5DkWBcF6C6V4STLwReywgYi5Z7TdajCtk9fdn2nfRCNVnJgAA4L8KGyPD2/1IO/Knr2u/X3/9VT179tTvv/+ucuXKqWnTptq0aZOqVKliOQ+HyYrghiJ1MXCMU9qcIpXMO6CK1YGNQHiAD6aBjWD6IYuBjbwFQl18hWNYtDjeRSuYvgNDUSD0i6zy5cCGVVbKmNX/TUlJsRRQEKDNAADgXXYE7vaHAOT+zJ/6M1llOXZYsrsoqalS+Yoq0nr6zVJUAAAAAAAAAAAA+fGbpagAAAAAAAAAAID3pIc5lB5mb8yz9DAjqWgXhmLGBgAAAAAAAAAACBjM2PCxlKvtW9PMo/WXfbROu+W1qWtZ36/VmBihGBTcKm+0Hdvzs9gmPDnPwXQO7eaz8yz717oPhPMcTHUJBIFwvO0uYyDU2Spv1MXfj0+oxsICACAnrOcP2IfA2vbI+76UVmTlsCojPFwZ4fbO2MgIN5Iu2JpnfhjYAAAAAAAAAAAgBGSEhSnD5qWoMsKKfmCDpagAAAAAAAAAAEDAYMYGAAAAAAAAAAAhIFNhypC9MzYyizhwuCQ5jDFFv1coNTVVTqdTKSkpissnyIajtrU8PYkt4I21mq0IhHX37D42wbRGeyCwer1I9sddCSa+Wt/fkzztFkxl5L5TtEKxzpL/x+vy6XXghb5bMPCk/wtItBkA/slKXyTY+n05IdZJcLDjNzBvn+v8+tb+3qf2p/5MVll+SolRbJy9AxunUo2qO88UaT2ZsQEAAAAAAAAAQAhIV5jSbZ6xke6DGRvE2AAAAAAAAAAAAAGDGRsAAAAAAAAAAISADIUpw+b5DhnKtDU/K5ixAQAAAAAAAAAAAgYzNnzM6ZwgKSrPND4NuFTL4r73+iYYueRBoCOLdQmmAFfBVBfLPGqLPgoAHQhBZXcHT9txWDyOnlwvvgqu7o1r2u72GEyBy32Vnyd5+pKvykgbAwAAvsT38kUch+AQCOcxv2dROwLZFzaIeiAcx7/yzowNe2N2WMHABgAAAAAAAAAAISBYBjZYigoAAAAAAAAAAAQMZmwAAAAAAAAAABACgmXGBgMbPpaSMlJxcXG25OXLtbsdFtuuL9eStjtegTfq4qvjE0zrvvt7+SR5EAfEC/EUgmh9eJ/eT2zO05fH26exXGzm79e/v5cP+fPVtQ/Av9mxtjcAAMHK29+T+X2+sPEzCr+PtELvHzljYAMAAAAAAAAAgBCQoTClB8GMDWJsAAAAAAAAAACAgMGMDQAAAAAAAAAAQkCGwr0QYyPT1vysYMYGAAAAAAAAAAAIGMzYCAA+Dc5b21o6y4FvLQapDYRg1oEQBNCXbccqO4I4FZSvAjb78nhbrrPd174XrumAuAYtHkerAeW9cby12+JxrOP/9xO72V0Xy+1BwRXU3Sqf9nds/i6y/V7rw/YQCH0JwNdo/wCCkbcDPocCjuFFvq6nlf3nd67y+z0zr32kpqbK6ZyYbxmKUoaKKUNhNudZ9JixAQAAAAAAAAAAAgYzNgAAAAAAAAAACAEZCguKGRsMbAAAAAAAAAAAEALSFaZ0mwc20m3NzRqHMcb4YL8h7+L6ak6lpKQoLi6uyPfvq7WkfSkU6+wNvlprOxDWXvdVzA5v5WlpvwGwPrw3cD/JXTC1CWILwNu8EWfKl99F+fF1/xeBhzYDAEDgK2yskUCPVeJP/ZmssqxNqaWScfYObJxOzVAb594irSczNgAAAAAAAAAACAGZCrd9KapMOWzNzwqChwMAAAAAAAAAgIDBjA0AAAAAAAAAAEIAwcMR2Gr5Jv6BVd5YH8/uNacDgeW6eNAefLV2oS/XTLR7395oi/6+pmSwsft4j9ZTltI9q3GW0nmj7dgea8ZiLA7t9d114M+xCmAvX51DX8aFsrsvCAAAABREYX+Hs+N3PJ7VAhMDGwAAAAAAAAAAhIBgmbFBjA0AAAAAAAAAABAwmLEBAAAAAAAAAEAIyFAxL8zYMLbmZwUDGwAAAAAAAAAAhIB0hSnd5oGNdAY2kBNvBLQ0ewpamtz4Lhh5KAb4sRp01zsB031zrkeZ85bSWQ2u7Anbgyb7MNCw7fu2GNjZ4bCWnSe80759te8IS6metdhP8KTteOP4WGH9e8j/7/HB9D3ky+/fQAjCbndgbqvXAf0ioHDyu4a4bgAABVEU3y+FfV7zh++4/MrgD9/T3n0uTvNi3qGNgQ0AAAAAAAAAAEJAhsKVYfOwAMHDAQAAAAAAAAAA8sCMDQAAAAAAAAAAQkCmwmwPHp7pgxgbDmNM0e8VSk1NldPpVEpKiuLi4nxdnFz5KraARyyuY201FkAgrN3ty1gOtpfRarwQ2+PCWBcI677bjTrnLRRjCwQCXx3HQIjjYvc9WfLtfdkKb1zTdp/rYOpzWBEo/V/4D9oM4Dl/WKsewYG2BKvye4bw9XODr+JK/p80SRP9oj+T1bd6L6WlSsTZO9/hz9R09XCuK9J6MmMDAAAAAAAAAIAQkOGFGRsZPpixQYwNAAAAAAAAAAAQMJixAQAAAAAAAABACEhXMaXbPGMjXZm25mcFAxsAAAAAAAAAAISADIUrw+ZhAV8sRcXAho85nRMkReWZxqcBmXbbu2/fBpfyUSBWHwYvDaYy+lIg1Nnfj3cwBVf2hkAIIGyVL88LQd1tsNeT9uDf9fbkvIRi4HkA1hFAF4Ekv/ZIe4ZVtAVYlu8zhHfbUlHc1woTIP1iwO6JhS4DsmNgAwAAAAAAAACAEOCd4OFFvxQVwcMBAAAAAAAAAEDAYMYGAAAAAAAAAAAhIFhmbDCw4WMpKSMVFxeXZ5r81nFz8WhdbHs5fLZn66yuqeeNuBR2s3utS2+snRkI63FaPoe17G07gcCXbcxXMR88YXfbsVte63tmY7V9W8zT7mPjjRhAvsrPGwIh1kwgXNPeaI92CoS2CAQzrkEEE9ozALt5+75S2Bgalvrw+T0P/Cf/LFD0GNgAAAAAAAAAACAEZChM6UEwY4MYGwAAAAAAAAAAIGAEzMBGenq6nn76aVWrVk3R0dGqXr26nn32WWVm/t9okDFGY8eOVWJioqKjo9WqVSvt3r3bLZ9z587pwQcfVNmyZRUTE6OuXbvq119/dUuTnJys3r17y+l0yul0qnfv3jp58qRbmgMHDuimm25STEyMypYtq6FDh+r8+fNeqz8AAAAA5IVnJgAAAOQnQ+FeeRW1gBnYeOGFF/T6669r2rRp2rt3r1588UVNmjRJU6dOdaV58cUXNWXKFE2bNk1bt25VQkKC2rdvr1OnTrnSDBs2TEuWLNGCBQu0fv16nT59WklJScrIyHCl6dWrl3bs2KEVK1ZoxYoV2rFjh3r37u16PyMjQ126dNGZM2e0fv16LViwQIsXL9bw4cOL5mAAAAAAwCV4ZgIAAEB+MlTMFUDcvlfRDzM4jDGmyPdaAElJSapQoYLeeust17bbbrtNJUqU0OzZs2WMUWJiooYNG6bHH39c0sW/NKpQoYJeeOEFDRw4UCkpKSpXrpxmz56t22+/XZJ06NAhVapUScuXL1fHjh21d+9e1a5dW5s2bVKTJk0kSZs2bVKzZs30v//9TzVr1tTHH3+spKQkHTx4UImJiZKkBQsWqG/fvjp27Fi+wcAlKTU1VU6nUykpKX4dPNxXQUm9ESzW9kDRngTnRa58GdDWbnZfqwFRZy8E0rW73g6L16qxev68wKeBnS3W21f3PF8Fa5aC6xr0ZV0CoYx2s/u6Coh7raUypkmaaKn/i4IJ5WemUFfYwKoAYDfuS7Cq0MHB8+l7W+lze7O9+lN/Jqss/0y5XdFxEbbmfTb1vB5yLizSegbMjI0bbrhBa9as0b59+yRJ33zzjdavX6+///3vkqT9+/fryJEj6tChg+szkZGRatmypTZs2CBJ2rZtmy5cuOCWJjExUXXr1nWl2bhxo5xOp6uDLklNmzaV0+l0S1O3bl1XB12SOnbsqHPnzmnbtm05lv/cuXNKTU11ewEAAACAXXhmAgAAQH7sn61x8VXUin7xqwJ6/PHHlZKSoquvvlphYWHKyMjQuHHj1LNnT0nSkSNHJEkVKlRw+1yFChX0yy+/uNJEREQoPj4+W5qszx85ckTly5fPtv/y5cu7pbl0P/Hx8YqIiHCludSECRP0zDO++6tTAAAAAMGNZyYAAACEioCZsbFw4ULNmTNH8+bN0/bt2/XOO+9o8uTJeuedd9zSORwOt38bY7Jtu9SlaXJKX5A0fzVy5EilpKS4XgcPHsyzTAAAAADgCZ6ZAAAAkB9mbBSxRx99VE888YTuuOMOSVK9evX0yy+/aMKECerTp48SEhIkXfzLoIoVK7o+d+zYMddfCiUkJOj8+fNKTk52+wukY8eOqXnz5q40R48ezbb/48ePu+WzefNmt/eTk5N14cKFbH+VlCUyMlKRkZHZtjudEyRFWT0MebMYG0Lywlrpu21eG9Hu/OSFtaS9sC59KK5DHkx1sRznxoNr1Vcst29vxHyweS35QCij1TZhd6wgyf41/u0+3qEaG8KXsUWsCoQy+rtg+t63UsaLa/pOLILShK5gfWZC/gLhPuFtrOcP+BeuOWTJNwZGfjE0iuD+Xtg4Hnn/HpTmcXlgTcDM2Pjzzz9VrJh7ccPCwpSZmSlJqlatmhISErRq1SrX++fPn9e6detcHfBGjRqpePHibmkOHz6sXbt2udI0a9ZMKSkp2rJliyvN5s2blZKS4pZm165dOnz4sCvNypUrFRkZqUaNGtlccwAAAADIH89MAAAAyE+GwpRu84sZG3m46aabNG7cOFWuXFl16tTR119/rSlTpqh///6SLk5zHjZsmMaPH68aNWqoRo0aGj9+vEqUKKFevXpJkpxOp+655x4NHz5cZcqUUenSpTVixAjVq1dP7dq1kyTVqlVLnTp10oABA/TGG29Iku677z4lJSWpZs2akqQOHTqodu3a6t27tyZNmqQTJ05oxIgRGjBggM+j2wMAAAAITTwzAQAAIFQEzMDG1KlTNWrUKA0aNEjHjh1TYmKiBg4cqNGjR7vSPPbYYzp79qwGDRqk5ORkNWnSRCtXrlRsbKwrzcsvv6zw8HD16NFDZ8+eVdu2bTVr1iyFhf3fqNLcuXM1dOhQdejQQZLUtWtXTZs2zfV+WFiYli1bpkGDBqlFixaKjo5Wr169NHny5CI4EgAAAACQHc9MAAAAyE+GwpVh87BAhjJtzc+KgBnYiI2N1SuvvKJXXnkl1zQOh0Njx47V2LFjc00TFRWlqVOnaurUqbmmKV26tObMmZNneSpXrqyPPvoov2IDAAAAQJHgmQkAAAD58Uawb5aiCkEpKSPznYptNYivJyznaTUYslVWA/rU8WC/FvO0O0DnqD1PWdxvhKV0vuRJG7M78Lw3grD7vf9YS+ZJYF7bAzb78Hj7KsicNwIh210XR20vBKn2YaB4K7xxHQRC0Gu76xIQ7TsAAmn7qu348vsAAAIF9z8gtFjpH3Ff8A+F/X2hKM6jI58y5lcHh8O+ssA6BjYAAAAAAAAAAAgBGSrmhRkbxWzNz4qi3yMAAAAAAAAAAEABFWrGxsmTJ/XJJ5/ot99+k8PhUMWKFdWxY0fFx8fbVT4AAAAACGg8NwEAAMBfpCtM6TbP2LA7PyscxhhTkA++9dZbeuGFF9SlSxdddtllkqRff/1VH3/8sR577DHdc889thY02KSmpsrpdEp6QlKUr4uTq0BYP9vuGA12r5/tUV1sPj5eOd4BUEYUnfzWoXTxJG6OVbuttQnjhThFvuLL68X2az8A4uv4qs6S/d9Zvow/EorfB8HUl7BTVv83JSUl3xhzwYTnpoKz+swUCPcFAAAuRZwQe+T7u0S3/PPIP4ZG3ucqr/PkT33grLI8lTJEUXGRtuadlnpO45zTClzPCRMm6Mknn9RDDz2kV155xdJnCjxj48UXX9T27dtVsmRJt+3PPfecGjVqRAcdAAAAQMjjuQkAAAD+JEPhyrA59HaGMgr82a1bt+rNN99U/fr1PfpcgWNsOBwOnT59Otv206dPy0EoeAAAAADguQkAAADIxenTp3XnnXdqxowZHi/TWuChmcmTJ6tly5aqW7eu25Tq3bt366WXXipotgAAAAAQNHhuAgAAgD/JVJgybI6Jkfn/80tNTXXbHhkZqcjI3Je9Gjx4sLp06aJ27drp+eef92iflgc2evfurTfeeEMlSpSQJCUlJalz587asmWLDh06JGOMLrvsMl1//fUKCyv6YCGQRpnzltM+q3GW0tm9TnMgrA0YiuuQe1SXWvavJW8nT+pi+/GxeGx8Fe9F8sI16IXYGVbLOFpPWczR2v3OE75aw94b17Sv7t+WrwMvxKWwnJ/d18te6+fFUdv/v1d91b6t8uU91Jd1CYS+VrDjucl+KSkjfb4mNQAg9BQmroIVodJv8/pxzOeZ0WHpOSw0zkWWDC8MbGTlV6lSJbftY8aM0dixY3P8zIIFC7R9+3Zt3bq1QPu0PLAxb948vfTSS64O+sCBAzVx4kQ1a9ZMkmSMUXp6Op1zAAAAACGL5yYAAACEqoMHD7r9QUpuszUOHjyohx56SCtXrlRUVFSB9mU5xoYxxu3f8+fPV3Jysuvfx44dU2xsbIEKAQAAAADBgOcmAAAA+LMMFXPN2rDvdXGYIS4uzu2V28DGtm3bdOzYMTVq1Ejh4eEKDw/XunXr9K9//Uvh4eHKyMg/GHmBY2xc2mGXpPPnrS+FBAAAAADBjucmAAAAwF3btm317bffum3r16+frr76aj3++OOWZjcXeGAjJw6Hw87sAAAAACDo8NwEAAAAX0lXmMJsjrGR7mF+sbGxqlu3rtu2mJgYlSlTJtv23Hg0sDFv3jzdeOONqlevniQ65EXFG8GEfBZ8erfFunSzlkySB8FY/TvIqS95UherAZufc0TYvm9f5OdJntaDu/ouKLDtgdB9eB08azEouNXg03YHnvaE3WX05LzYHWDZ8vViNSi4JwG3LXZLAuL+bbHeloOM+7DtBMTxtpkv77WcF//Ac5O9nM4JknJfe5n2DAD283bA50AQCnUsCoU9joVti3acR9qCf7I8sHHDDTdozJgxOnXqlIoXL6709HQ9+eSTuuGGG3TttdeqXLly3iwnAAAAAPg9npsAAADgzzIUrgx7F3KyJb/PPvvMo/SW9/j5559Lkr7//ntt27ZN27dv17Zt2zRq1CidPHmSv0ICAAAAEPJ4bgIAAAC8z+OhlBo1aqhGjRq64447XNv279+vr776Sl9//bWthQMAAACAQMRzEwAAAPxRpsKUYXOMjUyb87PCYYwxRb5XKDU1VU6nUykpKYqLi8szrcPquu8exKWwuta23Wuve4XV9al9tH6+5XXkZf95sT82hP15eqOMVtm9RmIgxHLwFY/On59f077ky7Xzbb+mvXC92B23w1f3Oykw7ifEcsidr2LX+Hrf+fGk/wtItBkEn2CIWRAMdUBwsNLn8XVsh2Bg5bnE288khT0PlvrH+f0Okc8zZF5l8Kf+TFZZ7k0Zp4i43OOXFcT51DT92/lUkdazWJHsBQAAAAAAAAAAwAb2RgkBAAAAAAAAAAB+KV1hKmbz0lHpPliKihkbAAAAAAAAAAAgYDBjAwAAAAAAAACAEJChMGXYPCxgdzByKwge7iNZwVqkJyTlHazFK0FgbQ6wapUvA9paFQjBrH0alNRq2/mPxX17EFzdbv4cYFXyUlB3mwMS+zJosi/vT8F0HdgtmAJKe+M+b5Wv7iceXQcW7xOB0L4tn+v8ggp6yPK91oNj6MuA8vnxp8CJCAy0GQAAgp+3n7usPOPkW4Z8ngPy6oP7U38mqyy9UyYpIi7a1rzPp57VbOejRVpPZmwAAAAAAAAAABACLs7YsHeGhS9mbBBjAwAAAAAAAAAABAxmbAAAAAAAAAAAEAKCZcYGAxsBwCvrlVtcm97udfut8sr6ervtjV8RCPFCvMHutbt9uh6/xTahOvaeF5/W2eK173BYzM/m9eYl2R47wyqr8QIkWb+H1rY5bo7F4+3JdRqKMTGs1iUg6mz1+9fqd2AAxHLwSpu1ei+z+f5k+V7rEf+PzwIgNOV3P/H2fcTK/Yx7GQB4rrD3d3+49xa2DHkfg7RC5e0NmV4Y2MhkKSoAAAAAAAAAAIDcMWMDAAAAAAAAAIAQkK4wOWyeYZHOjA0AAAAAAAAAAIDcMWMDAAAAAAAAAIAQkKEwFbN5WIDg4SEoJWWk4uLifF2MwrMakNhiIF1PgvbYHbjccsB0LwTT9IeASfnx9+C8vgzAbve+7W7bnvDpebE5iK9Xriub8/Tl8bb7nmeVL69Vq3wZ1N1uxur9xIdl9OU91Oq5ceyxeK3W8d39yd+/pwGELl/fT3y9fwD+p7BBr4tCYctYFHX0h+Pka3kdg9TUVDmdE4uwNKGDgQ0AAAAAAAAAAELAxRkb9s6w8MWMDWJsAAAAAAAAAACAgMGMDQAAAAAAAAAAQkCwzNhgYCOIjNZTHqSO8Fo58mRzLA7Jg3WxLa617bC8Z9+xe913q+dF8mA9frtjn1hd991qnSWP6m2F7fFZPFjr3vY2YTcvnBe726Iv4x/YzaM4RTbHNfBlnCJfxe2w+3vII1a/Vy1+uXkjxpXV42N7vBcP7vF2Hx+rfQlvXAfazRrHAFBQgbDePiDRVu0SCMepsGUsbAwOK8/yvn6WtuN6yO/Zxtd1tFu6wuSweSAinaWoAAAAAAAAAAAAcseMDQAAAAAAAAAAQkCmwpVh87BApg+GGZixAQAAAAAAAAAAAgYzNgAAAAAAAAAACAEZXoixQfDwEOR0TpAUZUtexoyznPY5+SbAqmVeCPhpNXix5SCwPowybnuAVQ8CO9sd6NR6sF97z9/FfVtPay0/e68rT/KzO+jZaD1lKd2zsn7fscqX7dtXvBJA2GaBEFjPqoA43pbvZfaW0eHBPdTuAHq+CmQv2R/Y3e6248vvAyAYEGQXVtEWAASawn7HBcV9z45n/nx/hyxMEPY0j4sDaxjYAAAAAAAAAAAgBGSomBdmbBR9xAtibAAAAAAAAAAAgIDBjA0AAAAAAAAAAEJAusIkm2dspBNjA4Xh0frQFtef8108BS+wHLcjeNbF9sZaiY7avll/0Wr7tnvNd28IhOvFauwMX8YqCIS1QH11D/Xk2PjqOHplv1bXVvUgjpOdfHl/8kbbsRqPw1i9f1u9Dizm543vX1/dl73yfR4AsWYAu9COiTMCBBuuWWTxdluw0mfMrwze/g4qiueswtQhNTVVTudEu4sEMbABAAAAAAAAAEBIyFC4HDYPC2T4YJiBgQ0AAAAAAAAAAEJApsKUYfPSUZk+WIqK4OEAAAAAAAAAACBgMGMjmHiyZvhuq+vX2bzmtMX1zz1ZH8/qGt/qZm9+3liPOxBimvgqFoDV/Bx7fLfWqC/jJPhsrXSL9xKvrHVv9dqv47vrwFf79WV8FruPjXfiJBS0NLnlFzz3Wk9YjZ1h9/GxXhf/j+3jjbZD7AwAOeGaBwILcXHgL6y0tcL2ab3d3j2KSVzAMuRdh7TCF8BmGV4IHm73DBArmLEBAAAAAAAAAAACBjM2AAAAAAAAAAAIAczY8IHffvtNd911l8qUKaMSJUqoQYMG2rZtm+t9Y4zGjh2rxMRERUdHq1WrVtq9e7dbHufOndODDz6osmXLKiYmRl27dtWvv/7qliY5OVm9e/eW0+mU0+lU7969dfLkSbc0Bw4c0E033aSYmBiVLVtWQ4cO1fnz571WdwAAAADID89MAAAACAUBM7CRnJysFi1aqHjx4vr444+1Z88evfTSSypVqpQrzYsvvqgpU6Zo2rRp2rp1qxISEtS+fXudOnXKlWbYsGFasmSJFixYoPXr1+v06dNKSkpSRkaGK02vXr20Y8cOrVixQitWrNCOHTvUu3dv1/sZGRnq0qWLzpw5o/Xr12vBggVavHixhg8fXiTHAgAAAAAuxTMTAAAA8pOuYkpXmM2voh9mcBhjTJHvtQCeeOIJffnll/riiy9yfN8Yo8TERA0bNkyPP/64pIt/aVShQgW98MILGjhwoFJSUlSuXDnNnj1bt99+uyTp0KFDqlSpkpYvX66OHTtq7969ql27tjZt2qQmTZpIkjZt2qRmzZrpf//7n2rWrKmPP/5YSUlJOnjwoBITEyVJCxYsUN++fXXs2DHFxcXlW5/U1FQ5nU7pqhQpLJ/0/7F4kDwJkGtzEG/bg19aLJ8k7xwfG3kjqJfvArFaD9g8qvZTltI9q3HW9msx2JNHged9FGDZ9uDYsj+IbzAFqLd7v5L97dH28+JBcDRfldEbvHGfsLRfX14HFuti9R7hCcv13m2xTXSzuOO9Nu9XXgiE7st+ltU+lNXjaKs0SROVkpJiqb8MzwXrM1Nh20xh79ME6QWA4OTrIO1Wvp98/R1k6Ts0n/6n3c9fnrL0nJhP37jwwcP9ow+c1beqlbJWYXElbc07I/W09jrbFGk9A2bGxgcffKDGjRure/fuKl++vBo2bKgZM2a43t+/f7+OHDmiDh06uLZFRkaqZcuW2rBhgyRp27ZtunDhgluaxMRE1a1b15Vm48aNcjqdrg66JDVt2lROp9MtTd26dV0ddEnq2LGjzp075zbN+6/OnTun1NRUtxcAAAAA2IVnJgAAAOQnQ+FeeRW1gBnY+Omnn/Taa6+pRo0a+uSTT3T//fdr6NChevfddyVJR44ckSRVqFDB7XMVKlRwvXfkyBFFREQoPj4+zzTly5fPtv/y5cu7pbl0P/Hx8YqIiHCludSECRNc6886nU5VqlTJ00MAAAAAALnimQkAAAD5yVCYV15FLWAGNjIzM3Xttddq/PjxatiwoQYOHKgBAwbotddec0vncDjc/m2MybbtUpemySl9QdL81ciRI5WSkuJ6HTx4MM8yAQAAAIAneGYCAABAqCj6OSIFVLFiRdWu7b4oWq1atbR48WJJUkJCgqSLfxlUsWJFV5pjx465/lIoISFB58+fV3JysttfIB07dkzNmzd3pTl69Gi2/R8/ftwtn82bN7u9n5ycrAsXLmT7q6QskZGRioyMzP7GvgmSovKqulQn77ddPIlLYXldZYt5Wl3H2mqcC6txMzzgq3X7PcnPahm9sc6+ZRbP4bPGWuwMu3lUZ7vXQLf7eHsSF6bjWIsJraWzuy4+XRfUg3X2rfLVGqHeiQtj733Hbh61Rbu/2ywKhFhKDl/GXbB6L7N6T/bh/cTXaxxbYf3+VPR1ubim78Qi328oCdpnpkIKhGsXABB6gub7Kd9niMLVsyjioxb2XOT1eX/sA2cqTLJ5hkUmMzZy16JFC3333Xdu2/bt26cqVapIkqpVq6aEhAStWrXK9f758+e1bt06Vwe8UaNGKl68uFuaw4cPa9euXa40zZo1U0pKirZs2eJKs3nzZqWkpLil2bVrlw4fPuxKs3LlSkVGRqpRo0Y21xwAAAAA8sczEwAAAEJFwMzYePjhh9W8eXONHz9ePXr00JYtW/Tmm2/qzTfflHRxmvOwYcM0fvx41ahRQzVq1ND48eNVokQJ9erVS5LkdDp1zz33aPjw4SpTpoxKly6tESNGqF69emrXrp2ki3/R1KlTJw0YMEBvvPGGJOm+++5TUlKSatasKUnq0KGDateurd69e2vSpEk6ceKERowYoQEDBvg8uj0AAACA0MQzEwAAAPKTrjAVC4IZGwEzsHHddddpyZIlGjlypJ599llVq1ZNr7zyiu68805Xmscee0xnz57VoEGDlJycrCZNmmjlypWKjY11pXn55ZcVHh6uHj166OzZs2rbtq1mzZqlsLD/O/hz587V0KFD1aFDB0lS165dNW3aNNf7YWFhWrZsmQYNGqQWLVooOjpavXr10uTJk4vgSAAAAABAdjwzAQAAIFQEzMCGJCUlJSkpKSnX9x0Oh8aOHauxY8fmmiYqKkpTp07V1KlTc01TunRpzZkzJ8+yVK5cWR999FG+ZQYAAACAosIzEwAAAPKSoTAZm4cFmLGBHI0y5y2le84LwXTsDtBjtS7PepCn1TJaDpxqc0Bpb7B8XjwJKG+VzYGY7W5jngR8clgNCm53EN/aXgg0fMBYS1jLWjJfBp+1erytnmvL9whLqbyzb9v3a3cgew/ytNp2LJfRg2DWPgtwbvV6sRpE2wN219nhyYVgM8ttx+Z7RCAIproAAAD4i2DoYxX2mTO/Y2DlGBW2DPl+Pp/foUbVfirP95/VuMKXIR/B0JYCEQMbAAAAAAAAAACEgIszNoixAQAAAAAA8P/au/8oq6r6/+OvC/MLR+YG8hl+CJomIgNKiEIo+SN+mkosMyv98BG/WpopEhGpBFxmUgwD/ajpx/gY2keNVhiFWAhZoIihjrBShrDCAgIkFWYAdX5xvn8gN4eBOe8zd59775n7fKw1a+nMnn32OWefc/fmzNkvAAAQAW3lwUa7tG8RAAAAAAAAAACglXhjI8Oqq29TSUlJi2XCyFOYXtXy+nOHVMQKnG67wrh+dkUY65A/Z1s4PDbcllWQyTXVzefavDZ9gLUAL7cVixm3bc4MCCMPI4wMEoMw8itcZzlYtx1GloNrYax1aT7e1kwa43VlFiCXwpqp4Pw4LjKW6+d2s1IIGQ3W8xfgnuM6x8l5n5XM++06O8N6HMP4PHC+LyGw55n5rzUMAABwNH7jnWzIHAi7jdmQy+BXh18bXRyj0M+1z7+rlXsOxrU+84FM5uyGofFAe3kHHL+x4bg+C97YAAAAAAAAAAAAkcEbGwAAAAAAAAAA5IDGhvY60OD2DQvPcX0WvLEBAAAAAAAAAAAigzc2AAAAAAAAAADIAY0NeYo1uH0s4Dmuz4IHG1FgDRu1BrHKHgpuDaC0hoKbg7SDhDob9zu22/FxNO5LkBAlcxBzBkN3zcGpZY7Dp637HEI4r3VfrIHN5n0OEABtDmF3HfYdoI1W5n1xHM4b5FrNVBvNfTGDrH3MfP0F2bb1s8gYkO08ADpIMLeReZ+tAgTZZyxAL4z7TqZCwa2fWQH22RoKbt0Xt/e7D011AQCA7JcN4eB+wm5jOsLHUw0Hz4o2+s0RsyC4228bfvvQ1sLFo4IHGwAAAAAAAAAA5IDGhnaKOc/YSH/iBQ82AAAAAAAAAADIAY0N7UN4sEF4OAAAAAAAAAAAwFHxxkaGxeOzJRW1WCaUtdyNazpXmNdfNm43jH253O361Ob1BzO4nqRnzUnIUA5AGDxrZkcY27auvV5l7BMB1rB3zbzu4w7rkUy0siVHZ85ocNy/w7iHmjMVrJk95nU7A2T7ZPn1HyinyLovxvNizZmyZhoEkakMGec5PMpcLkUY69y6XqfZdc5FWHW6qq+mpkbx+F1Otwsgd4S9jjyyB+caFi6yHzLN0r5MXw8u6k91XD5D01r8uTVHuEU+c0TfDI4Wz1P25cw1NLRXrJ43NgAAAAAAAAAAANKGNzYAAAAAAAAAAMgBXmOevEbHjwVc12fAGxsAAAAAAAAAACAyeGMjAmLWteisa7kHML3Mtr54GGtyO2ddE9/IvM/GbA/Jvp57rMy2nnsm1xc3r6luPC/W6yDIPrtuo1mAPmHlfg17Y3BOX7eblWQ+PjFjDEgoOUXWc2jNADLyW1v0ECdrjB4mU+v2ZzIDxHV2hvX8HWQ7h6H0bzNj1oXrPmH8/A0lN8d67Vvrc/35ouxfSxrIRplevzxb2pDtOAa5oy2ca65puBJ2X/EdWzv494tU98FvXlbu888Xln9PMmfZHu33W9jHrMyZa2h/8Mt1nWnGGxsAAAAAAAAAACAyeGMDAAAAAAAAAIBcwBsbAAAAAAAAAAAgMhpjUoPjr0bjeuEfeeihh3TGGWeopKREJSUlGjp0qH77298GqoMHGwAAAAAAAAAAIC169uypu+66S6+++qpeffVVfe5zn9MXvvAFbdiwwVxHzPM8Y0IsXDoYHBNXdXW1SkpKWiwbRki1mTWQ/HJjfSG00Rycag2fDiOU1DFryHiFMWQ8lL5jDESdXmUL07WG+IZyXhyHyoYR9mvuE1XGPmG8pq3nz7xdSern9hxaj43roOggrPd5z3gfC7Rtaz/L0HUQRKbuy5kN8M5BroO+w+A6FHxRgLLGe2gmQkuDjH8BiT6D9CPwGbnCMi6lv6cerJ0NxzDVOYhlH8LeRqr3ZtO/B/r8G0gqc/FsGs8caovWVkvHOm7LvhppSFxbt25tsp+FhYUqLCw0VdG5c2fdfffduvbaa03leWMDAAAAAAAAAACkpFevXorH48mv2bNn+/5OY2OjFi5cqP3792vo0KHmbREeDgAAAAAAAABALmj46Mt1ndIR39g4mtdff11Dhw7Vhx9+qGOPPVaLFy9WWZl16SIebAAAAAAAAAAAgBQdCgO36NOnj9avX689e/boqaee0tVXX61Vq1aZH26QsZEhyTXNdKukopYLu16nWfa14Vzne5jXIbc/nLPvi3U9vAzmhVjPtfdczFQu1iORQmOOsm3Ha8mH0SfMMpiJYWLNuJHs/dYqk2vTB9lvA3NuThj3nUxlKoTwuWFe4z8C91DzvljzXkLIfHC9Hm8YOS7ZnhkSSo5LBvNwrDL2+Wvq3x9Kuisr1hdGNGTTmtQA0oesk+yQjmyGbJdytgN92Qnfvug3HzOMU33Ppc+YuKXxfzaNZ5L/Hr0qpIyN81PbzxEjRuhTn/qUHn74YVN5MjYAAAAAAAAAAEDGeJ6n2tpac3mWogIAAAAAAAAAIBc0SKoPoc4Abr/9dl100UXq1auX9u7dq4ULF2rlypVatmyZuQ4ebAAAAAAAAAAAkAsaP/pyXWcAb7/9tsaPH68dO3YoHo/rjDPO0LJlyzRy5EhzHTzYAAAAAAAAAAAAafHII4+kXAcPNqLAGjYaICx2hqbZCi66w1aun62YOXzKcXiwJE0vs+1zxcYCW4XG4z29ynisJVVYAzq7e8aCGQx2NR4fc5+wBqsHCr61lnPbRmufKLdtVZJk3BX3QrhWrWHfzgUIdo5VOd5v63EMI5jb+tlhDNI2BxJnrNMGCJS3VhhCEHqmQqrN4wNJnmcbIzgPGQ/hvuM8cDuDn23W4+M+ZNxQrrFGevMuU31AEISzAv/WFq6HsNsYdiC0pY4oyPbzkA65EA7uO+8IYa4TVOrH0f/328K5DKRBgZeOMtWZZoSHAwAAAAAAAACAyOCNDQAAAAAAAAAAcgFvbAAAAAAAAAAAAKQXb2xEQYDsDOeMa6pP9+pM5SpixvyKAOxrd7vNzrCqKDPmlEj2tQt3JIwV2spZz58kxRyv525eK93YFwOt228914uM9RnbWC7juvQBjrXrdfatx9GcVRBkjf3RCVu5ZdasmRAYsy5cr8Np7d7hrP9pXWff8WYD3JOt14E5v8J6HHfYzkysR8JWn2S+71j3xZrtE+RzusKa42Q9h9bPQOvnga22QFznhZj7bIDtmjMxzDUamc7fh663Ckhqg+teAyngevCX6jHiGB+UaiZBWziO6diHsLMf/Majlhw11/8e0awNWZCL0+YyOHhjAwAAAAAAAAAAIL14YwMAAAAAAAAAgFzQKPdvWDQ6rs+ABxsAAAAAAAAAAOQClqICAAAAAAAAAABIL97YyLDq6ttUUlLScqExxnjHIEG6Y+60lfNuNxUzB2T3tRWzBvMerNNxKKk1KNrIGq58kDWc1xpKZNvnQKHuG4zljMfbM+5LzPV5DlDW65QwlYsZw9qdhysrQAhskONj2W4Y+7LFeC8zhumGEeIVdjhaqtsNFDxvDYC3Bm6bw5Bt5cLgOrDZ84x91voZqACfHeZzbfucLg8wlDAfH8d9Ioxr2nUouHVsYu9j9n12vi9AG9DmAj9bgWOQHhxnjkEu4Vymp79n+jinY+4b+vjVMDb3m+/6hou39PsZWKLJF29sAAAAAAAAAAAApBdvbAAAAAAAAAAAkAvqP/pyXWea8cYGAAAAAAAAAACIDN7YyLB4fLakopYL9bUteO3tsC9Ybl7D3vH6+dOrppnKVVQZMzuCuNy4LqEx38P1Gu2SpA3GNppzQGz1TS+znRdJqrCus29cB9Kc0eA4G0KS+XjHhrvNNDFne4Swprr5vFjX0exn3Gdr31aAzAfjLW+GrP3bnjXjeg1Q83mxbjfA8TYfn0W2+7I5i8P1Pksy5xRZr5ftCafbzaQw+o5r4fQJt9t2LYysmUzti2W7NTU1isfvSkNrgKYyvT55NvBdG5xcBCc4ThwDK665tiEbzlOqY+Ns2IewucgJ8c3gaGEbNTVSPJ56G5xqlPvsjwxkifDGBgAAAAAAAAAAiAze2AAAAAAAAAAAIBc0SmoIoc4048EGAAAAAAAAAAC5oEHuH2y4rs+ApagAAAAAAAAAAEBk8MZGpp16m9S+pMUi3nO2ZMkZ3W+3b9cYPm0Nla4os4XKVsSs4bwBwo/6GoOOHAc2hxFeag0udx6kbcySD8J8fKznLwyuj7dxX8zB80ECrqxB6K5Dxq3nz3qsJcWsx9u4zxWO9zkMzoOdraHukirMoekZuocGuEc4Dy4vc3tNWz/PJSkWS5jLmoRwrWb0/u2Yte+YGcdZYdx3rJ8dnut9BnBUls+8TIe3Znr7QDZJR7B3pq+5KNyX0qEthLin2kbfcbCDf39KtY1+v+9kLO+zn1HoC4HwxkZmzZ49W7FYTJMmTUp+z/M8JRIJ9ejRQx06dNAFF1ygDRs2NPm92tpa3XzzzerSpYuKi4s1duxYbdu2rUmZ3bt3a/z48YrH44rH4xo/frz27NnTpMyWLVt06aWXqri4WF26dNHEiRNVV1cX1u4CAAAAQCDMmQAAANBWRfLBxiuvvKIf//jHOuOMM5p8f86cOZo3b54eeOABvfLKK+rWrZtGjhypvXv3JstMmjRJixcv1sKFC7V69Wrt27dPl1xyiRob/51wcuWVV2r9+vVatmyZli1bpvXr12v8+PHJnzc2Nuriiy/W/v37tXr1ai1cuFBPPfWUvv3tb4e/8wAAAADggzkTAAAAjqghpK80i9yDjX379umqq67S/Pnz1alTp+T3Pc/Tvffeq2nTpumyyy5T//799dhjj+n999/Xk08+KUmqrq7WI488orlz52rEiBEaOHCgHn/8cb3++uv63e9+J0nauHGjli1bpv/93//V0KFDNXToUM2fP19Lly7Vpk2bJEnLly9XVVWVHn/8cQ0cOFAjRozQ3LlzNX/+fNXU1KT/oAAAAADAR5gzAQAAoK2LXMbGN7/5TV188cUaMWKEvv/97ye//9Zbb2nnzp0aNWpU8nuFhYU6//zztWbNGl1//fWqrKxUfX19kzI9evRQ//79tWbNGo0ePVovvfSS4vG4hgwZkizzmc98RvF4XGvWrFGfPn300ksvqX///urRo0eyzOjRo1VbW6vKykpdeOGFzdpdW1ur2tra5P8nB/P/J+nYlvd5Vo+Wf54UICfBm2xc53uBrViFbBkb5vW4jWtTB+N43XfjWvfWnBJJqjBnKrhd28+aQSBJ2uBfRJJ0udvsk0ya7tmWTCg31mde/7yTfT1+dbfdAALUaOM4fyRIWev68NZ9DiU3x7rf1nIBsjPMrLkdxuwF9zkXtvrCYM7DsbZxY8K+bcdruGbyOLrO9gmj75jPtfU+YfwMNN+TQ/istGYkuT02H9oqQ8ra3Jwp6tpQJlEq2sJa9sgNudAXo7CPZJ0clHKGRsrH0X/7ocylg9Tv9zkbgX93SrtGuX/DotG/iGuRerCxcOFCvfbaa3rllVea/Wznzp2SpK5duzb5fteuXfWPf/wjWaagoKDJXy0dKnPo93fu3KnS0tJm9ZeWljYpc/h2OnXqpIKCgmSZw82ePVuzZnEhAQAAAAgPcyYAAADkgsgsRbV161bdcsstevzxx1VUVHTUcrFY07998zyv2fcOd3iZI5VvTZmPu+2221RdXZ382rp1a4ttAgAAAIAgmDMBAADAFxkb6VVZWaldu3Zp0KBBysvLU15enlatWqX77rtPeXl5yb8GOvyvf3bt2pX8Wbdu3VRXV6fdu3e3WObtt99utv1//etfTcocvp3du3ervr6+2V8lHVJYWKiSkpImXwAAAADgCnMmAAAA5IrILEU1fPhwvf76602+d8011+i0007Td7/7XZ188snq1q2bVqxYoYEDB0qS6urqtGrVKv3gBz+QJA0aNEj5+flasWKFrrjiCknSjh079MYbb2jOnDmSpKFDh6q6ulovv/yyBg8eLElau3atqqurdc455yTL3HHHHdqxY4e6d+8u6WA4XmFhoQYNGhRov6pPk3zH69uNlY2507zd2LMJW8HhGcrEMK7lHoixjd7ohKlczLh+dsUiY/6I7JkKsd0BAlUs2zXusyTF+hkLWtcSNq7vb85TMOeU2FWU2c5huXXb1qyCRfbz7HU3FjSelxmyZcN4nu3YBDkv5nPtOA8nyH1nepXt+FhzV6xiZSHck6377XhdUp8/DP63ENYlN+eAPGdspDU7w9oXFSS3I4ScG8fMmRjWazqEvC7XOSDmLCVzDkj2r4ON7NBW50zZjuwIG44DooJrOjv4Hed05FOELdvb50qqGRl+mW++cyfD/MF3GynliGRhzly9pPYh1JlmkXmw0bFjR/Xv37/J94qLi3Xcccclvz9p0iTdeeed6t27t3r37q0777xTxxxzjK688kpJUjwe17XXXqtvf/vbOu6449S5c2dNmTJFp59+ukaMGCFJ6tu3r8aMGaOvfe1revjhhyVJX//613XJJZeoT58+kqRRo0aprKxM48eP191336333ntPU6ZM0de+9jX+qggAAABARjBnAgAAgK9GuQ/7Jjw8NVOnTtUHH3ygG2+8Ubt379aQIUO0fPlydezYMVnmnnvuUV5enq644gp98MEHGj58uB599FG1b//vx1RPPPGEJk6cqFGjRkmSxo4dqwceeCD58/bt2+uZZ57RjTfeqHPPPVcdOnTQlVdeqR/+8Ifp21kAAAAACIg5EwAAANqCSD/YWLlyZZP/j8ViSiQSSiQSR/2doqIi3X///br//vuPWqZz5856/PHHW9z2CSecoKVLlwZpLgAAAACkFXMmAAAANBFG2Dfh4QAAAAAAAAAAAEcX6Tc2coU1KNpbYE1ilaZ3rzOVqzCGX04vswXpWkOYA4XUBghjtYhtMR5vY6hsbLg9ADomY1nj8Znu2c6zdZ8PMp4ba1j7ZGO/XeY2MF0K0G83FpjKmcOQjbzJCXPZYOfQX0XMts8Vxv4QJBTNdQC8+TzLeH+SVFFlK1thDea2hhxb742XZzCEznWwc4BQdyu/YLhDYmXG66qvccP9Any2OQ77tu+z080etMN2c/Q82/E2B/f1sxWTlLFw9dRCCI/MdQiltU9YtltTU6N4/K4UWwQ0l2rQb8qhpg6uO8KKgeyRjust1TFANtwTwt4HF+PSXDjOfm1MdR/SEdI+Q35z9pbn39a5TkvC/BzOyjFwo9y/YZGBjA3e2AAAAAAAAAAAAJHBGxsAAAAAAAAAAOSCBkntQ6gzzXhjAwAAAAAAAAAAREbMsy5oDKcOrq8Wl06tltqXtFg2jCwH53Va1313vfa6JK+TMdjgGlux2LMJUzlrfoU1q0CSPS/Euua86/Mi2bMzrOthGtdet/bF6VW2PAXJnpNgXRffuuaiea3QANeBuU84zjUwr9sfZM1L15kKIVwHQfqZRbkx38N/7dGDzH1bylz/DoGLtVU/zromr/nYZDBPwXxegmRcZbswcjOs99AgeSqOZcNa0EdzaPxbXV2tkpKWx7+AZO8z5FO0DX6fVa4/5wEg7M8PF+P/sD/DUs2Zkvzvz6nOEX3rT8c++Py8pX8Dy6YxcPLfo2+ulgodt6W2Rro/vfvJUlQAAAAAAAAAAOSCRrkP+yY8HAAAAAAAAAAA4Oh4YwMAAAAAAAAAgFzQKPdh37yxAQAAAAAAAAAAcHS8sZFh1a9IvnkqO9xvN0jQuIW3PWEqN6uHrVxC9vbN6mErN9Oz1elZw6xjCVM5a8i4JJVbt73IuC+dErb6jMdQkqaX2fYnZg1N7+s2oD5QWLvchrtGIWhY/YzljEH2YQShW4MhXQdpmwPvJcXKAoRzG1QY+7fn2bZbEUJwsfV4a5Hx2DgOqJfs/dEc/t7Xti+hXKvWa9DxtoOEE2Zq287Ps+z3CWsouHlfjP070P3J8WcREAWZDlZNx/WUDW0IW9jh4OkI8Q09iNjweUDIOmAX9r0zG+7N6fj8CGU+9PH6y1Jso2m+7bMNn3nAjBb+7a9WtYbtp1mD3L/u4PoNEAPe2AAAAAAAAAAAAJHBGxsAAAAAAAAAAOSCekm2RWOC1ZlmvLEBAAAAAAAAAAAigzc2Mix+tqT2LZfxnrPVFWQt6fIdd5rKzeh+u6lcrMqaiWFc97mT/bFhbINt2wnrmn/G+rTBVkzWdellP97TuxvrtOazGNdyl6QK4zrf3nbbOZzR3ZbZ4Xr9c8mef+J62+ZciiCs59B6fBznHwTZZ/PVv9GWp2Lui7Jdf0G2bT8vtmLmtUv7ul/LtcJ8D7UVM/edIOu1GvfbnsWTuawC8zVjPdcBcm7MHN93wsjsMTPe86zHO6P74hiZHUB29O9saEPUpeMYhr5eP/kZTkQhsyYKbYS/sLMnXAjl3ycO5zeG9svA8Pt5qvUr3GuuRjWao7mt/v1QNH705brONOPBBgAAAAAAAAAAuYDwcAAAAAAAAAAAgPTijQ0AAAAAAAAAAHJBo9y/YZGBpah4YwMAAAAAAAAAAEQGb2xEwKwetnLl222B4JI9pNo1b3vCVC7Ww1ZOkhLGqOGENRTcGHJq3RfJGqxuD21KbDTGK2+3FZteZg84r5AtSDvIOTTpaysWJNApU+Gu06tsx9secCx72Lfx+FiPjfkYGsK6ksxh9sZ9Md5Dg3B9HF3XF6jPWkOTraxB0dbQ6yBB6Nb9vtxWp/ec7V4bqzLWl45gvqMxnmfjp0s4jOcv0c/4ud/X/vkbyn3Zst2yOmNJ22evlLn7EwD43VcIvoZVpoOzM739dG0jbKkex2w4D35SDQd3sQ/ZcZxS24bffMpvHuU7rjX8G0Oq24jcZ1x9ROr0wRsbAAAAAAAAAAAgMnhjAwAAAAAAAACAXNAo9687kLEBAAAAAAAAAABwdLyxkWlvzpZU1GIRazZEY3d7ToJVRZVtTWdvsnEd8mcTpnIJ2cpJ0szRtnIJ47rv9vXcE7ZiOwKsWL7RVqe1TyR62PZ5umdd49vOWqe1j5nXhw+yhr1xPXdrBkl72XJuZhpzVyo2mIodFMbxccmcmyFzRkOgOh1LdS3VZvUZMxrsWSX2Y2POFrB+Hlj7mPHeGEYmlDkraLg9o8FUX5DsE+u5DpJBYhDG2rDm/m28j1k/A4NkmsSsn0XGvCercrfVSbLfn8xZHI7rA3KR5TpqC5kBkVtfHFkr7OshHZ9Z2ZF7kJpU98E3QyPFuWk67q2+uQop5oS4kPI++rXRMN9I+f7vNw/wqd9vTltRZhjr++2Dz1yu5eP4of/2061B7gMWGxzXZ8CDDQAAAAAAAAAAckEbebDBUlQAAAAAAAAAACAyeGMDAAAAAAAAAIBcEMbbFbyxAQAAAAAAAAAAcHQxz/PcJmPCpKamRvF4XNXV1SopKWmxbCyEEDZz2Pc8W/cwhyvHjOHK203FJNmDZct32LZtDou1hsAaw1AlyXvOeF56JGz1jbaV0wJbMcl9kK8pxEkKJ0jXeA4T/WznJdHXGGjr+DxLUsIYZj/T8S3fHIYWIOjb62Q8PruN+xJGGLm1TtesbQzSPmOd1iBmawig9ToIcs+xBpwHuS9bmAPYYwVuNyw5Dw8PxPo56PoadHz+JHvg4QwZz7X1s814DAMFoTsOqXQbMv6hpLtM419ACjZnQuYRlgzJELZMyDw+kuqYxcX1mAvXfKr7aJnfhX1d+/67qM/8wEX7Urm3ZdN45lBb9NlqKc9xWxpqpBfSu5+8sQEAAAAAAAAAACKDjA0AAAAAAAAAAHIBGRsAAAAAAAAAAADpxRsbEWDNr7BmSEgyZyp4sq2BrjG2YjM821rpsQDrkFuzBWLG/AMr63mpWGRcZ1sBsjOs611XGdeD7GFf29J6vBMbHMf3hJEt0M9WzLov1j4RqzIem762YpKU2Ggs53rtS+P6/tZjI0mxWMJY0naup3t1pnLtY8b7naRG473MnKngOichQH3WTBMpQxkyYWRIGHMNzPd5a55CgGvanCvkuD7r9SIF2W+394kKuc2vkOzZMNMd30ODZGeY63S8FrTrzA4A4Qh7nXjLvSDsbaRjrftsX08/HechVVHI0MiGbIdckA3XtB/ffAm/vuIzzvW7Hkx9McVtpLyPBn5T6ZTb4PfvQQHG/Udtg9+43Hc+lfn+HEgbeWODBxsAAAAAAAAAAOSCBln/dtGu0XF9BixFBQAAAAAAAAAAIoMHGwAAAAAAAAAA5ILGkL4CmD17ts4++2x17NhRpaWlGjdunDZt2hSojpjnea5fPIFBTU2N4vG4qqurVVJS0mLZmHGNykQ/+/rwM7cbC15jKxab5zaDoH3Mnhcyc7S5qMmMZba188vH2NporU+y77d1n2Nb3F/e06vsWQkW1gwCb3TCVC7QPjtYh/HjvMnGbAHj9RLkmjZnPlQZ16a3ZpVYs08utxWT5D7/wJpzYd2XAMwZScbMAPP6p2HkUriWycwH16z3kiAZQFbW/Arjvdt8vUjma8Z8rRrvT9ZcikDrBRv3xbxtc2ZHCOfFyth3XK6VHmT8C0jp6zPZsA58NrQh20XhGIWedWL4fIlCxoUfMjA4BumS6jUbhfuSnxlqeTxqnau2JNWskrRwnXHYxIeS7sqKMfChsZXOqJbaO25LY430J/u4bcyYMfrKV76is88+Ww0NDZo2bZpef/11VVVVqbi42LRJMjYAAAAAAAAAAMgFWZCxsWzZsib/v2DBApWWlqqyslLnnXeeqQ4ebAAAAAAAAAAAgJTU1NQ0+f/CwkIVFhb6/l51dbUkqXPnzuZtkbEBAAAAAAAAAEAuaAjpS1KvXr0Uj8eTX7Nnz/Ztjud5mjx5soYNG6b+/fubd4M3NgAAAAAAAAAAQEq2bt3aJGPD8rbGTTfdpD/96U9avXp1oG3xYCMCvE7GAGHHIdqS+1Bwa+B2GPsSJMTbwhpSnYi5D3Wf0d24L8bgOHMfkzRDbo+jNSRqxjJbgPB0n+Crj7MGDVvDXc3B5cYAYWsguGTfF2uYoLlHWEPBAwRxTS+znWtzUPQG86btjOewoq+xjcY+JtkChIOERsasZa3n2hqkfbnt2q8whjBLAfq3MYzRGlweSrCzNczeeF7MbbRuV0FCvG3bnu4Z77XWkPEAYY1+oYlBt22VyVBw+305C8IcgZBFIdwV0ThPYbfRRTB4psOOLeOwTLchG/paNrTBT8rB2z5jSSf9PcBcIozf963fwfWQatC83xyzQqmHaoe+D35zGMOcKcyg+IOB3Xf5NyKdGiQdcFznR/WVlJQECkm/+eabtWTJEj3//PPq2bNnoE3yYAMAAAAAAAAAgFzQKPfh4QEflHiep5tvvlmLFy/WypUrddJJJwXeJA82AAAAAAAAAABAWnzzm9/Uk08+qV//+tfq2LGjdu7cKUmKx+Pq0KGDqQ4ebAAAAAAAAAAAkAsaJLVzXGfANzYeeughSdIFF1zQ5PsLFizQhAkTTHXEPM9z/eIJDA6urxZXdXW177pjs4wZDUHW428fM2ZdGFm3XWFdFztA5oNrsd22SyKMNlqzM6zH0cy6dr7seRPlsrXRur5/op/teCf62m9piY22OmcaM19c57iYM2nkPg/Huu67OYMgQJ+1nmtrJo31mg7EdbaINdfAmO1hPS+S+3Nt/XyxXqvWe44UoJ8Zj6M5q8CYK+JNDvC5scx2fMzr0TruY4G4znwIkANi5jpDxnocQzgv1jW5rWtGu1jf+pAg419Aos9kk2zIRUB2nId05FNkewZG6pkGbeM8+bbBb6zhM/ZLR19KVfj5F/IdL/rl3qWchWLZB7/xvt84P9Xxvc9Y2due8K+je2r/btDycfpQ0l1ZMZ45NLbS8dVSO8dtOVAj/TO94zbe2AAAAAAAAAAAIBdkwRsbLrjeBQAAAAAAAAAAgNDwxgYAAAAAAAAAALmgXryxAQAAAAAAAAAAkE6Eh2dIkCC8GTKGNe+wBw3P6mErZw3ndb3dIEHo1oDlWc+aq8x6YYTuWlmDhs0ch8AGCXWPDc/McbReq9Yw+SB1Og/SNgbueifYz4s1hN0aUG+9hwZhDam2hrVbWe931jB5SeZzaL0OXPfFIIHbsWcTpnLWIHRrH7OGMJuDp2W/l8V6JOyVuma8f/sFGh5iPo7GkHHreZakijJj8LyV9VxbQ8utweoBmEPGreHhpoDz7AlORDRY50zZEJKb7ThG2SEXzkMUgrWjIBf6SluQDefJd6zmM970rGO9VNrgxzSOTIFfuLnkP972qaOl4xjk34DDlgwP/0S1FHPcFq9G2pPe/YzMGxuzZ8/W2WefrY4dO6q0tFTjxo3Tpk2bmpTxPE+JREI9evRQhw4ddMEFF2jDhg1NytTW1urmm29Wly5dVFxcrLFjx2rbtm1NyuzevVvjx49XPB5XPB7X+PHjtWfPniZltmzZoksvvVTFxcXq0qWLJk6cqLo6+wQaAAAAAFxizgQAAABfDSF9pVlkHmysWrVK3/zmN/XHP/5RK1asUENDg0aNGqX9+/cny8yZM0fz5s3TAw88oFdeeUXdunXTyJEjtXfv3mSZSZMmafHixVq4cKFWr16tffv26ZJLLlFjY2OyzJVXXqn169dr2bJlWrZsmdavX6/x48cnf97Y2KiLL75Y+/fv1+rVq7Vw4UI99dRT+va3v52egwEAAAAAh2HOBAAAgFwRmfDwZcuWNfn/BQsWqLS0VJWVlTrvvPPkeZ7uvfdeTZs2TZdddpkk6bHHHlPXrl315JNP6vrrr1d1dbUeeeQR/d///Z9GjBghSXr88cfVq1cv/e53v9Po0aO1ceNGLVu2TH/84x81ZMgQSdL8+fM1dOhQbdq0SX369NHy5ctVVVWlrVu3qkePg2srzZ07VxMmTNAdd9yR8deKAAAAAOQe5kwAAADw1SDJvuqzTQbCLiLzYONw1dXVkqTOnTtLkt566y3t3LlTo0aNSpYpLCzU+eefrzVr1uj6669XZWWl6uvrm5Tp0aOH+vfvrzVr1mj06NF66aWXFI/HkwN0SfrMZz6jeDyuNWvWqE+fPnrppZfUv3//5ABdkkaPHq3a2lpVVlbqwgsvbNbe2tpa1dbWJv+/pqbGvK/W9cqt+RWSPcMiZlxHPtHPdjUkNhjXVB/j+uoKkBdyja2YNbNj5mjjdmVfF998vKvc31W80cZ13437Yl0/35q7EAuyz8Y10K15CtY18a3ZGdY8BcmeLSC5XZu+/DljnkKAHIDpsm17Vsx2vMuN177z/BEFWLff2hfnOc4BkOQ9Z+y3svVbczbMcFux2CL7ebFmmljPS7kxG2Z6lT0PxypWZswA8tzuc5AcEOtauDHLmrZBGLM9KqyZHVKw/TYw54qEkJ1h5TrTBNkpV+ZMmV5r3sUa6y5yCVJtQ0ss7cv0eYiCbDhGYWcC5MI+pqMNKV+zPp/zllyFTB/HdGzfL4/RbwydDf3db9yZ6r+uWe7/fv9+4DsX8Rvf++XS+Y3lLfMWvzmLz5g4VtbC7zce/UdITWSWovo4z/M0efJkDRs2TP3795ck7dy5U5LUtWvXJmW7du2a/NnOnTtVUFCgTp06tVimtLS02TZLS0ublDl8O506dVJBQUGyzOFmz56dXH82Ho+rV69eQXcbAAAAAEyYMwEAAOCI6kP6SrNIPti46aab9Kc//Uk/+9nPmv0sdthf8Hqe1+x7hzu8zJHKt6bMx912222qrq5Ofm3durXFNgEAAABAazFnAgAAQFsWuQcbN998s5YsWaI//OEP6tmzZ/L73bp1k6Rmf/2za9eu5F8KdevWTXV1ddq9e3eLZd5+++1m2/3Xv/7VpMzh29m9e7fq6+ub/VXSIYWFhSopKWnyBQAAAACuMWcCAADAUTWG9JVmkXmw4XmebrrpJv3yl7/U73//e5100klNfn7SSSepW7duWrFiRfJ7dXV1WrVqlc455xxJ0qBBg5Sfn9+kzI4dO/TGG28kywwdOlTV1dV6+eWXk2XWrl2r6urqJmXeeOMN7dixI1lm+fLlKiws1KBBg9zvPAAAAAD4YM4EAACAXBHzPC8DmeXB3XjjjXryySf161//Wn369El+Px6Pq0OHDpKkH/zgB5o9e7YWLFig3r17684779TKlSu1adMmdezYUZL0jW98Q0uXLtWjjz6qzp07a8qUKXr33XdVWVmp9u3bS5Iuuugibd++XQ8//LAk6etf/7pOPPFEPf3005KkxsZGffrTn1bXrl11991367333tOECRM0btw43X///ab9qampUTweV3V1te9fIvmFGR3SPmYPGrayBl9bg7StrCHjkj1I2xqYbj2O5iB0Y6C0JMWGG+s0hv1ag9ADWWArZg2zd93HgoS1W7nu39a+aA0tlwIEyithrtPEGgocIJjXes2YA8ldBxdLSmxMNYKtldvta7xHGEOvJSk2zxhSbQzmds0cei2Z+1mQ+7KFNXg+jGNYESuwFTQGbgdpo/XcTK9yG3Bu/gzsbh9LWIO0zftivH+bQ8aDBKEbWUJDg7AFH38o6S7T+Betk8tzJrQs0yHALtqQDfuQaS5C3MM+ji7qz3Qb/WTD9eLHRRtTbYOvFMOaLVK9Hnz57IPfeMsyxku5jlSPo2Ue4Rfu7cenjb7nMYSxcrM2pDB2zqbxzKG2SNWSXLelRlJ69zMvLVtx4KGHHpIkXXDBBU2+v2DBAk2YMEGSNHXqVH3wwQe68cYbtXv3bg0ZMkTLly9PDtAl6Z577lFeXp6uuOIKffDBBxo+fLgeffTR5ABdkp544glNnDhRo0aNkiSNHTtWDzzwQPLn7du31zPPPKMbb7xR5557rjp06KArr7xSP/zhD0PaewAAAABoGXMmAAAA5IrIPNiwvFgSi8WUSCSUSCSOWqaoqEj3339/i38l1LlzZz3++OMtbuuEE07Q0qVLfdsEAAAAAOnAnAkAAAC5IjIZGwAAAAAAAAAAAJHJ2GhrgqyvZl3zz/na+SEII7MjUxkNsS3GNdWN63FL9nyPmdvNVZpY8zAk+xr/QTIVTNs1ZkgEOTauM02sx9GazxJorXvjOvvW+4TzrBJjNoskzeie/Xk41jZaMwOsmR3W8zfdqzOVk+x9x9tu27b1urKu9WrdbpBtm9dHHeM4i+PZhLms+Vq13vOMeROhrE9r/Twwrs1rvV6seUZSgEwj6/rB1rWMjdknQdYttvbvmPU66Ge8Vg1reWfT+sKIBld9hmwGRAV91YbjlB6+/xaVYkZGOvJgMr0PfkLPMZH8x5s+40zL2NIvG9h3rG0cbx6N3/zXnEvYkhTyVLJpDNzWMjZ4YwMAAAAAAAAAAEQGDzYAAAAAAAAAAEBkRCY8HAAAAAAAAAAApKL+oy/XdaYXb2wAAAAAAAAAAIDIIDw8QwKFhxuDPK0Bx1KwsGiLMELBzds2Bqe6DiS2ChJm7Tw02Rj0bQ1iDYM52Nl4HcyK2fclSLCshTUo2hoobw6zlT34OtYjYavQL0QtIOs+S1L5GFv/tt5PzEHoAQLOXYdUm0PjrEHDGRQkhN3C3GdlDxq3fgZa70/mYGdriLYkb7LtOM5Y5vg+FsZ9Z7fj42gU5LPNfK6twYaO76HmwHsFuJ8Y2xhk236yKTgR0eAsPNynH1vHma3evuG6JOy4bQg71Np0j08h4DYd0hKW7CMrQqt9pNrGdEjHcUylfknyRidaruPZln/uu49+nx8+4eN+oddS6sHbKfclw5jR798jrfPno9bvd9/a4bN9y5zSbz/95nItnocPJd2VFWPgf4eH71Q44eHdCA8HAAAAAAAAAAA4EjI2AAAAAAAAAADICW0jY4MHGwAAAAAAAAAA5ISGj75c15leZGxkSBgZG5nMSbDmSLjO9ghDJvclU1klrrMmMsl1RkoQQfJUXMtUhow5I8WYFyApUNaFyTW2YkGuK+t+Ty+zZ4tYlO+wnT9zpoGkRD/bucnUfSJI5oOVdS31GXKfh+Oa80yTIOvfBsgMsTDvS3dbG/3W1G/CdXaGz3rKgQXJ7DBuOxPr+ZOxgaDS1WeyYh34kNfTT0u2Q8htSAe/uXdbyKcIuy+k4zyHfs06yN1Jta+kmt3g4jxk+lw7yTrxO44p5SY4YMlQ9GuDX67OCT75E/N8xtYujoHfWNZv/JpidpDpmnY9fm8iGzM23lI4GRsnpXU/eWMDAAAAAAAAAICc0CD3S0el/40NwsMBAAAAAAAAAEBk8MYGAAAAAAAAAAA5gfBwpIl1bcZZIURsZCpvIkhWgettRyEHxLrWvTVPIcj68Nb1+F2z7nOQHADrflv32dp3wriuykfbznXIK4QefbtB8iuMa/x7z7nti0H6jjfGtu3YswlbhZa1VSWVdzJmpFxuKybZs31ijnMkrPkjQXJKrPe8mDkbxlZf+2dt5RJ97fkV06ts+x0rM9ZpzV0Ybb+uZpTZrpmKMlvfiS0ynpfupmKBrgPrGtHW3A6vzO2a0y7WVA+7ziisnQ8cTTbkT/hJNYMj1eyIbFivP+XjbMgrynSGhgth349TPU8u2hd6GxzkV6TaBt/MgBSnQi6yf3y3kWJOiBN+2+jn8/tBcs6OwPc8urjn+OSExPolUqvfQQ6IfwZGqteDg2u2yqeM3z62sI2DuRZ3+bYBwfFgAwAAAAAAAACAnNAg95kYZGwAAAAAAAAAAAAcFW9sAAAAAAAAAACQExrkPhMj/W9s8GADAAAAAAAAAICc0DaWouLBRhtiDYCV7EG+mQrSDmO7rgO3w2A9L9Y2Wvc5kWryWAoSxhDf6bIF6ZaPsZ+/crkN3A4Sem9hPTaSJGPAeZD7hEXCGM4bJJjbdX+MbbEdx0DbNR7H6V6dqVyFNTTuGuN2jcHTkjTLuNsJYx+z9tvyHe7vtTElnNY3Y5kxHDtWYCoX5LxYj0/5CbZyM6ps+2IOI5cka4jrBmN91rDv52x9cbpxnyUpZjyHZtYw8jACh1MMuWzGGOxp25cPU2sLEJJUr0UXoddhtyFVLoKGsyF0OtNSDpRuC8fAL1BaDkLcfT4LLW1ImV8bsuC+4yfl8G+fY5DqPsww/RuBzxjPb9yUasD5mETLP5/nP/ZOOcTd5+fTy1o+jhVld/hvxK+/p3hNp3rNuvgMm2Gc2yO9eLABAAAAAAAAAEBOqJf7pahc1+eP8HAAAAAAAAAAABAZvLEBAAAAAAAAAEBOIGMDWSb2bMJeeINtjT7rmuqZZM01mOG4vkzlj0jB8gpcc50joR62PmbdZ2tOiWTfl8bu1rXpDWtPSkpsNK4P79nX47ey5k1YswC8HcZ7xBhbMUmaYTzX1uNt3ZeZAdoYpJ9ZeJ1sx9Ga+RAkK8iaieFNNua4GMtpga3YDOP1J8n82aZ+trVyyz1bHyvfbjx/su+Ldb8r5tnaKOO6tEFyQEzr7Ur27Ayj2HBjDkiQNZGtfcfIdXZGkLWVrdu215nBvBAgXVJcY91F/890doLvPhjye8LOj8iGDI6w73UuzkOq+RRRyAEJP58i3O1b+LYx1ZwQ15lcreC3D+nIEUk1J8T388E4/26xjtDPdcvjf8s9xa+NvjkeGx3n3R3OMNb3P84tz30qWvpho+/m0Uo82AAAAAAAAAAAICc0yH0mRvrf2CBjAwAAAAAAAAAARAZvbAAAAAAAAAAAkBPI2AAAAAAAAAAAAJFRL/dLUbmuz1/M87zUk2wQWE1NjeLxuKqrq1VSUpL27c/yS8MKSVsK5i4fYwvndR0y3NbMHG0rF4Xj6HpfwgiJDxIqbTHT+hEyxn7PsQZkW1XEbEFk0706e51VbkOTrYHN5rDmRbZiYbAGoVsFCg83Kt9hvA6usRWLPZswlfO228pJAcLDHffvcp9QvI+zBjaGsW2LIIGSroNOXQd4Z3JfXMr0+BfRky19JtUw5SiEi8d8wmE9Q3iti+DrFtvg00YX4eJhh0KnJQzZT6qh0X7jTJ/xb6rh5pIhdDrDAerZwDcI2S80W6kHmPudhxk+odV+Y0NLqLbvfcPv3je55blNbF7L82G/e2fKweBS6gHoftd0v/A/w1Lurz77aJlv+83x/QLQW+qv2TKe+XhbpKWSih3Xvl/SJWndT97YAAAAAAAAAAAgJ7SNpagIDwcAAAAAAAAAAJHBGxsAAAAAAAAAAOSEBrnPxEj/GxtkbGRINq2v1hK/NQ8Pcb1uf1tizRWR7Nki5jqt68P7rAv5cX5rTB6SqUyMILkU1nX2Y7ttx8eaLWA9z4kN7m/P1ja63mdrfYHqHG6sM4S8iUQ/WxsTfY3H8QRbfa7zR4Jwne8RRt+xrv/qjU7Ytr3F7fmzZnEEssG4xrMx7yXImtSu1wEPI2/CuVTXJT+cYX1rKdha3k7Wav44h22MyvgX2SMqfcbFWva+9xefOkJfv9wg5fwIn88037XqXXw+hHwe/ISdUyLJybluiZMckRTPQ8q/78fBefAdc+3wyXYIMkY+EsPY0C+XwJr1dlR+41i/NlrOY6rbSHUu6SCfIuX+lgX93VfIn3GWOU6qnyEttTGbxjP/zthYJOkYx7W/L+lyMjYAAAAAAAAAAIBrZGwAAAAAAAAAAACkFW9sAAAAAAAAAACQE+rlPmPDdX3+eLABAAAAAAAAAEBO4MEGcoA1LHa6MbfKdfisJOdhsdbQa2uw80zZQmUle/B1zBjSNd2rM5XzfILJmmzbGKarvrZifoFkh5iDyarswVYV/Yx1brAVi/VImMp5223lEsNt25VkDwQzBs9bg53NgoSmjbYVM/edKuN9xxiuLNlDwa3nJbYxYSrnKYPhysZr2soa/h4kzFrW8Oky433Cel1VGffFVlsg1nOdaphpNjGHjAcJ0bYGZBv7o3XbYQSmuz7XMccfB0CbFHKgtOR/LYby2f8xafkc8Rkv+t6OfAJuXYTHhh1g6yR4249fmLLPeUi1jem4HvyOc8qfbZZxQ4qBy/5zS582+J1nwz6Uq+V5VIVfG/ykGqztt4+SPJ9rMuZ3HPoFaE9rGPYh9OPkd81b7p0p3vvC/4wz9JU2NF/KJTzYAAAAAAAAAAAgJxAeDgAAAAAAAAAAkFa8sQEAAAAAAAAAQE5okPtMjPS/sRHzPC+MJZ/ho6amRvF4XNXV1SopKcl0cwAAAIBQMf5FUPQZAAAQddk0njnUFulBSR0c1/6BpBvTup+8sQEAAAAAAAAAQE4gYwMAAAAAAAAAACCteGMDAAAAAAAAAICcUC/3jwVcZ3b448EGAAAAAAAAAAA5gaWoAAAAAAAAAAAA0oo3NgAAAAAAAAAAyAkNcr90FG9sAAAAAAAAAAAAHBVvbAAAAAAAAAAAkBPI2AAAAAAAAAAAAEgrHmyk4MEHH9RJJ52koqIiDRo0SC+88EKmmwQAAAAAWYV5EwAAQDapD+krmOeff16XXnqpevTooVgspl/96leBfp8HG63085//XJMmTdK0adO0bt06ffazn9VFF12kLVu2ZLppAAAAAJAVmDcBAADgSPbv368BAwbogQceaNXvxzzP8xy3KScMGTJEZ555ph566KHk9/r27atx48Zp9uzZzcrX1taqtrY2+f/V1dU64YQTtHXrVpWUlKSlzQAAAECm1NTUqFevXtqzZ4/i8Ximm4M0CTJvYs4EAADammwaA9fU1HzUhm9JKnRce62ke5qN2woLC1VY6L+tWCymxYsXa9y4ceYtEh7eCnV1daqsrNStt97a5PujRo3SmjVrjvg7s2fP1qxZs5p9v1evXqG0EQAAAMhG7777bsYndUiPoPMm5kwAAKCtyoYxcEFBgbp166adO+8Jpf5jjz222bht5syZSiQSoWyPBxut8M4776ixsVFdu3Zt8v2uXbtq586dR/yd2267TZMnT07+/549e3TiiSdqy5YtGe/UiIZDT3j5izVY0WcQFH0GQdFnEMShv77v3LlzppuCNAk6b2LO1PbwORF9nMPo4xxGG+cv+rJpDFxUVKS33npLdXV1odTveZ5isViT71ne1mgtHmyk4PATdaSTd8jRXruJx+PcmBBISUkJfQaB0GcQFH0GQdFnEES7dsT85RrrvIk5U9vF50T0cQ6jj3MYbZy/6MuWMXBRUZGKiooy3QwnsuOIRkyXLl3Uvn37Zn9ltGvXrmZ/jQQAAAAAuYh5EwAAAMLCg41WKCgo0KBBg7RixYom31+xYoXOOeecDLUKAAAAALIH8yYAAACEhaWoWmny5MkaP368zjrrLA0dOlQ//vGPtWXLFt1www2m3y8sLNTMmTNDXWcMbQt9BkHRZxAUfQZB0WcQBP0lN6Uyb6LPRB/nMPo4h9HHOYw2zl/0cQ6Pbt++ffrrX/+a/P+33npL69evV+fOnXXCCSf4/n7M8zwvzAa2ZQ8++KDmzJmjHTt2qH///rrnnnt03nnnZbpZAAAAAJA1mDcBAADgcCtXrtSFF17Y7PtXX321Hn30Ud/f58EGAAAAAAAAAACIDDI2AAAAAAAAAABAZPBgAwAAAAAAAAAARAYPNgAAAAAAAAAAQGTwYAMAAAAAAAAAAEQGDzZC9OCDD+qkk05SUVGRBg0apBdeeKHF8qtWrdKgQYNUVFSkk08+Wf/zP/+TppYiWwTpM7/85S81cuRI/cd//IdKSko0dOhQPfvss2lsLbJB0PvMIS+++KLy8vL06U9/OtwGIqsE7S+1tbWaNm2aTjzxRBUWFupTn/qUfvKTn6SptcgGQfvME088oQEDBuiYY45R9+7ddc011+jdd99NU2uRac8//7wuvfRS9ejRQ7FYTL/61a98f4fxL5gzRR9zmOhjThFtjPGjjzF3tDEGziAPoVi4cKGXn5/vzZ8/36uqqvJuueUWr7i42PvHP/5xxPKbN2/2jjnmGO+WW27xqqqqvPnz53v5+fneokWL0txyZErQPnPLLbd4P/jBD7yXX37Ze/PNN73bbrvNy8/P91577bU0txyZErTPHLJnzx7v5JNP9kaNGuUNGDAgPY1FxrWmv4wdO9YbMmSIt2LFCu+tt97y1q5d67344otpbDUyKWifeeGFF7x27dp5//3f/+1t3rzZe+GFF7x+/fp548aNS3PLkSm/+c1vvGnTpnlPPfWUJ8lbvHhxi+UZ/4I5U/Qxh4k+5hTRxhg/+hhzRx9j4MzhwUZIBg8e7N1www1Nvnfaaad5t9566xHLT5061TvttNOafO/666/3PvOZz4TWRmSXoH3mSMrKyrxZs2a5bhqyVGv7zJe//GXve9/7njdz5kwmITkkaH/57W9/68Xjce/dd99NR/OQhYL2mbvvvts7+eSTm3zvvvvu83r27BlaG5G9LJM6xr9gzhR9zGGijzlFtDHGjz7G3G0LY+D0YimqENTV1amyslKjRo1q8v1Ro0ZpzZo1R/ydl156qVn50aNH69VXX1V9fX1obUV2aE2fOdyBAwe0d+9ede7cOYwmIsu0ts8sWLBAf/vb3zRz5sywm4gs0pr+smTJEp111lmaM2eOjj/+eJ166qmaMmWKPvjgg3Q0GRnWmj5zzjnnaNu2bfrNb34jz/P09ttva9GiRbr44ovT0WREEOPf3MacKfqYw0Qfc4poY4wffYy5cxPjGXfyMt2Atuidd95RY2Ojunbt2uT7Xbt21c6dO4/4Ozt37jxi+YaGBr3zzjvq3r17aO1F5rWmzxxu7ty52r9/v6644oowmogs05o+85e//EW33nqrXnjhBeXlcfvPJa3pL5s3b9bq1atVVFSkxYsX65133tGNN96o9957jzV4c0Br+sw555yjJ554Ql/+8pf14YcfqqGhQWPHjtX999+fjiYjghj/5jbmTNHHHCb6mFNEG2P86GPMnZsYz7jDGxshisViTf7f87xm3/Mrf6Tvo+0K2mcO+dnPfqZEIqGf//znKi0tDat5yELWPtPY2Kgrr7xSs2bN0qmnnpqu5iHLBLnHHDhwQLFYTE888YQGDx6sz3/+85o3b54effRR/qIrhwTpM1VVVZo4caJmzJihyspKLVu2TG+99ZZuuOGGdDQVEcX4F8yZoo85TPQxp4g2xvjRx5g79zCecYPH6yHo0qWL2rdv3+zp6q5du5o9kTukW7duRyyfl5en4447LrS2Iju0ps8c8vOf/1zXXnutfvGLX2jEiBFhNhNZJGif2bt3r1599VWtW7dON910k6SDg1rP85SXl6fly5frc5/7XFrajvRrzT2me/fuOv744xWPx5Pf69u3rzzP07Zt29S7d+9Q24zMak2fmT17ts4991x95zvfkSSdccYZKi4u1mc/+1l9//vf5y+P0Azj39zGnCn6mMNEH3OKaGOMH32MuXMT4xl3eGMjBAUFBRo0aJBWrFjR5PsrVqzQOeecc8TfGTp0aLPyy5cv11lnnaX8/PzQ2ors0Jo+Ix38K6cJEyboySefZD3FHBO0z5SUlOj111/X+vXrk1833HCD+vTpo/Xr12vIkCHpajoyoDX3mHPPPVfbt2/Xvn37kt9788031a5dO/Xs2TPU9iLzWtNn3n//fbVr13Ro2b59e0n//gsk4OMY/+Y25kzRxxwm+phTRBtj/OhjzJ2bGM84lM6k8lyycOFCLz8/33vkkUe8qqoqb9KkSV5xcbH397//3fM8z7v11lu98ePHJ8tv3rzZO+aYY7xvfetbXlVVlffII494+fn53qJFizK1C0izoH3mySef9PLy8rwf/ehH3o4dO5Jfe/bsydQuIM2C9pnDzZw50xswYECaWotMC9pf9u7d6/Xs2dO7/PLLvQ0bNnirVq3yevfu7V133XWZ2gWkWdA+s2DBAi8vL8978MEHvb/97W/e6tWrvbPOOssbPHhwpnYBabZ3715v3bp13rp16zxJ3rx587x169Z5//jHPzzPY/yL5pgzRR9zmOhjThFtjPGjjzF39DEGzhwebIToRz/6kXfiiSd6BQUF3plnnumtWrUq+bOrr77aO//885uUX7lypTdw4ECvoKDA++QnP+k99NBDaW4xMi1Inzn//PM9Sc2+rr766vQ3HBkT9D7zcUxCck/Q/rJx40ZvxIgRXocOHbyePXt6kydP9t5///00txqZFLTP3HfffV5ZWZnXoUMHr3v37t5VV13lbdu2Lc2tRqb84Q9/aHFswvgXR8KcKfqYw0Qfc4poY4wffYy5o40xcObEPI/3lAAAAAAAAAAAQDSQsQEAAAAAAAAAACKDBxsAAAAAAAAAACAyeLABAAAAAAAAAAAigwcbAAAAAAAAAAAgMniwAQAAAAAAAAAAIoMHGwAAAAAAAAAAIDJ4sAEAAAAAAAAAACKDBxsAAAAAAAAAACAyeLABAAAAAAAAAAAigwcbAIA254ILLtCkSZMy3QwAAAAAGcbcAADaJh5sAADg2HnnnadYLNbs66qrrjL9/oQJE3Trrbc6qw8AAABAZjA3AIBw5GW6AQAASFJdXZ0KCgoy3YyUeZ6n9evX64c//GGzycWxxx7r+/sHDhzQM888oyVLljipDwAAAIga5gYHMTcAgKPjjQ0AQDOe52nOnDk6+eST1aFDBw0YMECLFi1K/vyCCy7QxIkTNXXqVHXu3FndunVTIpEIXMdNN92kyZMnq0uXLho5cqQkae/evbrqqqtUXFys7t2765577mny+vhPf/pTHXfccaqtrW2yvS9+8Yv6r//6ryPuT21trSZOnKjS0lIVFRVp2LBheuWVV5I/X7RokU4//XR16NBBxx13nEaMGKH9+/ebf/5xf/nLX7R3716dd9556tatW5Mvy2TjxRdfVLt27TRkyBAn9QEAAACpYG7A3AAAshEPNgAAzXzve9/TggUL9NBDD2nDhg361re+pf/8z//UqlWrkmUee+wxFRcXa+3atZozZ47Ky8u1YsWKwHXk5eXpxRdf1MMPPyxJmjx5sl588UUtWbJEK1as0AsvvKDXXnst+Ttf+tKX1NjYmPyrJUl65513tHTpUl1zzTVH3J+pU6fqqaee0mOPPabXXntNp5xyikaPHq333ntPO3bs0Fe/+lX9v//3/7Rx40atXLlSl112mTzPkyTfnx+usrJSeXl5OuOMM1px5KUlS5bo0ksvVbt27ZzUBwAAAKSCuQFzAwDISh4AAB+zb98+r6ioyFuzZk2T71977bXeV7/6Vc/zPO/888/3hg0b1uTnZ599tvfd7343UB2f/vSnm/y8pqbGy8/P937xi18kv7dnzx7vmGOO8W655Zbk977xjW94F110UfL/7733Xu/kk0/2Dhw4kKz7UPl9+/Z5+fn53hNPPJEsX1dX5/Xo0cObM2eOV1lZ6Uny/v73vx/xePj9/HBTpkzxYrGYV1xc3OTruuuuM/3+qaee6i1ZsiRQfU8//bR36qmneqeccoo3f/5803YAAAAAP8wNmmJuAADZg4wNAEATVVVV+vDDD5Ovfx9SV1engQMHJv//8L8S6t69u3bt2hWojrPOOqvJzzdv3qz6+noNHjw4+b14PK4+ffo0Kfe1r31NZ599tv75z3/q+OOP14IFCzRhwgTFYrFm+/O3v/1N9fX1Ovfcc5Pfy8/P1+DBg7Vx40ZNnjxZw4cP1+mnn67Ro0dr1KhRuvzyy9WpUydJ0oABA1r8+eEqKyv1pS99SXfccUeT7x+t/Mdt3LhR27Zt04gRI8z1NTQ0aPLkyfrDH/6gkpISnXnmmbrsssvUuXNn3+0BAAAALWFuwNwAALIVDzYAAE0cOHBAkvTMM8/o+OOPb/KzwsLC5H/n5+c3+VksFkv+rrWO4uLiJj/zPnqF+/BJiHfYq90DBw7UgAED9NOf/lSjR4/W66+/rqeffvqI+9NSnbFYTO3bt9eKFSu0Zs0aLV++XPfff7+mTZumtWvX6qSTTvL9+eHWrVun8vJynXLKKUdszxtvvKEvfOELevHFF9WtWze98847GjFihF5++WUtWbJEI0eOVIcOHcz1vfzyy+rXr1/yOH/+85/Xs88+q69+9atHLA8AAABYMTdgbgAA2YqMDQBAE2VlZSosLNSWLVt0yimnNPnq1atXqHV86lOfUn5+vl5++eXk92pqavSXv/ylWdnrrrtOCxYs0E9+8hONGDHiqPWecsopKigo0OrVq5Pfq6+v16uvvqq+fftKOjixOffcczVr1iytW7dOBQUFWrx4cbK8388P2bx5s/bs2dPkL88O179/f33lK1/R73//e0nSrFmz9N3vflcFBQX69a9/rbFjxwaqb/v27U0miD179tQ///nPo5YHAAAArJgbMDcAgGzFGxsAgCY6duyoKVOm6Fvf+pYOHDigYcOGqaamRmvWrNGxxx6rq6++OrQ6OnbsqKuvvlrf+c531LlzZ5WWlmrmzJlq165ds7+quuqqqzRlyhTNnz9fP/3pT4/aluLiYn3jG99I1nnCCSdozpw5ev/993Xttddq7dq1eu655zRq1CiVlpZq7dq1+te//pWc2Pj9/OMqKyslSV27dtXOnTub/Ky0tDQZ+tevXz+9+eab+utf/6rKykrdd9992rVrl1555RX96le/ClTf4X+xJjX/CzQAAACgNZgbMDcAgGzFgw0AQDMVFRUqLS3V7NmztXnzZn3iE5/QmWeeqdtvvz30OubNm6cbbrhBl1xyiUpKSjR16lRt3bpVRUVFTcqVlJToi1/8op555hmNGzeuxTrvuusuHThwQOPHj9fevXt11lln6dlnn1WnTp1UUlKi559/Xvfee69qamp04oknau7cubrooouS22np5x/32muvSZJOPfXUJt/Pz8/X3r17k6/a9+7dW0uXLtXtt9+uO+64Q7FYTE8//bSGDBmi0tLSQPUdf/zxTf4Ka9u2bRoyZEiLxwMAAACwYm7A3AAAslHMO9LjXAAAssT+/ft1/PHHa+7cubr22mub/GzkyJHq27ev7rvvvgy1rnX27Nmj3r17a8iQIVq6dKkkaezYsRo2bJimTp0aqK6Ghgb17dtXK1euTAYE/vGPf9Rxxx0XRtMBAACAjGFu0DLmBgByCW9sAACyyrp16/TnP/9ZgwcPVnV1tcrLyyVJX/jCF5Jl3nvvPS1fvly///3v9cADD2Sqqa32iU98QtLBvxY7ZNiwYa0K9cvLy9PcuXN14YUX6sCBA5o6dSoTFwAAALQJzA2CYW4AIJfwxgYAIKusW7dO1113nTZt2qSCggINGjRI8+bN0+mnn54s88lPflK7d+/W9OnTNWXKlAy2tnXq6+vVv39/bdq0KdNNAQAAALIWcwMAwNHwxgYAIKsMHDgwGYx3NH//+9/T05iQ/PnPf1afPn0y3QwAAAAgqzE3AAAcDW9sAAAAAAAAAACAyGiX6QYAAAAAAAAAAABY8WADAAAAAAAAAABEBg82AAAAAAAAAABAZPBgAwAAAAAAAAAARAYPNgAAAAAAAAAAQGTwYAMAAAAAAAAAAEQGDzYAAAAAAAAAAEBk8GADAAAAAAAAAABEBg82AAAAAAAAAABAZPBgAwAAAAAAAAAARAYPNgAAAAAAAAAAQGT8fy830gP9dvFnAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "#energyloss in abh von der energie der elektronen\n", "fig, ((ax0, ax1)) = plt.subplots(nrows=1, ncols=2, figsize=(20,6))\n", "\n", - "a0=ax0.hist2d(energyloss_found, energy_found, bins=[100,500], cmap=plt.cm.jet, cmin=1, vmax=10)\n", - "ax0.set_ylim(0,1e5)\n", + "a0=ax0.hist2d(energyloss_found, energy_found, bins=(np.linspace(0,1,70), np.linspace(0,1.5e5,105)), cmap=plt.cm.jet, cmin=1, vmax=7)\n", + "ax0.set_ylim(0,1.5e5)\n", "ax0.set_xlim(0,1)\n", "ax0.set_xlabel(r\"energyloss $E_\\gamma/E_0$\")\n", "ax0.set_ylabel(r\"$E_0$\")\n", "ax0.set_title(\"found energyloss wrt electron energy\")\n", "\n", - "a1=ax1.hist2d(energyloss_lost, energy_lost, bins=[100,500], cmap=plt.cm.jet, cmin=1, vmax=10) \n", - "ax1.set_ylim(0,1e5)\n", + "a1=ax1.hist2d(energyloss_lost, energy_lost, bins=(np.linspace(0,1,70), np.linspace(0,1.5e5,105)), cmap=plt.cm.jet, cmin=1, vmax=7) \n", + "ax1.set_ylim(0,1.5e5)\n", "ax1.set_xlim(0,1)\n", "ax1.set_xlabel(r\"energyloss $E_\\gamma/E_0$\")\n", "ax1.set_ylabel(r\"$E_0$\")\n", "ax1.set_title(\"lost energyloss wrt electron energy\")\n", "\n", "fig.colorbar(a1[3],ax=ax1)\n", - "fig.suptitle(r\"$e^\\pm$ from $B\\rightarrow K^\\ast ee$, $p>5$GeV\")\n", + "fig.suptitle(r\"$e^\\pm$ from $B\\rightarrow K^\\ast ee$, $p>5$GeV, only photons w/ brem_vtx_z$<9500$mm\")\n", "\n", "\"\"\"\n", "we can see that high energy electrons are often found even though they emit a lot of their energy through bremsstrahlung\n", @@ -456,29 +568,40 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 67, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABk4AAAJOCAYAAADxgPt3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAADVm0lEQVR4nOzdd3hUxf7H8c+mh5CEUEOQLr03aSogXZooRdBIU1FEQMGCCgFFEJCiYLteBUSaXKQXIVRFkC5X9AoqCCoBVAhFShLm9wdkfywpe5KchE3yfj3PPrpn58x8Z87Zw5zMzhmHMcYIAAAAAAAAAAAA8rrVAQAAAAAAAAAAAHgKBk4AAAAAAAAAAACuY+AEAAAAAAAAAADgOgZOAAAAAAAAAAAArmPgBAAAAAAAAAAA4DoGTgAAAAAAAAAAAK5j4AQAAAAAAAAAAOA6Bk4AAAAAAAAAAACuY+AEAAAAAAAAAADgOgZOAAAAAAAAAAAArmPgBAAA5Bq9e/fWzJkzb3UYsGj//v06evTorQ4DAAAAAJDLMHACAAAAj/Svf/1LGzZsuNVhAAAAAAByGQZOAAAALFqwYIGqVKmiwMBAORwO7du371aHlKpVq1bJ4XC4vEJCQlSnTh199tlnWVb+J5984rL99OnTatu2rfz8/DR9+nSXz7Zs2aLHHntMJ0+edG77/vvvdf/99+vEiROZHnN2smnTpiTHN/G1ffv2JOn379+vfv36qWzZsgoMDFRgYKDKlSun/v37a9euXemKoXPnzgoMDNSZM2dSTPPQQw/J19f3lh+/mTNnyuFw6MiRI1le9qhRo+RwOPTnn3/alufXX3+tUaNGpdr22VlCQoIKFy6sKVOmpJgmM9o1O8jJx37Hjh1q3bq1goODlTdvXjVr1kxbt25Nki6t17/z589ryJAhioiIUEBAgGrWrKn58+enOx0AAMj5GDgBAAA5Wvv27ZUvXz7ly5dPc+fO1YABA5zv33jjDcv5nDp1SpGRkSpbtqzWrFmjbdu2qXz58pkYecbt2bNHkrR06VJt27ZNX3/9tT788ENduHBBPXr00P79+7Ok/Dp16ji37d+/X3Xr1tXevXu1YcMGDRw40GWfOnXqqEiRIqpevbrWr1+v6dOnq2XLlmrTpo0KFSqUqfFmV2PHjtW2bdtcXlWrVnVJ88EHH6hOnTr65ptvNHjwYK1YsUIrV67UkCFDdODAAdWrV08///xzmsvu16+fLl26pLlz5yb7eWxsrBYvXqz27durSJEi6aofkvf1119r9OjROfKP59K1QdRTp07p/vvvv9WheJyceux37typu+++WxcvXtTs2bM1e/ZsXbp0Sc2bN9e2bduS3cfK9U+S7r//fs2aNUtRUVFavXq16tWrpx49eiS5dllNBwAAcj6fWx0AAABAZlqxYoXz/3v37q2mTZuqd+/eac7n4MGDiouL08MPP6wmTZqkmO6ff/5Rnjx50hOq7fbs2aPQ0FB17NjRua1hw4aKj4/Xww8/rL1796p69eqZWn5gYKAqVqwoSZo/f7769eun6tWra9GiRYqIiEiyT1BQkF599VVdvXpV48aNk5eXl+bMmaMHH3ww0+K8Ff7++29dvXpVBQsWzHBe5cqVU4MGDVL8fOvWrRowYIDatWun//znP/Lz83N+ds899+ipp57SwoULFRgYmOay27Ztq4iICH388ccaMGBAks/nzZunixcvql+/fmnOG7nbf/7zH9WtW1clS5bMtDI86XqdWxw/flxBQUEKCQlJ8tmIESOUL18+rVmzxnlcWrRooTJlymjYsGHJzjxxd/2Trs1+XLdunebOnasePXpIkpo1a6Zff/1Vzz33nLp37y5vb2/L6QAAQO7AjBMAAJDtfPXVV2rVqpVCQ0MVFhamdu3a6dChQ5lWXu/evXXnnXdKkrp37y6Hw6GmTZs6HxOzZ88edenSRWFhYSpbtqxLnM2bN1dwcLDy5MmjRo0aaeXKlS55J+axf/9+de3aVaGhocqfP7+effZZxcfH68cff1SbNm0UHBysUqVKacKECZbj3r17t2rWrJlk+2+//SZJqlSpUjpaQ5oyZYqWLFmSpvKHDRumHj166KGHHtLmzZuTHTSRpP/+97+qXbu29uzZo3vvvVd9+/bV66+/rnbt2rl9HI/V88Lu86dDhw6qW7euPvzwQ9WoUUOBgYEqXry4oqKidPXq1WT32b9/v4oWLaq2bdvqk08+0blz59Jdvjtjx46Vt7e3PvjgA5dBkxt17do1yTE5dOiQevbsqcKFC8vf31+VKlXSO++845LG29tbvXr10u7du/Xf//43Sb4zZsxw1jM90vIdOnDggHr06KHQ0FAVKVJEffv2VWxsbIp5f/nll3I4HJo3b16Szz755BM5HA7t3Lkzxf0Ty927d6/uv/9+hYSEKDQ0VA8//LBOnTqV7D4nTpxwG6PVOj/33HOSpNKlSzsfUbRp06ZMabdTp07p8ccfV/HixeXv769ChQqpcePGio6OTrF9Dhw4IIfDoYULFzq37d69Ww6HQ1WqVHFJ27FjR5eZacYYLV68WA888ECK+d/o2LFjbo+Bu+u1lfM9M6/XkrRkyRI5HA6tX78+yWfvvfeeHA6H7r///hSP/aVLl1SrVi3dfvvtLscwJiZG4eHhatq0qRISEizFktJjsNLzuLvTp0/ro48+UosWLXTbbbfpl19+STbd1q1b1bRpU5fBrODgYN199936+uuvdfz48TSVm2jx4sXKmzevunbt6rK9T58++uOPP/TNN9+kKZ2U8XMhs88lAABgAwMAAJCNREVFGS8vL9O3b1+zcuVK85///MdUq1bNFC9e3Jw7dy5Tyvzpp5/MO++8YySZsWPHmm3btpkDBw6YqKgoI8mULFnSvPDCC2bdunVmyZIlxhhjNm3aZHx9fU2dOnXMggULzJIlS0yrVq2Mw+Ew8+fPd6mPJFOhQgXz2muvmXXr1pnnn3/eSDIDBw40FStWNG+//bZZt26d6dOnj5FkFi1a5DbmP//800gygwYNMnFxcSYuLs6cOHHCfPLJJyY4ONg8+uij6W6Pnj17Gl9fX7N48WK35Xfv3t3cc889xt/f33z44Ydu8z527JhZvny5McaYp556ysyYMcPEx8ebmTNnmitXrqS4n9XzIjPOn6JFi5qgoCBTqVIlM3v2bLN27Vrz4IMPGkkp1vnixYtmzpw5pkOHDsbPz88EBASYLl26mEWLFplLly5ZKnfjxo1GkilcuLDx9vY2wcHBplWrVubLL790pomPjzeBgYGmYcOGaarTgQMHTGhoqKlWrZr55JNPzNq1a83QoUONl5eXGTVqlEvaQ4cOGYfDYYYMGZIkD0nmxRdfTFPZidLzHRo5cqRZt26dmTx5svH39zd9+vRxppsxY4aRZA4fPuzcVqtWLdO4ceMkZderV8/Uq1cv1fhu/P4/99xz5osvvjCTJ082QUFBplatWi7nq9UYrdb52LFj5umnnzaSzOeff262bdtmtm3bZmJjY21vN2OMad26tSlUqJD517/+ZTZt2mSWLFliRo4c6ZJfcooWLWoef/xx5/s33njDBAYGGknm999/N8YYExcXZ0JCQszzzz/vTPfVV18ZSebgwYO2H4PkrtdWz/fMul4niouLM4ULFzYPPfRQks/uuOMOU7t27VSPvTHGHDx40AQHB5v777/fGGNMQkKCueeee0zhwoXNH3/8YTmWxHwTXxs2bDDFihUz4eHhzrJSc+HCBTN//nzTsWNH4+fnZwIDA80DDzxgFi5caC5fvpzsPn5+fuaRRx5Jsr1Hjx5Gkvniiy+c26xc/xI1aNAg2e/zd999ZySZDz74IE3pjMn4uZDZ5xIAAMg4Bk4AAEC2sXz5ciPJTJgwwWX7wYMHjSTz6aefJtmnTZs2JigoKNnX66+/brnsxD/SLFy40Lkt8Q8fI0eOTJK+QYMGpnDhwi5/jI+PjzdVq1Y1t912m7l69apLHpMmTXLZv2bNms4/jCWKi4szhQoVcv5BLDVr1641kpK8fHx8zJgxYyzXOznx8fFuB09uLD8gIMBs3749zeUkDpy4Y/W8SM/5485vv/1mJJkyZcqYM2fOOLdfuXLFhIeHm/bt27vN4/Tp0+bjjz82rVq1Mj4+PiY0NNT07t3bfPHFFyY+Pj7F/fbs2WMGDx5sFi9ebLZs2WI+/vhjU6lSJePt7W3WrFljjDEmJibGSDIPPvhgkv3j4+Odg2pxcXHOc9KYa38ov+2225L8gXTgwIEmICDA/P333y7bmzRpYgoWLOjyh+qhQ4da+uN3StL6Hbr5uA4YMMAEBAQ40yU3cJK4be/evc5tO3bsMJLMrFmzUo0vsdxnnnnGZfucOXOSnE9WY7RaZ2OMmThxYpL6ZEa7GWNM3rx5kwyMWfHwww+bMmXKON+3aNHCPPbYYyYsLMzZvlu3bjWSzNq1a53phgwZYqpVq+Y2//Qcg+Su11bP98y6Xt/o2WefNYGBgS7Xk++//95IMtOmTTPGpHzsEy1YsMBIMlOnTjUjR440Xl5eLu2bVvHx8aZTp04mb968Zvfu3Smmu3LlilmxYoXp2bOnCQoKMn5+fqZ9+/bm008/tTQwXbNmTVO+fHmTkJDg3BYXF2fKlCljJJm5c+c6t1u5/iUqV66cad26dZLy/vjjD+cPItKSzpiMnwtZcS4BAICM4VFdAAAg2xg5cqTKli2rwYMHKz4+3vkqXbq0AgMDk338x+rVq3X+/PlkXy+99JItcd38OJkLFy7om2++UZcuXZQ3b17ndm9vb0VGRuq3337Tjz/+6LJP+/btXd5XqlRJDofD5RFHPj4+uv322/Xrr7+6jWn37t2SpM8//1w7d+7Uzp07tWbNGrVr104jR47U559/nux+f/75Z6qPaHE4HPLx8dHcuXMVFxenbt266cSJEymWHxkZqUuXLmnLli1uY77Z9OnTLa1HY/W8SM/5407io5xGjRql0NBQ53ZfX1/dfvvtbh8vJkn58uVTnz599MUXX+j48eN64403dPjwYbVp00YREREpxlWrVi1NnTpV9913n+666y716dNHX3/9tYoWLarnn3/ebbl16tSRr6+v8zVp0iRJ0qVLl7R+/Xp17txZefLkcWmre++9V5cuXdL27dtd8urXr5/+/PNPLVu2TJIUHx+vTz/9VHfddZfKlSvnNpabpec7dONaPpJUvXp1Xbp0SSdPnkyxnB49eqhw4cIuj2SaNm2aChUqpO7du1uK9aGHHnJ5361bN/n4+Gjjxo1J0qYWY3rqfLPMarc77rhDM2fO1JgxY7R9+3bFxcWlGkei5s2b65dfftHhw4d16dIlffXVV2rTpo2aNWumdevWSZKio6Pl7+/vfByidO26ZfUxXVLajsHN+abnfLf7en2jvn376uLFi1qwYIFz24wZM+Tv76+ePXtayqNbt2568skn9dxzz2nMmDF66aWX1LJlyzTFcaOBAwdq5cqVWrhwoWrXrp1smv379ys8PFydOnXSn3/+qbffflsnTpzQ8uXL9dBDD7mcjyl5+umndfDgQQ0cOFC///67jh07pieeeMLZhl5e///ni7Re/xwOR4rl3viZ1XSJMnouZOa5BAAAMobF4QEAQLYQExOjvXv3SpL8/f2TTZMvX74sjOj/FS1a1OX96dOnZYxJsl2Scx2Jv/76y2V7/vz5Xd77+fkpT548CggISLL97NmzbmNKXJi9Y8eOLovZNmnSRCEhIfrwww91//33J9kvODhYH374odv816xZo0WLFqlTp04qUKBAsuUHBATo448/liS9+OKLqlChQpI/0maU1fMis86fXbt2ydfXN8kz8SXpjz/+cFm3wYqzZ8/qzJkzio2NlTFG+fLlk4+P9S57vnz51L59e73//vu6ePGiChYsqMDAwGT/4DZ37lz9888/On78uMtx+euvvxQfH69p06Zp2rRpyZZz84BQly5d9PTTT2vGjBl64IEHtGrVKp04cULjx4+3HPuN0vMduvk8TDzOFy9eTLEcf39/9e/fX5MmTdLEiRMVFxenzz77TM8++2yK58nNwsPDXd77+PioQIECSeJzF2NcXFya63yzzGq3BQsWaMyYMfr3v/+tESNGKG/evOrcubMmTJiQpP43atGihaRrgyOlS5dWXFyc7rnnHp04cUKvvfaa87PGjRsrMDBQkrRjxw4dPXo0TQMnaTkGN7dNes53u6/XN6pSpYrq1aunGTNm6PHHH1dCQoI+/fRTderUKUm5qenbt6/ee+89+fn5adCgQWmK4UZjxozR+++/r48++kht2rRJMZ2vr69CQ0P1999/KzY2VrGxsTp//nyarqt9+/bVqVOnNGbMGL333nuSpIYNG2rYsGEaP368ihUrlur+N1//Es+plM6Fv//+W9L/H0+r6W6U0XMhM88lAACQMQycAACAbOHYsWOSri1MfuMvk29040K/WenmX6GGhYXJy8sr2YVs//jjD0lSwYIFMzWmPXv2qFq1ai6DJtK1P255e3un+Mdkf39/Pfroo6nmvXLlSq1YsUJdunTRvHnzkv3D/p49e1SjRg35+Pjoww8/dC68/NVXXyW7YH16WT0vfvrpJ0vp0mrXrl0qWLBgkj9yffPNN/rll180YsQIt3kcO3ZMCxcu1Pz587Vz504VK1ZM3bt314cffqi6deumOSZjjKRr56W3t7fuuecerV27VsePH3f5o3HlypUlKclCz2FhYc4ZCk899VSyZZQuXdrlfWBgoHr06KEPP/xQx48f18cff6zg4OBkB5SsyMrv0JNPPqk33nhDH3/8sS5duqT4+Hg98cQTlvePiYlx+YNufHy8/vrrr2QHFFNjR50zq90KFiyoqVOnaurUqTp69KiWLVumF198USdPntSaNWtS3O+2225T+fLlFR0drVKlSqlu3brKly+fmjdvrgEDBuibb77R9u3bNXr0aOc+ixYtUvny5VW1alXL8aXlGCR3vU7r+Z7Z+vTpowEDBuiHH37QL7/8ouPHj6tPnz6W979w4YIiIyNVvnx5nThxQo8++qiWLl2a5jhmzpypESNGaNSoUerbt2+qaStVqqRffvlF27Zt09y5c/XGG29o6NChaty4sbp3764uXbqkOsiW6IUXXtCQIUN06NAhBQcHq2TJkurfv7+CgoIsDUTfeP1LVK1aNc2bN0/x8fEu/17997//lSTnuWY1HQAAyB14VBcAAMgWEn+V6XA4VLdu3WRfYWFhtzjKa4KCglS/fn19/vnnLgMUV69e1aeffur8Y2JmiY2N1S+//JLsAMXSpUt16dIl3X333enOf+LEierQoUOKgyaJ5Sc+0sXf31+LFy9W/vz51bFjR8XExKS77JtZPS8y6/zZtWuXTp06pTNnzji3JSQk6IUXXlCpUqVSfLTOuXPnNG3aNN15550qWbKkXn/9ddWsWVMbNmzQ0aNHNWnSpHQNmpw+fVorVqxQzZo1nYM5w4cPV0JCgp544glLj1jKkyePmjVrpr1796p69erJtlVyf5Du16+fEhISNHHiRK1atUoPPvig8uTJk+Y6SFn7HSpatKi6du2qd999V++//746dOigEiVKWN5/zpw5Lu8/++wzxcfHq2nTpmmKI611Tm5mSFa0W4kSJTRw4EC1bNlSe/bscZu+RYsW2rBhg9atW+d8XFT58uVVokQJjRw5UnFxcc6ZKdK1gZO0zDaRMnYM0nu+Z6YePXooICBAM2fO1MyZM1WsWDG1atXK+bm72VRPPPGEjh49qs8//1wfffSRli1bpilTpqQphjVr1uixxx5T3759FRUVZXm/hg0batq0afrjjz+0Zs0alS1bVi+//LKKFSume+65Rx988EGqs8Cka/WrWrWqSpYsqaNHj2rBggV67LHHnDNIUpLc9U+SOnfurPPnz2vRokUu6WfNmqWIiAjVr18/TekAAEDuwIwTAACQLZQtW1bNmjXTK6+8ovPnz6t+/foyxuj48ePauHGjevXqleY/VGamcePGqWXLlmrWrJmGDRsmPz8/vfvuu/ruu+80b968VJ+jnlF79uyRMUZBQUHOZ/OfPn1aX3/9taZMmaLq1atr2LBh6c5/+fLlCgwMTPERUonl3/jr4PDwcC1dulR33nmnOnbsqM2bN7v9I5gVVs+LtJ4/DodDTZo00aZNm1Is+/Dhw/rrr79UokQJde3aVUOHDtWlS5f09ttva/fu3dq0aZP8/PyS3Xf37t168cUX1bFjRy1ZskRt27aVr69vmures2dPlShRQnXr1lXBggV16NAhTZo0SSdOnNDMmTOd6Ro3bqx33nlHTz/9tGrXrq3HH39cVapUcc5MSPwjYUhIiHOft956S3feeafuuusuPfnkkypVqpTOnTunn376ScuXL9eGDRuSxFO3bl1Vr15dU6dOlTFG/fr1SzZuK20rZe13aPDgwc4/is6YMSNN+37++efy8fFRy5YtdeDAAY0YMUI1atRQt27d0hxHWupcrVo1SdeOVa9eveTr66sKFSrY3m6xsbFq1qyZevbsqYoVKyo4ONi5ZlJyj/u7WfPmzfXuu+/qzz//1NSpU122z5gxQ2FhYc5rxb59+/Tzzz+neeAko8cgPed7ZsqXL586d+6smTNn6syZMxo2bJjL+h4pHfvg4GD9+9//1qeffqoZM2aoSpUqqlKligYOHKgXXnhBjRs31h133OG2/MOHD6tr164qU6aM+vTpk2SNl1q1arl9lJ23t7datWqlVq1a6f3339fKlSs1d+5cDRkyRPXr1092YP+7777TokWLVLduXfn7++vbb7/VG2+8oXLlyjkf7ZbI6vVPktq2bauWLVvqySef1NmzZ3X77bdr3rx5WrNmjT799FPnzEyr6QAAQC5xS5akBwAASIfY2FgzfPhwU758eRMQEGDCwsJMjRo1zNNPP21Onz6dqWVv3LjRSDILFy50bouKijKSzKlTp5Ld58svvzT33HOPCQoKMoGBgaZBgwZm+fLlLmlSyqNXr14mKCgoSZ5NmjQxVapUSTXWN99800hyeQUFBZlatWqZ119/3Vy4cMFqtdMlsfw9e/Yk+WzhwoXG4XCYrl27mqtXr9pSntXzwmq6c+fOGUnmwQcfTLXczz77zEgyX3/9tYmMjDQhISEmODjYdOrUyXz//fduYz5//nxGqm3GjRtnatasaUJDQ423t7cpVKiQ6dy5s9mxY0ey6fft22f69OljSpcubfz9/U1AQIC5/fbbzSOPPGLWr1+fJP3hw4dN3759TbFixYyvr68pVKiQadSokRkzZkyKMb311ltGkqlcuXKyn1tt20QZ+Q7NmDHDSDKHDx9O9v3NSpUqZSpVqmQprhvL3b17t+nQoYPJmzevCQ4ONj169DAnTpxIV4xW65xo+PDhJiIiwnh5eRlJZuPGjZbzsBrTpUuXzBNPPGGqV69uQkJCTGBgoKlQoYKJioqydC05ffq08fLyMkFBQebKlSvO7XPmzDGSzP333+/c9sorr5iSJUu6zfPmOmTkGCSycr5nxvU6JWvXrnVevw8ePJjk8+SO/f79+01gYKDp1auXS9pLly6ZOnXqmFKlSln6tzLx37uUXil9h6xI7dr3448/mrvvvtvkz5/f+Pn5mdtvv9288soryaZP6/Xv3LlzZtCgQSY8PNz4+fmZ6tWrm3nz5qU7XUbPhaw8lwAAQPo4jLn+EFAAAAAAWrVqldq3b69vv/3W+cvu5Dz//PN69913FRsbyy+RLbLatllt//79qlGjht555x0NGDDA0j6jRo3S6NGjderUqUxfsyi3qFy5stq2batJkybd6lAAAACQy/GoLgAAAOAGGzdu1IMPPuj2D/u7du1S7dq1GTRJA6ttm1V+/vln/frrr3rppZdUtGhR9e7d+1aHlKt9//33tzoEAAAAQBIDJwAAAICLiRMnuk1jjNGePXvUt2/fLIgo57DStlnptdde0+zZs1WpUiUtXLgw3YvZA+7Ex8en+rmXl5fLOia5JRYAAABPxaO6AAAAAADIJEeOHFHp0qVTTRMVFaVRo0blqlgAAAA8GQMnAAAAAABkkitXrmj//v2ppomIiFBERESuigUAAMCTMXACAAAAAAAAAABwHQ8uBQAAAAAAAAAAuI6BEwAAAAAAAAAAgOsYOAEAAAAAAAAAALiOgRMAAAAAAAAAAIDrGDgBAAAAAAAAAAC4joETAAAAAAAAAACA6xg4AQAAAAAAAAAAuI6BEwAAAAAAAAAAgOsYOAEAAAAAAAAAALiOgRMAAAAAAAAAAIDrGDgBAAAAAAAAAAC4joETAAAAAAAAAACA6xg4AQAAAAAAAAAAuI6BEwAAAAAAAAAAgOsYOAEAAAAAAAAAALiOgRMAAAAAAAAAAIDrGDgBAAAAAAAAAAC4joETAAAAAAAAAACA6xg4AQAAAAAAAAAAuI6BEwCSpAULFqhKlSoKDAyUw+HQvn37bnVIyRo1apQcDsetDsNj9O7dW6VKlbrVYWS6VatWadSoUbc6DBdHjhyRw+HQzJkz3abNivM2LfFYVapUKfXu3du2/G727rvv2hovAADIGjNnzpTD4dCRI0cyJX/6CMnL7L6Zp/DE45+Wc75p06Zq2rSpx8RjRWbcS9zon3/+0ahRo7Rp06ZMyR8AMgMDJwB06tQpRUZGqmzZslqzZo22bdum8uXL3+qwAKdVq1Zp9OjRtzoMF0WLFtW2bdvUrl27Wx1KtuWJN8UAAODWo4+Qu3ni8W/Xrp22bdumokWL3upQsqV//vlHo0ePZuAEQLbic6sDAHDrHTx4UHFxcXr44YfVpEmTWx1OjvTPP/8oT548tzqMbMfOdrP7GPj7+6tBgwa25YfUxcXFyeFwyMcnd3ZdLl68qMDAwFsdBgAAcMMYo0uXLvHvdjrY1V/PjGNQqFAhFSpUyLb8kLrcfP+ckJCg+Ph4+fv73+pQgFyPGSdALte7d2/deeedkqTu3bvL4XC4TCtetmyZGjZsqDx58ig4OFgtW7bUtm3bkuSR3OOikns8kcPh0MCBAzV79mxVqlRJefLkUY0aNbRixYok+69cuVI1a9aUv7+/SpcurTfffDNNdYuOjlbz5s0VEhKiPHnyqHHjxlq/fn2yMR44cEA9evRQaGioihQpor59+yo2NtYlrTFG7777rmrWrKnAwECFhYWpS5cu+uWXX1zSNW3aVFWrVtWWLVvUqFEj5cmTR3379pUk/fbbb+rSpYuCg4OVL18+PfTQQ9q5c6fLtOjZs2fL4XAkaWdJevXVV+Xr66s//vgjxXpfunRJw4cPV+nSpeXn56dixYrpqaee0pkzZ1zSbdiwQU2bNlWBAgUUGBioEiVK6IEHHtA///zjTPPee++pRo0ayps3r4KDg1WxYkW99NJLqbZ7vXr1kszCqFatmhwOh3bu3Onc9vnnn8vhcOi///2vpP8/Fnv27FGXLl0UFhamsmXLqnfv3nrnnXckXTt/El+pTUtP7RicPXtWw4YNc2mfIUOG6MKFCy55LFy4UPXr11doaKjy5MmjMmXKOPOQUp7ObuW8TW0qvMPhcHks2U8//aQ+ffqoXLlyypMnj4oVK6YOHTo42y09rLZBRva9evWqpk2b5vy+5MuXTw0aNNCyZcskXXvUxIEDB7R582bnMU28jmzatEkOh0OzZ8/W0KFDVaxYMfn7++unn36SJH388ceqUaOGAgIClD9/fnXu3Fk//PCDS/m9e/dW3rx59dNPP+nee+9V3rx5Vbx4cQ0dOlSXL1+21E4LFixQw4YNFRQUpLx586p169bau3dvusu5cuWKxowZo4oVK8rf31+FChVSnz59dOrUKZd0pUqVUvv27fX555+rVq1aCggIcM64OnDggFq1aqU8efKoUKFCeuqpp7Ry5Uo5HA7nL/hee+01+fj46NixY0nq1LdvXxUoUECXLl2y1AYAAKSFlX+jf/nlFz344IOKiIiQv7+/ihQpoubNmzsfFZxaHyElae2n79y5U3fddZezj/fGG2/o6tWrLmmt9nkS72/ef/99VapUSf7+/po1a5Yk6auvvlLDhg0VEBCgYsWKacSIEfr3v//t0pft16+f8ufP79IHT3TPPfeoSpUqqdb96NGjevjhh1W4cGH5+/urUqVKmjRpUpL6uOvX//PPP876Jh6/unXrat68eSmWffbsWfn4+GjixInObX/++ae8vLwUGhqq+Ph45/ZBgwapUKFCMsZISrm/np7jn9oxOHTokHr27OnSPon3FomuXr2qMWPGqEKFCs5+a/Xq1fXWW2850yT3aCxjjCZMmKCSJUsqICBAtWvX1urVq5PEl9JjtRL7vDfOwli3bp06deqk2267TQEBAbr99tvVv39//fnnn6m2QWqstEFG9z1z5oyGDh2qMmXKyN/fX4ULF9a9996r//3vfzpy5Ihz0Gn06NHO45r42LmU7gMl6/e2if3nNWvWqHbt2goMDFTFihX18ccfW6pnWvvpVsqJiYlR//79ddttt8nPz0+lS5fW6NGjXb4XifeFEyZM0JgxY1S6dGn5+/tr48aNkqSlS5eqevXq8vf3V5kyZfTWW28l+TtL8+bNVbFiRed3K5ExRrfffjtPSAAywgDI1X766SfzzjvvGElm7NixZtu2bebAgQPGGGPmzJljJJlWrVqZJUuWmAULFpg6deoYPz8/8+WXXzrz6NWrlylZsmSSvKOioszNlxlJplSpUuaOO+4wn332mVm1apVp2rSp8fHxMT///LMzXXR0tPH29jZ33nmn+fzzz83ChQtNvXr1TIkSJZLkmZzZs2cbh8Nh7rvvPvP555+b5cuXm/bt2xtvb28THR2dJMYKFSqYkSNHmnXr1pnJkycbf39/06dPH5c8H3vsMePr62uGDh1q1qxZY+bOnWsqVqxoihQpYmJiYpzpmjRpYvLnz2+KFy9upk2bZjZu3Gg2b95szp8/b26//XaTP39+884775gvvvjCPPPMM6Z06dJGkpkxY4YxxpjLly+b8PBw89BDD7mUHxcXZyIiIkzXrl1TbPurV6+a1q1bGx8fHzNixAizdu1a8+abb5qgoCBTq1Ytc+nSJWOMMYcPHzYBAQGmZcuWZsmSJWbTpk1mzpw5JjIy0pw+fdoYY8y8efOMJPP000+btWvXmujoaPP++++bQYMGpdr2L774osmbN6+5cuWKMcaYmJgYI8kEBgaa119/3ZnuySefNEWKFElyLEqWLGleeOEFs27dOrNkyRLz008/mS5duhhJZtu2bc5XYl2Sk9IxuHDhgqlZs6YpWLCgmTx5somOjjZvvfWWCQ0NNffcc4+5evWqMcaYr7/+2jgcDvPggw+aVatWmQ0bNpgZM2aYyMhIZxmHDx92OW7GWD9vk9s3kSQTFRXlfL9582YzdOhQ85///Mds3rzZLF682Nx3330mMDDQ/O9//7OU542stoExxpQsWdL06tUrXftGRkYah8NhHn30UbN06VKzevVq8/rrr5u33nrLGGPMnj17TJkyZUytWrWcx3TPnj3GGGM2btxoJJlixYqZLl26mGXLlpkVK1aYv/76y4wdO9ZIMj169DArV640n3zyiSlTpowJDQ01Bw8edJbfq1cv4+fnZypVqmTefPNNEx0dbUaOHGkcDocZPXp0qm1kjDGvv/66cTgcpm/fvmbFihXm888/Nw0bNjRBQUHOa2RayklISDBt2rQxQUFBZvTo0WbdunXm3//+tylWrJipXLmy+eeff1zavWjRoqZMmTLm448/Nhs3bjQ7duwwf/zxhylQoIApUaKEmTlzplm1apWJjIw0pUqVMpLMxo0bjTHGnDhxwvj7+5uXX37ZpU5//fWXCQwMNM8995zb+gMAkJoZM2YYSebw4cPObVb/ja5QoYK5/fbbzezZs83mzZvNokWLzNChQ53/jqXWR0hJWvrpBQoUMOXKlTPvv/++WbdunRkwYICRZGbNmuVMl5Y+T2KfpXr16mbu3Llmw4YN5rvvvjPffvutCQgIMNWrVzfz5883y5YtM/fee6/z3+3Etvv222+NJPPhhx+61OnAgQNGknnnnXec227um508edIUK1bMFCpUyLz//vtmzZo1ZuDAgUaSefLJJ53prPTr+/fvb/LkyWMmT55sNm7caFasWGHeeOMNM23atFTbvkGDBqZVq1bO9/PnzzcBAQHG4XCYrVu3OrdXqlTJdOvWzeVYJNdfT8/xT+kYHDhwwISGhppq1aqZTz75xKxdu9YMHTrUeHl5mVGjRjn3HzdunPH29jZRUVFm/fr1Zs2aNWbq1KkuaZI75xPvX/r162dWr15t/vWvf5lixYqZ8PBw06RJk1T3Neb/+7yJ574xxrz33ntm3LhxZtmyZWbz5s1m1qxZpkaNGqZChQrO+6vU8ryZ1TZI7l7C6r5nz541VapUMUFBQebVV181X3zxhVm0aJEZPHiw2bBhg7l06ZJZs2aNs60Sj+tPP/3k0o433wdavbc15tp347bbbjOVK1c2n3zyifniiy9M165djSSzefPmVNsorf10K+UcP37cFC9e3JQsWdJ88MEHJjo62rz22mvG39/f9O7dO0m7FytWzDRr1sz85z//MWvXrjWHDx82q1evNl5eXqZp06Zm8eLFZuHChaZ+/frOa0iipUuXGklm3bp1LvVauXKlkWRWrlyZav0BpIyBEwDODtvChQud2xISEkxERISpVq2aSUhIcG4/d+6cKVy4sGnUqJFzW1oHTooUKWLOnj3r3BYTE2O8vLzMuHHjnNvq169vIiIizMWLF53bzp49a/Lnz+924OTChQsmf/78pkOHDi7bExISTI0aNcwdd9yRJMYJEya4pB0wYIAJCAhw3hRt27bNSDKTJk1ySXfs2DETGBhonn/+eee2Jk2aGElm/fr1LmkTB6hWr17tsr1///5JOqlRUVHGz8/PnDhxwrltwYIFSTpkN7d9Yof05vok7vuvf/3LGGPMf/7zHyPJ7Nu3z6Rk4MCBJl++fCl+npLo6GgjyWzZssUYY8ynn35qgoODzYABA0yzZs2c6cqVK2d69uzpUmdJZuTIkUnyfOqppywNmCVK6RiMGzfOeHl5mZ07d7psT2yPVatWGWOMefPNN40kc+bMmRTLSO7mwup5m5aBk5vFx8ebK1eumHLlyplnnnnGUp43stoGxiS9Obe675YtW4ykJH+4v1mVKlVcbioTJV6T7r77bpftp0+fNoGBgebee+912X706FHj7+/vcj716tXLSDKfffaZS9p7773XVKhQIdW4jh49anx8fMzTTz/tsv3cuXMmPDzc5abfajmJf7BYtGiRS7qdO3caSebdd991bitZsqTx9vY2P/74o0va5557zjgcDpeBG2OMad26dZKb7l69epnChQuby5cvO7eNHz/eeHl5ub3BBgDAnZv/aGv13+g///zTSDJTp05NNf+U+gjJSU8//ZtvvnFJW7lyZdO6dWvn+7T0lySZ0NBQ8/fff7uk7dq1qwkKCjKnTp1ybktISDCVK1dO8gfvJk2amJo1a7rs/+STT5qQkBBz7tw557ab+2YvvvhisvV58sknjcPhcPYlrPTrq1atau67775U0yTnlVdeMYGBgc4/Yj/66KOmTZs2pnr16s4fkfz+++8u9yKJdU6uv25M2o6/MSkfg9atW5vbbrvNxMbGumwfOHCgCQgIcKZv3759kva/WXLnfEBAgOncubNLuq1btxpJ6R44udHVq1dNXFyc+fXXX40ks3TpUrd53sxqGyR3L2F131dffTXZP9zf6NSpUyne56R0H2j13taYa9+NgIAA8+uvvzq3Xbx40eTPn9/0798/xbiMSXs/3Uo5/fv3N3nz5nVJZ8z/32cm9ucT271s2bIuA2PGGFOvXj1TvHhxl/78uXPnTIECBVzuLRMSEkyZMmVMp06dXPZv27atKVu2rMtAL4C04VFdAJL1448/6o8//lBkZKS8vP7/UpE3b1498MAD2r59e7LTya1o1qyZgoODne+LFCmiwoUL69dff5UkXbhwQTt37tT999+vgIAAZ7rg4GB16NDBbf5ff/21/v77b/Xq1Uvx8fHO19WrV9WmTRvt3LkzyRT7jh07uryvXr26Ll26pJMnT0qSVqxYIYfDoYcfftglz/DwcNWoUSPJIndhYWG65557XLZt3rxZwcHBatOmjcv2Hj16JKnDk08+KUn68MMPndumT5+uatWq6e67706x7hs2bJAk57TnRF27dlVQUJDzUWU1a9aUn5+fHn/8cc2aNSvJYwwk6Y477tCZM2fUo0cPLV261PL08MaNGysgIEDR0dGSrk03b9q0qdq0aaOvv/5a//zzj44dO6ZDhw6pRYsWSfZ/4IEHLJXjTnLHYMWKFapatapq1qzpchxbt27tMk2+Xr16kqRu3brps88+0++//+62vIyetymJj4/X2LFjVblyZfn5+cnHx0d+fn46dOhQkkdfWGG1DTKyb+IjCp566qn0VNnp5nNh27ZtunjxYpLzu3jx4rrnnnuSPIrP4XAkafvq1as7rzUp+eKLLxQfH69HHnnEpZ4BAQFq0qRJkjayUs6KFSuUL18+dejQwSXPmjVrKjw8PEme1atXV/ny5V22bd68WVWrVlXlypVdtid3DRk8eLBOnjyphQsXSrr2CIr33ntP7dq1c/u4CwAA0srqv9H58+dX2bJlNXHiRE2ePFl79+5N8kiptEprPz08PFx33HGHy7bk/t1OS3/pnnvuUVhYmMu2zZs365577lHBggWd27y8vNStW7ckdRg8eLD27dunrVu3Srr2CKzZs2erV69eyps3b4p137BhgypXrpykPr1795YxxnlvYKVff8cdd2j16tV68cUXtWnTJl28eDHFcm/UvHlzXbx4UV9//bWka49LbtmypVq0aKF169Y5t0lK0vdPrr+eXjcfg0uXLmn9+vXq3Lmz8uTJ43Ic7733Xl26dEnbt2+XdK3u3377rQYMGKAvvvhCZ8+edVvetm3bdOnSJT300EMu2xs1aqSSJUumux4nT57UE088oeLFi8vHx0e+vr7O/NLa909LG2Rk39WrV6t8+fLJ3tulxc19f6v3tolq1qypEiVKON8HBASofPnybvv+ae2nWylnxYoVatasmSIiIlzybNu2raRr14cbdezYUb6+vs73Fy5c0K5du3TffffJz8/PuT1v3rxJ7ju8vLw0cOBArVixQkePHpUk/fzzz1qzZo0GDBiQ5PHpAKxj4ARAsv766y9JUtGiRZN8FhERoatXr+r06dPpyrtAgQJJtvn7+zs756dPn9bVq1cVHh6eJF1y22524sQJSVKXLl3k6+vr8ho/fryMMfr7779TjSlxIbbEmE6cOCFjjIoUKZIkz+3btye5+Uiu3f766y8VKVIkyfaUtnXv3l0ffPCBEhIStH//fn355ZcaOHBgqnX/66+/5OPjk2ThQofDofDwcOdxLVu2rKKjo1W4cGE99dRTKlu2rMqWLevyHN/IyEh9/PHH+vXXX/XAAw+ocOHCql+/vvMGKCUBAQFq3Lix8wZp/fr1atmypZo2baqEhAR9+eWXzjyS61wn13bpkVw+J06c0P79+5Mcw+DgYBljnMfx7rvv1pIlS5x/PL/ttttUtWrVVJ/xnNHzNiXPPvusRowYofvuu0/Lly/XN998o507d6pGjRqWb2hvZLUNMrLvqVOn5O3tnaF6S0mPobvrUuLnifLkyeMyiCVd+267W98j8RpSr169JHVdsGBBkjayUs6JEyd05swZ+fn5JckzJibG9mtIrVq1dNdddzmfQb1ixQodOXLE7TUEAID0sPpvtMPh0Pr169W6dWtNmDBBtWvXVqFChTRo0CCdO3cuXWWntZ/u7l4kMc+09Jcy+u92p06dVKpUKee/2zNnztSFCxfc/gjlr7/+SrHNEz+XrPXr3377bb3wwgtasmSJmjVrpvz58+u+++7ToUOHUo0hcX2S6Oho/fTTTzpy5Ihz4OSbb77R+fPnFR0drTJlyqh06dIu+9rV708ur7/++kvx8fGaNm1akuN47733SpLzOA4fPlxvvvmmtm/frrZt26pAgQJq3ry5du3alWJ5iW1rZ9//6tWratWqlT7//HM9//zzWr9+vXbs2OEcoEhr3z8tbZCRfU+dOqXbbrstXXW+UXLH0Mq9bSIr3+3kpLWfbvUasnz58iT5Ja5Z5O4acvr0aed17WbJbevbt68CAwP1/vvvS5LeeecdBQYGuqzRCSDtfG51AAA8U2Jn4Pjx40k+++OPP+Tl5eX8RU9AQECyiy2ndwG7sLAwORwOxcTEJPksuW03S/xV17Rp09SgQYNk0yTX2XCXp8Ph0JdffukcVLnRzduS+1VHgQIFtGPHjiTbU6rT4MGDNXv2bC1dulRr1qxxLiafmgIFCig+Pl6nTp1y6WAaYxQTE+OcSSFJd911l+666y4lJCRo165dmjZtmoYMGaIiRYrowQcflCT16dNHffr00YULF7RlyxZFRUWpffv2OnjwYKq/pGrevLlGjhypHTt26LffflPLli0VHBysevXqad26dfrjjz9Uvnx5FS9ePMm+dv0iJrl8ChYsqMDAwBQXCbzxF4GdOnVSp06ddPnyZW3fvl3jxo1Tz549VapUKTVs2DDJvmk5bxP/yH7z9+bmzr8kffrpp3rkkUc0duxYl+1//vmn8uXLl2w9UpOWNkjvvoUKFVJCQoJiYmIydEN88zF0d11KLfa0SMznP//5T4Z+MXhzngUKFNCaNWuS/fzGWXhSyteQxEGdG6V0DRk0aJC6du2qPXv2aPr06SpfvrxatmyZjugBAEhdWv6NLlmypD766CNJ0sGDB/XZZ59p1KhRunLlivOPfmmR1n661TzT0l/K6L/bXl5eeuqpp/TSSy9p0qRJevfdd9W8eXNVqFAh1TgLFCiQYpvfHKe7fn1QUJBGjx6t0aNH68SJE87ZJx06dND//ve/FGPw8/PTnXfeqejoaN12220KDw9XtWrVVKZMGUnXFkBfv3692rdvn2RfO38Jf3NeYWFh8vb2VmRkZIoDUIkDOT4+Pnr22Wf17LPP6syZM4qOjtZLL72k1q1b69ixY8qTJ0+SfRPP+ZT6/jfO8E2p73/z/fJ3332nb7/9VjNnzlSvXr2c23/66aeUqp2qtLRBRvYtVKiQfvvtt3TFeKPk+v5W720zIq39dKt5Vq9eXa+//nqynycObiZK7vx1OByWryGhoaHq1auX/v3vf2vYsGGaMWOGevbsma77RQD/j4ETAMmqUKGCihUrprlz52rYsGHOf8gvXLigRYsWqWHDhs4OZKlSpXTy5EmdOHHCOSBx5coVffHFF+kqOygoSHfccYc+//xzTZw40dnRPHfunJYvX+52/8aNGytfvnz6/vvvbft1dfv27fXGG2/o999/T3Z6vRVNmjTRZ599ptWrVzun6ErS/Pnzk01fp04dNWrUSOPHj9d3332nxx9/XEFBQamW0bx5c02YMEGffvqpnnnmGef2RYsW6cKFC2revHmSfby9vVW/fn1VrFhRc+bM0Z49e5wDJ4mCgoLUtm1bXblyRffdd58OHDiQ6h+UW7RooZdeekkjRozQbbfdpooVKzq3L1u2TDExMWl6JNeNM4ACAwMt73ez9u3ba+zYsSpQoECKNwnJld2kSRPly5dPX3zxhfbu3ZvswElaztsiRYooICBA+/fvd9m+dOnSJPk6HI4kN/wrV67U77//rttvv91SHW6UnjZI675t27bVuHHj9N577+nVV19NMZ2VX4DdqGHDhgoMDNSnn36qrl27Orf/9ttv2rBhg7p06WI5r9S0bt1aPj4++vnnn217dFz79u01f/58JSQkqH79+unKo0mTJnrzzTf1/fffuzyuK6VrSOfOnVWiRAkNHTpUmzdv1pQpU5iqDwDIFOn9N7p8+fJ65ZVXtGjRIu3Zs8e5PS19BDv66cnlmd7+UqImTZpo1apV+vPPP50DGFevXnU+RvNmjz76qEaNGqWHHnpIP/74o8aPH++2jObNm2vcuHHas2ePateu7dz+ySefyOFwqFmzZkn2sdKvL1KkiHr37q1vv/1WU6dO1T///JPs4EGiFi1aaPjw4QoODnbOKA8KClKDBg00bdo0/fHHH2l6jFNa+4jJyZMnj5o1a6a9e/eqevXqLo87Sk2+fPnUpUsX/f777xoyZIiOHDmS5DGpktSgQQMFBARozpw5Lv3Fr7/+Wr/++qvLwEni/+/fv99lMGzZsmUueSb2027u+3/wwQeWYr9Zetsgrfu2bdtWI0eO1IYNG1J89NrNT3SwIj33tulhRz89uTxXrVqlsmXLJnmMnxVBQUGqW7eulixZojfffNPZ/ufPn9eKFSuS3WfQoEF699131aVLF505c4aZ5oANGDgBkCwvLy9NmDBBDz30kNq3b6/+/fvr8uXLmjhxos6cOaM33njDmbZ79+4aOXKkHnzwQT333HO6dOmS3n77bSUkJKS7/Ndee01t2rRRy5YtNXToUCUkJGj8+PEKCgpK8pitm+XNm1fTpk1Tr1699Pfff6tLly4qXLiwTp06pW+//VanTp3Se++9l6Z4GjdurMcff1x9+vTRrl27dPfddysoKEjHjx/XV199pWrVqjnXJUlJr169NGXKFD388MMaM2aMbr/9dq1evdo5wHTjWjKJBg8erO7du8vhcGjAgAFu42zZsqVat26tF154QWfPnlXjxo21f/9+RUVFqVatWoqMjJQkvf/++9qwYYPatWunEiVK6NKlS85f1CXe1Dz22GMKDAxU48aNVbRoUcXExGjcuHEKDQ11++ueOnXqKCwsTGvXrlWfPn2c21u0aKHXXnvNpRwrqlWrJkkaP3682rZtK29v7zR3/iVpyJAhWrRoke6++24988wzql69uq5evaqjR49q7dq1Gjp0qOrXr6+RI0fqt99+U/PmzXXbbbfpzJkzeuutt+Tr66smTZqkmL/V8zbxOdwff/yxypYtqxo1amjHjh2aO3dukjzbt2+vmTNnqmLFiqpevbp2796tiRMnpns6vNU2yMi+d911lyIjIzVmzBidOHFC7du3l7+/v/bu3as8efLo6aeflnTtuM6fP18LFixQmTJlFBAQ4DzWycmXL59GjBihl156SY888oh69Oihv/76S6NHj1ZAQICioqLS1SY3K1WqlF599VW9/PLL+uWXX9SmTRuFhYXpxIkT2rFjh/MXmWnx4IMPas6cObr33ns1ePBg3XHHHfL19dVvv/2mjRs3qlOnTurcuXOqeQwZMkQff/yx2rZtq1dffVVFihTR3Llznb8Cvfka4u3traeeekovvPCCgoKCkjwfGgAAu1j9N3r//v0aOHCgunbtqnLlysnPz08bNmzQ/v379eKLLzrzS0sfwY5++s0y0l9K9PLLL2v58uVq3ry5Xn75ZedjdBLXWrz53+18+fLpkUce0XvvvaeSJUtaWiPvmWee0SeffKJ27drp1VdfVcmSJbVy5Uq9++67evLJJ53rpVnp19evX1/t27dX9erVFRYWph9++EGzZ892+cFcSpo3b66EhAStX79es2bNcm5v0aKFoqKi5HA40rSWSVr7iCl56623dOedd+quu+7Sk08+qVKlSuncuXP66aeftHz5cucaGh06dFDVqlVVt25dFSpUSL/++qumTp2qkiVLqly5csnmHRYWpmHDhmnMmDF69NFH1bVrVx07dkyjRo1K8qiuevXqqUKFCho2bJji4+MVFhamxYsX66uvvnJJV7FiRZUtW1YvvviijDHKnz+/li9f7vZRyXa0QUb2HTJkiBYsWKBOnTrpxRdf1B133KGLFy9q8+bNat++vXON05IlS2rp0qVq3ry58ufPr4IFC6a69p7Ve9uMsqOffrNXX31V69atU6NGjTRo0CBVqFBBly5d0pEjR7Rq1Sq9//77bu/nXn31VbVr106tW7fW4MGDlZCQoIkTJypv3rzJ/k2kfPnyatOmjVavXq0777xTNWrUSFPMAJJxa9akB+BJNm7caCSZhQsXJvlsyZIlpn79+iYgIMAEBQWZ5s2bm61btyZJt2rVKlOzZk0TGBhoypQpY6ZPn26ioqLMzZcZSeapp55Ksn/JkiVNr169XLYtW7bMVK9e3fj5+ZkSJUqYN954I9k8U7J582bTrl07kz9/fuPr62uKFStm2rVr51LPxPxOnTrlsu+MGTOMJHP48GGX7R9//LGpX7++CQoKMoGBgaZs2bLmkUceMbt27XKmadKkialSpUqyMR09etTcf//9Jm/evCY4ONg88MADZtWqVUaSWbp0aZL0ly9fNv7+/qZNmzbJ5terVy9TsmRJl20XL140L7zwgilZsqTx9fU1RYsWNU8++aQ5ffq0M822bdtM586dTcmSJY2/v78pUKCAadKkiVm2bJkzzaxZs0yzZs1MkSJFjJ+fn4mIiDDdunUz+/fvTzaWm3Xu3NlIMnPmzHFuu3LligkKCjJeXl4u8RiT8rFIbIdHH33UFCpUyDgcjmSPzY1SOwbnz583r7zyiqlQoYLx8/MzoaGhplq1auaZZ54xMTExxhhjVqxYYdq2bWuKFStm/Pz8TOHChc29995rvvzyS2c+hw8fNpLMjBkzXPK3et7GxsaaRx991BQpUsQEBQWZDh06mCNHjhhJJioqypnu9OnTpl+/fqZw4cImT5485s477zRffvmladKkiWnSpInbeNLbBsYk/720um9CQoKZMmWKqVq1qjNdw4YNzfLly51pjhw5Ylq1amWCg4ONJOe5nNo1yRhj/v3vfzvbODQ01HTq1MkcOHDAJU2vXr1MUFBQkn3Tcg1ZsmSJadasmQkJCTH+/v6mZMmSpkuXLiY6Ojpd5cTFxZk333zT1KhRwwQEBJi8efOaihUrmv79+5tDhw4505UsWdK0a9cu2Zi+++4706JFCxMQEGDy589v+vXrZ2bNmmUkmW+//TZJ+sRz6oknnrBUZwAArEipr+zu3+gTJ06Y3r17m4oVK5qgoCCTN29eU716dTNlyhQTHx/vTJdSHyE1GemnJ9enttrnSen+xhhjvvzyS1O/fn3j7+9vwsPDzXPPPWfGjx9vJJkzZ84kSb9p0yYjybzxxhvJ5pdc3+zXX381PXv2NAUKFDC+vr6mQoUKZuLEiSYhIcGZxkq//sUXXzR169Y1YWFhxt/f35QpU8Y888wz5s8//0w2lhtdvXrVFCxY0Egyv//+u3P71q1bjSRTu3btJPuk1l9P6/FP7RgcPnzY9O3b1xQrVsz4+vqaQoUKmUaNGpkxY8Y400yaNMk0atTIFCxY0NmH79evnzly5IgzTXLn/NWrV824ceNM8eLFjZ+fn6levbpZvnx5kn66McYcPHjQtGrVyoSEhJhChQqZp59+2qxcudJIMhs3bnSm+/77703Lli1NcHCwCQsLM127djVHjx5Nco+Q0ncwvW2Q0r2ElX2NuXbPMnjwYFOiRAnj6+trChcubNq1a2f+97//OdNER0ebWrVqGX9/fyPJeS6ndh9o5d7WmJT7z8kdi+RktJ+eXDmnTp0ygwYNMqVLlza+vr4mf/78pk6dOubll18258+fN8b8f7tPnDgx2bgWL15sqlWr5nJvOWjQIBMWFpZs+pkzZxpJZv78+W7rDMA9hzHGZObADAAgdWPHjtUrr7yio0ePJvnVyfLly9WxY0etXLnSuQgfANzo8ccf17x58/TXX38lmYU1bdo0DRo0SN99951zMUoAAHDrtGrVSkeOHNHBgweTfDZ06FC99957OnbsWLILUAPI3eLi4lSzZk0VK1ZMa9euTfL5Aw88oO3bt+vIkSPy9fW9BRECOQuP6gKALDR9+nRJ16Zhx8XFacOGDXr77bf18MMPuwyafP/99/r11181dOhQ1axZ02VNFAC516uvvqqIiAiVKVPG+Yzjf//733rllVdcBk327t2rw4cP69VXX1WnTp0YNAEA4BZ49tlnVatWLRUvXlx///235syZo3Xr1umjjz5ySbd9+3YdPHhQ7777rvr378+gCQBJUr9+/dSyZUvnI/bef/99/fDDD3rrrbecaS5fvqw9e/Zox44dWrx4sSZPnsygCWATBk4AIAvlyZNHU6ZM0ZEjR3T58mWVKFFCL7zwgl555RWXdAMGDNDWrVtVu3ZtzZo1iwWdAUiSfH19NXHiRP3222+Kj49XuXLlNHnyZA0ePNglXefOnRUTE6O77rpL77///i2KFgCA3C0hIUEjR45UTEyMHA6HKleurNmzZ+vhhx92SZe4jkj79u01ZsyYWxQtAE9z7tw5DRs2TKdOnZKvr69q166tVatWuawXevz4cTVq1EghISHq37+/cz1JABnHo7oAAAAAAAAAAACu87rVAdxoy5Yt6tChgyIiIuRwOLRkyRKXz40xGjVqlCIiIhQYGKimTZvqwIEDLmkuX76sp59+WgULFlRQUJA6duyo3377zSXN6dOnFRkZqdDQUIWGhioyMlJnzpxxSXP06FF16NBBQUFBKliwoAYNGqQrV664pPnvf/+rJk2aKDAwUMWKFdOrr74qxqEAAAAAZCbumwAAAJATjBs3TvXq1VNwcLAKFy6s++67Tz/++KNLGit92+QsWrRIlStXlr+/vypXrqzFixenKTaPGji5cOGCatSo4VwD4GYTJkzQ5MmTNX36dO3cuVPh4eFq2bKlzp0750wzZMgQLV68WPPnz9dXX32l8+fPq3379kpISHCm6dmzp/bt26c1a9ZozZo12rdvnyIjI52fJyQkqF27drpw4YK++uorzZ8/X4sWLdLQoUOdac6ePauWLVsqIiJCO3fu1LRp0/Tmm29q8uTJmdAyAAAAAHAN900AAADICTZv3qynnnpK27dv17p16xQfH69WrVrpwoULzjRW+rY327Ztm7p3767IyEh9++23ioyMVLdu3fTNN99Yjs1jH9XlcDi0ePFi3XfffZKujSxFRERoyJAheuGFFyRd+5VUkSJFNH78ePXv31+xsbEqVKiQZs+ere7du0uS/vjjDxUvXlyrVq1S69at9cMPP6hy5cravn276tevL+naQmwNGzbU//73P1WoUEGrV69W+/btdezYMUVEREiS5s+fr969e+vkyZMKCQnRe++9p+HDh+vEiRPy9/eXJL3xxhuaNm2afvvttxTXI7h8+bIuX77sfH/16lX9/fffKlCgAGsYAAAAIMczxujcuXOKiIiQl5dH/Y4rW8qJ903cMwEAgJzG0/rAly5dSjJL2C7GmCR9Nn9/f2dfMDWnTp1S4cKFtXnzZt19992W+rbJ6d69u86ePavVq1c7t7Vp00ZhYWGaN2+e5Yp4JElm8eLFzvc///yzkWT27Nnjkq5jx47mkUceMcYYs379eiPJ/P333y5pqlevbkaOHGmMMeajjz4yoaGhScoLDQ01H3/8sTHGmBEjRpjq1au7fP73338bSWbDhg3GGGMiIyNNx44dXdLs2bPHSDK//PJLivWKiooyknjx4sWLFy9evHjxytWvY8eOpXI3AKuknHffxD0TL168ePHixSunvjyhD3zx4kWTNxPrmDdv3iTboqKiLMV26NAhI8n897//NcZY69smp3jx4mby5Mku2yZPnmxKlChhuZ18lE3ExMRIkooUKeKyvUiRIvr111+dafz8/BQWFpYkTeL+MTExKly4cJL8Cxcu7JLm5nLCwsLk5+fnkqZUqVJJykn8rHTp0snWY/jw4Xr22Wed72NjY1WiRAkdO3ZMISEhKTeABwkNHWdLPrGxw20py0o+8Aw59Xjm1HrZgbYBANzs7NmzKl68uIKDg291KDlSTrhvygn3TAAAADfypD7wlStXdF7SM5LczwFJm8uSppw/n6TfZmW2iTFGzz77rO68805VrVpVkrW+bXKS66fe2Ne1ItsMnCS6eZqPSWbqz81uTpNcejvSmOtPPUstnpSmJYWEhGSjm4AAW3KxVl/3ZWWfdkPOPZ45tV52oG0AAMnjkUuZKzvfN+WMeyYAAICkPKkPHCS7/sr7/xIHG9LTbxs4cKD279+vr776Ksln6enbpmefG936B6pZFB4eLklJRoVOnjzpHD0KDw/XlStXdPr06VTTnDhxIkn+p06dcklzczmnT59WXFxcqmlOnjwpKekIGAAAAABkBe6bAAAAkN08/fTTWrZsmTZu3KjbbrvNud1K3zY5KfVB09L/zDYDJ6VLl1Z4eLjWrVvn3HblyhVt3rxZjRo1kiTVqVNHvr6+LmmOHz+u7777zpmmYcOGio2N1Y4dO5xpvvnmG8XGxrqk+e6773T8+HFnmrVr18rf31916tRxptmyZYvLIjpr165VREREkqnoAAAAAJAVuG8CAACAFb6Z9EoLY4wGDhyozz//XBs2bEjyGFcrfdvkNGzY0GUf6VofNLV9buZRAyfnz5/Xvn37tG/fPknS4cOHtW/fPh09elQOh0NDhgzR2LFjtXjxYn333Xfq3bu38uTJo549e0qSQkND1a9fPw0dOlTr16/X3r179fDDD6tatWpq0aKFJKlSpUpq06aNHnvsMW3fvl3bt2/XY489pvbt26tChQqSpFatWqly5cqKjIzU3r17tX79eg0bNkyPPfaYc4pRz5495e/vr969e+u7777T4sWLNXbsWD377LMeNeUKAAAAQM7CfRMAAABygqeeekqffvqp5s6dq+DgYMXExCgmJkYXL16UJEt9W0l65JFHNHz4/6+hO3jwYK1du1bjx4/X//73P40fP17R0dEaMmSI5dg8ao2TXbt2qVmzZs73iQsC9urVSzNnztTzzz+vixcvasCAATp9+rTq16+vtWvXuiyqM2XKFPn4+Khbt266ePGimjdvrpkzZ8rb29uZZs6cORo0aJBatWolSerYsaOmT5/u/Nzb21srV67UgAED1LhxYwUGBqpnz5568803nWlCQ0O1bt06PfXUU6pbt67CwsL07LPPuiximFMZE2VLPg7H6Cwryy52xZxVdc+ObZyVPKl9PCkWO2XHmAEA8HTcNwEAACCjfGT/4EBa83vvvfckSU2bNnXZPmPGDPXu3VuSLPVtjx49Ki+v/58j0qhRI82fP1+vvPKKRowYobJly2rBggWqX7++5dgcJnFlPtwSZ8+eVWhoqGJjY3PdQofZ8Q/FDJxkTE6Nx458PK1tAADILLm5/4v04ZwBAADZnSf1ZxJjeV32Lw5/SdLLkkfUM6M8asYJAAAAAAAAAADIXD5K+5ok7sTbnN+txMAJAAAAAAAAAAC5iCc8qsuTedTi8AAAAAAAAAAAALdSThoEAgAAAAAAAAAAbviKR3WlhoETDxEaulFSUIqfG9Mi64KxgcMR7TaNXYtu28VKPNlt4XK74rVr4fKsWmjdqqzMx129WPgdAAAAAAAA8AwMnAAAAAAAAAAAkIuwxknqWOMEAAAAAAAAAADgupw0CAQAAAAAAAAAANzwkf1rnMTZnN+txIwTAAAAAAAAAACA65hxAgAAAAAAAABALsIaJ6nLSXXJ1mJjmykkJCTFzx2O0baUY0yULfm4L6eFTTk1tqUsu9rPLll1HKzU20osWRWvVXbVy658rPC0NgQAAACQPu7uI+j7AwCyA1/Z/6guu/O7lXhUFwAAAAAAAAAAwHXMOAEAAAAAAAAAIBdhxknqmHECAAAAAAAAAABwHTNOAAAAAAAAAADIRVgcPnXMOAEAAAAAAAAAALguJw0C5WjGRLlN43CMzoJI7GMlXiv1tsKufOyK2VHGfVnmFysRZTwWu2TH45mV7QMAAAAgZ+A+AgCQE/jI/jVJctJgAzNOAAAAAAAAAAAArstJg0AAAAAAAAAAAMAN1jhJXU6qCwAAAAAAAAAAcMNX9j+qy+78biUe1QUAAAAAAAAAAHAdM04AAAAAAAAAAMhFeFRX6nJSXXI0h2O02zTGRGVBJPbFklXx2smumM0vtmTjUWxrmyw8Lzzpe+Vp7Gob2hgAAAAAAADZDQMnAAAAAAAAAADkIj6yf02SnDTYwBonAAAAAAAAAAAA1+WkQSAAAAAAAAAAAOAGa5ykjhknAAAAAAAAAAAA1+WkQSAAAAAAAAAAAOCGr+xf48Tu/G4lBk48RGjoOEkBKX5uTJTbPByO0W7TWMknK/KAPRyO6FQ/N6aFhTyy5rzJ6rKs4FxOmV1tQxunzMr3wQraGAAAAAAAwF4MnAAAAAAAAAAAkIuwxknqclJdAAAAAAAAAACAGz6y/9FaOWmwgcXhAQAAAAAAAAAArstJg0AAAAAAAAAAAMANFodPHQMnHiI2drhCQkIylIddC8jbITsuJu5pC5dbYWXxd/d55N72Q86SVeegXeXwfQAAAAAAAPBMDJwAAAAAAAAAAJCLsDh86ljjBAAAAAAAAAAA4LqcNAgEAAAAAAAAAADc8PGWfB0252kkJdib563CjBMAAAAAAAAAAIDrmHECAAAAAAAAAEAu4uMj+TDjJEUMnCAJY6IynIfDMdqWcqykyY5l5UQ5td659Zhnx3pnVTxZWe/seBw8Ce0HAAAAAEDyfDPhUV2+xt78biUe1QUAAAAAAAAAAHAdM04AAAAAAAAAAMhFMu1RXTkEM04AAAAAAAAAAACuY8YJAAAAAAAAAAC5iK+35GvztArfq/bmdysx4wQAAAAAAAAAAOA6ZpxkEw7HaFvyMSYqw3lYicWOcqzKjmV5Wht6Ek9rm+x2HOxqv+xW75wqNx8HT7sWuJPd4gUAAAAA5HLesn9ahc1rptxKzDgBAAAAAAAAAAC4jhknAAAAAAAAAADkJj6yf1pFDlrjhIETAAAAAAAAAAByEwZOUsWjugAAAAAAAAAAQJbbsmWLOnTooIiICDkcDi1ZssTlc4fDkexr4sSJKeY5c+bMZPe5dOmS5biYcQIAAAAAAAAAQG7iITNOLly4oBo1aqhPnz564IEHknx+/Phxl/erV69Wv379kk17o5CQEP34448u2wICAizHxcBJNmFMVJaV5XCM9og8pKyttxVW6mUlZk+rlyex0jZ2HYecyNPqnVOvBch8dhzzrDxvOEcBAAByj9Tuc+gXAkDatG3bVm3btk3x8/DwcJf3S5cuVbNmzVSmTJlU83U4HEn2TQse1QUAAAAAAAAAQG7iJcnb5tf10YazZ8+6vC5fvmxLyCdOnNDKlSvVr18/t2nPnz+vkiVL6rbbblP79u21d+/eNJXFwAkAAAAAAAAAALBF8eLFFRoa6nyNGzfOlnxnzZql4OBg3X///ammq1ixombOnKlly5Zp3rx5CggIUOPGjXXo0CHLZfGoLgAAAAAAAAAAchMfXZslYifHtf8cO3ZMISEhzs3+/v62ZP/xxx/roYcecrtWSYMGDdSgQQPn+8aNG6t27dqaNm2a3n77bUtlMXACAAAAAAAAAABsERIS4jJwYocvv/xSP/74oxYsWJDmfb28vFSvXj1mnAAAAAAAAAAAgBRk4oyTzPDRRx+pTp06qlGjRpr3NcZo3759qlatmuV9GDjJZRyO0W7TGBPlMeVYyccKO+pkp5xaL3ey6vyzk8MR7TaNMS2yIJLsydOOZ1bJymugp7Vxdow5q9A2AAAAOQN9NgA5QuKC7rfY+fPn9dNPPznfHz58WPv27VP+/PlVokQJSdcWm1+4cKEmTZqUbB6PPPKIihUr5lxLZfTo0WrQoIHKlSuns2fP6u2339a+ffv0zjvvWI6LgRMAAAAAAAAAAJDldu3apWbNmjnfP/vss5KkXr16aebMmZKk+fPnyxijHj16JJvH0aNH5eXl5Xx/5swZPf7444qJiVFoaKhq1aqlLVu26I477rAcFwMnAAAAAAAAAADkJh7yqK6mTZvKGJNqmscff1yPP/54ip9v2rTJ5f2UKVM0ZcqUtAdzAy/3SQAAAAAAAAAAAHIHZpwAAAAAAAAAAJCbeIvRgVQw4wQAAAAAAAAAAOA6xpSQhMMRnernxrTIokgkY6Jsycddna6Vlf3qld3YVe+sbb+tblM4HO7T2BGzwzE6S8rJybKqDbPnuW6P7BhzVqFtAODWSO3f/8y4Nmd1eQAAAOniLfvXOEl9qZJshRknAAAAAAAAAAAA1zHjBAAAAAAAAACA3MRHjA6kgqYBAAAAAAAAACA3YeAkVTyqCwAAAAAAAAAA4DrGlDxEaOg4SQEpfm5lEUG7Fj22spC6PeVk3ULXdi38bt9i9blzkW/7zlHPaj8Wfs98drWPJ7VhdjzmWRlzdmwfAIBnyup/L/j3CQAAZAvMOEkVM04AAAAAAAAAAACuY0wJAAAAAAAAAIDcxEuSt815XrU5v1uIGScAAAAAAAAAAADXMeMEAAAAAAAAAIDcJDPWODE253cLMeMEAAAAAAAAAADgOmaceIjY2OEKCQnJUB7GRNkUzdZUP3U4Uv/ceizPW4wndQ7HaFvysav9rMRj37FKnSfFYrUsa8ezccaDsSgrzwtPkh3PnewmO9aJY54xnva9AgAAAADkYsw4SRUDJwAAAAAAAAAA5CbeYnH4VPCoLgAAAAAAAAAAgOuYcQIAAAAAAAAAQG7Co7pSxYwTAAAAAAAAAACA65hxAgAAAAAAAABAbuIt+0cHctAaJwycZBMOx2i3aYyJyoJIrJXjSfHaWZaVetmVjx0xZ2Ub28Wu80tqkfFgbJTdjoWnxetwRLtNY4xnHXPgZp72vQIAAAAAAMnLdo/qio+P1yuvvKLSpUsrMDBQZcqU0auvvqqrV/9/OMsYo1GjRikiIkKBgYFq2rSpDhw44JLP5cuX9fTTT6tgwYIKCgpSx44d9dtvv7mkOX36tCIjIxUaGqrQ0FBFRkbqzJkzLmmOHj2qDh06KCgoSAULFtSgQYN05cqVTKs/AAAAAKSGeyYAAAC45Z1Jrxwi2w2cjB8/Xu+//76mT5+uH374QRMmTNDEiRM1bdo0Z5oJEyZo8uTJmj59unbu3Knw8HC1bNlS586dc6YZMmSIFi9erPnz5+urr77S+fPn1b59eyUkJDjT9OzZU/v27dOaNWu0Zs0a7du3T5GRkc7PExIS1K5dO124cEFfffWV5s+fr0WLFmno0KFZ0xgAAAAAcBPumQAAAICMyXaP6tq2bZs6deqkdu3aSZJKlSqlefPmadeuXZKu/XJq6tSpevnll3X//fdLkmbNmqUiRYpo7ty56t+/v2JjY/XRRx9p9uzZatHi2qNdPv30UxUvXlzR0dFq3bq1fvjhB61Zs0bbt29X/fr1JUkffvihGjZsqB9//FEVKlTQ2rVr9f333+vYsWOKiIiQJE2aNEm9e/fW66+/rpCQkKxuHgAAAAC5HPdMAAAAcMtHrHGSimw34+TOO+/U+vXrdfDgQUnSt99+q6+++kr33nuvJOnw4cOKiYlRq1atnPv4+/urSZMm+vrrryVJu3fvVlxcnEuaiIgIVa1a1Zlm27ZtCg0Ndd4ASFKDBg0UGhrqkqZq1arOGwBJat26tS5fvqzdu3cnG//ly5d19uxZlxcAAAAA2IV7JgAAALjlk0mvHCLbVeWFF15QbGysKlasKG9vbyUkJOj1119Xjx49JEkxMTGSpCJFirjsV6RIEf3666/ONH5+fgoLC0uSJnH/mJgYFS5cOEn5hQsXdklzczlhYWHy8/NzprnZuHHjNHq0PQuMAwAAAMDNuGcCAAAAMibbDZwsWLBAn376qebOnasqVapo3759GjJkiCIiItSrVy9nOofD4bKfMSbJtpvdnCa59OlJc6Phw4fr2Wefdb4/e/asihcvnmpc1zR2m8LhcH9zYUyULWnsyMOueK3wpLaRrMWTE3nacchK7uqeHeuUlYxpYUs+WXndsUN2ixcA4Bly7z0T4BlS68PRdwMAeAwe1ZWqbDdw8txzz+nFF1/Ugw8+KEmqVq2afv31V40bN069evVSeHi4pGu/bCpatKhzv5MnTzp/6RQeHq4rV67o9OnTLr+gOnnypBo1auRMc+LEiSTlnzp1yiWfb775xuXz06dPKy4uLsmvqhL5+/vL398/vdUHAAAAgFRxzwQAAABkTLZb4+Sff/6Rl5dr2N7e3rp69dpwVunSpRUeHq5169Y5P79y5Yo2b97s7ODXqVNHvr6+LmmOHz+u7777zpmmYcOGio2N1Y4dO5xpvvnmG8XGxrqk+e6773T8+HFnmrVr18rf31916tSxueYAAAAA4B73TAAAAHDLS5K3za9sN9qQsmw346RDhw56/fXXVaJECVWpUkV79+7V5MmT1bdvX0nXpoEPGTJEY8eOVbly5VSuXDmNHTtWefLkUc+ePSVJoaGh6tevn4YOHaoCBQoof/78GjZsmKpVq6YWLa49DqZSpUpq06aNHnvsMX3wwQeSpMcff1zt27dXhQoVJEmtWrVS5cqVFRkZqYkTJ+rvv//WsGHD9NhjjykkJOQWtA4AAACA3I57JgAAACBjst3AybRp0zRixAgNGDBAJ0+eVEREhPr376+RI0c60zz//PO6ePGiBgwYoNOnT6t+/fpau3atgoODnWmmTJkiHx8fdevWTRcvXlTz5s01c+ZMeXt7O9PMmTNHgwYNUqtWrSRJHTt21PTp052fe3t7a+XKlRowYIAaN26swMBA9ezZU2+++WYWtAQAAAAAJMU9EwAAANzKjDVOEmzO7xZyGGPMrQ4iNzt79qxCQ0MVGxub6i+uHI5oC7ltdZvCkxais2vRY7sWWs/KtsmtCz7n1npLLA7vKbLbOZjd4gUAK6z2f4FEnDPIblgcHgBwM0/qzzhjGSiF2Lys3NnLUuh0eUQ9MyrbzTjJvRq7TWFMC1tKcjdIY1c5dnUYPa3jmZV/6LRj0Cgr28+ugbCsbL+cep66w3HwDNktXgAAcgv+MI7UcA4AALIFZpykioETAAAAAAAAAAByk8QF3e3OM4fIQevcAwAAAAAAAAAAZAwzTgAAAAAAAAAAyE14VFeqmHECAAAAAAAAAABwHTNOAAAAAAAAAADITbxl/+hAvM353UIMnGQTxgS6TeNwXLQlH2mrm3Lc52BMC7dpHI7RFvKJcl+YBXaVlZUxW5GVZWWVnFgnT+Np3weOOQAAyG7ovwAAAORsDJwAAAAAAAAAAJCbZMYaJzlotIE1TgAAAAAAAAAAAK7LQWNAAAAAAAAAAADALe/rL7vzzCGYcQIAAAAAAAAAAHAdM04AAAAAAAAAAMhNWOMkVTmoKtlbaOg4SQGppGjsNg9jWtgWT1aUY0yU2zQOR7SFnLbaVNZoW/JB9pFbj6dd9c6O7Wfle+5OVtbb065LnhYPAAAAAABIJwZOUsWjugAAAAAAAAAAAK7LQWNAAAAAAAAAAADALS/Zv5h7DpqmkYOqAgAAAAAAAAAAkDHMOAEAAAAAAAAAIDdhjZNU5aCq5HTuF0B3ONznklULyNuxAHNO5kkLLHtSLBLxZFRWxmtXWVkZsycdKys8LV5PiwcAkLuEho6TFJBkO/8+AQAAwG48qgsAAAAAAAAAgNzEJ5NeabRlyxZ16NBBERERcjgcWrJkicvnvXv3lsPhcHk1aNDAbb6LFi1S5cqV5e/vr8qVK2vx4sVpiouBEwAAAAAAAAAAkOUuXLigGjVqaPr06SmmadOmjY4fP+58rVq1KtU8t23bpu7duysyMlLffvutIiMj1a1bN33zzTeW4+JRXQAAAAAAAAAA5Cbe119255lGbdu2Vdu2bVNN4+/vr/DwcMt5Tp06VS1bttTw4cMlScOHD9fmzZs1depUzZs3z1IezDgBAAAAAAAAACA3ycRHdZ09e9bldfny5QyFumnTJhUuXFjly5fXY489ppMnT6aaftu2bWrVqpXLttatW+vrr7+2XCYDJwAAAAAAAAAAwBbFixdXaGio8zVu3Lh059W2bVvNmTNHGzZs0KRJk7Rz507dc889qQ7GxMTEqEiRIi7bihQpopiYGMvl8qguDxEbO1whISEpfu5wjLaQy1a3KRwO92nc52EllufdpjAmMMOxZFfGRGVJOVaOlZVY7MrHCrvysXaeupd1xyrabRpjWmRBJNZ52rmD3Mfd+cW5BQA5i7t7JgAAAKSBt+wfHbj+qK5jx4659Nv8/f3TnWX37t2d/1+1alXVrVtXJUuW1MqVK3X//fenuJ/D4XB5b4xJsi01DJwAAAAAAAAAAABbhISEZNoPXooWLaqSJUvq0KFDKaYJDw9PMrvk5MmTSWahpIZHdQEAAAAAAAAAkJtk4honmemvv/7SsWPHVLRo0RTTNGzYUOvWrXPZtnbtWjVq1MhyOcw4AQAAAAAAAAAAWe78+fP66aefnO8PHz6sffv2KX/+/MqfP79GjRqlBx54QEWLFtWRI0f00ksvqWDBgurcubNzn0ceeUTFihVzrqUyePBg3X333Ro/frw6deqkpUuXKjo6Wl999ZXluBg4AQAAAAAAAAAgN/GWc00SW/NMo127dqlZs2bO988++6wkqVevXnrvvff03//+V5988onOnDmjokWLqlmzZlqwYIGCg4Od+xw9elReXv//cK1GjRpp/vz5euWVVzRixAiVLVtWCxYsUP369S3HxcAJAAAAAAAAAADIck2bNpUxJsXPv/jiC7d5bNq0Kcm2Ll26qEuXLumOi4ETDxEaOk5SQIqfGxPlNg+HY7SNEaXMWizRFnJqYSEfe+pkJWZPY6Xu7uqVHettF0+ru7vjaVe8duVjx/lnNY0VuflaYAe7jqenyY4xu5NTjxUA2CGleyauiwAAAOmQGWuS5KDRhhxUFQAAAAAAAAAA4BYDJ6nycp8EAAAAAAAAAAAgd8hBY0AAAAAAAAAAAMAtL9m/OHwOmqaRg6oCAAAAAAAAAACQMcw4AQAAAAAAAAAgN2GNk1TloKrkbA5HtNs0xkTZlE8LSzFldh7XPG+hrEBbSrLWfqNtyccKu/JxJyvrlJWysl5WvldZxa56e9ox97R4kHN42jWQcx0AUhYbO1whISG3OgyPlNq/Z/zbAmQPfI8BwLMwcAIAAAAAAAAAQG7CjJNUscYJAAAAAAAAAADAdTloDAgAAAAAAAAAALjlff1ld545BAMnAAAAAAAAAADkJjyqK1U8qgsAAAAAAAAAAOC6HDQGlL3Fxg5XSEhIip87HKPd5uFwbHWbxpioNMWV3lislJNT8/EknlanrIwnK+tlTAu3aax8P+2Q3c7RnCorr0tWcF6kjLYBAOQE/HsGZH98jwFkOW/ZPzqQgx7VxYwTAAAAAAAAAACA65hxAgAAAAAAAABAbsIaJ6lixgkAAAAAAAAAAMB1OWgMCAAAAAAAAAAAuOUt+9ckYY0TAAAAAAAAAACAnIcZJx4iNHScpIAM5WFMlNs0DsdoW/LxlHLszMcKK/XyLI1vdQAu7DpWdp1fOfU8tUNWtk1O5GnnX1bKqfUCAAAAACBHYY2TVOWgqgAAAAAAAAAAALe8Zf/oAI/qAgAAAAAAAAAAyHmYcQIAAAAAAAAAQG7C4vCpYsYJAAAAAAAAAADAdcw48RCxscMVEhKSBSW5XyzcjgXQrS2MHG0hnxYW8rloIZ9At2msyG6Lm1trv6xb8N7TFoTOrQt4Z+Uxz4nsOiey23ljVXarV078jgMAAAAA4BaLw6eKGScAAAAAAAAAAADX5aAxIAAAAAAAAAAA4BYzTlLFjBMAAAAAAAAAAIDrctAYEAAAAAAAAAAAcIsZJ6nKQVUBAAAAAAAAAADuGC/JeNufZ07BwEkuY0wLC6lST+NwjLYnGG11m8LhcJ/GmCg7grEtH0eZrCvLXT5WjpWVWDwtn6wsS2psIU32Ytf5ZxdPO7+yUyxZXVZOxHEAAAAAAAA3Y+AEAAAAAAAAAIBcJMHn2svuPHOKHDR5BgAAAAAAAAAAIGNy0BgQAAAAAAAAAABwhxknqWPGCQAAAAAAAAAAwHU5aAwIAAAAAAAAAAC4E+/tULy3w+Y8jSRja563CgMn2YTDEW0h1Va3KYyJslDWaAtlZZXGblNYaRtjWtgRjG3HwWHTNcnd8bRyvO0oJ6vzsYuVc93TYnbH0+rkefFk/DtsJd7sdt4g4zztmHvadw8AAAAAgOyEgRMAAAAAAAAAAHKRBB8fJfjYO+MkwcdIirM1z1uFgRMAAAAAAAAAAHKRBG9vJdj8qK4E75wzcMLi8AAAAAAAAAAAANcx4wQAAAAAAAAAgFzkqryVIHtnnFzNIQvDS8w4AQAAAAAAAAAAcGLGSTZhTAsLqdyncTguZjwYNbZQzmi3aYyJsiEWyeGItiUfK6wcB4djq4V87Kl7VrFyPK3IymOe3drYLjm13ll5TbFyLfUk9n2vsrKN7eEuZk+LNyvl5roDAABkttT6ofTDAGQX8fJWvM0zTuKZcQIAAAAAAAAAAJDzMOMEAAAAAAAAAIBcJEHeSrB5XkWCrtqa363EjBMAAAAAAAAAAIDrmHECAAAAAAAAAEAukjkzTuxdM+VWYuAEAAAAAAAAAIBchIGT1DFw4iFCQ8dJCsj0coyJspDKShp3WrhN4XCMtqEcq9zH42mstI+145lxVsqx63g6HNEWUm21kI/7NFnVfnbJ2u9MY7cpjLHne+VJ57pdcmKd7ET7AAA8RWr/JvFvEYCUcH0AgJyPgRMAAAAAAAAAAHIRZpykjsXhAQAAAAAAAAAArmPgBAAAAAAAAACAXCRB3oq3+ZUg7zTHsWXLFnXo0EERERFyOBxasmSJ87O4uDi98MILqlatmoKCghQREaFHHnlEf/zxR6p5zpw5Uw6HI8nr0qVLluNi4AQAAAAAAAAAAGS5CxcuqEaNGpo+fXqSz/755x/t2bNHI0aM0J49e/T555/r4MGD6tixo9t8Q0JCdPz4cZdXQID1Ncaz5cDJ77//rocfflgFChRQnjx5VLNmTe3evdv5uTFGo0aNUkREhAIDA9W0aVMdOHDAJY/Lly/r6aefVsGCBRUUFKSOHTvqt99+c0lz+vRpRUZGKjQ0VKGhoYqMjNSZM2dc0hw9elQdOnRQUFCQChYsqEGDBunKlSuZVncAAAAAcId7JgAAAKQmQT6Z8kqrtm3basyYMbr//vuTfBYaGqp169apW7duqlChgho0aKBp06Zp9+7dOnr0aKr5OhwOhYeHu7zSItstDn/69Gk1btxYzZo10+rVq1W4cGH9/PPPypcvnzPNhAkTNHnyZM2cOVPly5fXmDFj1LJlS/34448KDg6WJA0ZMkTLly/X/PnzVaBAAQ0dOlTt27fX7t275e19bUpRz5499dtvv2nNmjWSpMcff1yRkZFavny5JCkhIUHt2rVToUKF9NVXX+mvv/5Sr169ZIzRtGnT0lizBpKCUvl8axrzS57DEW0hVeplGRNloZzRFiNKnV1lWUljpSwr7Monu7Gv3lbO9efdpjAmMOOheBhPO7ey8ntlV1lZGXNWsatOnnasrPCkY5UTzy0A2VfOvWeyH9dmAAAA+509e9blvb+/v/z9/W3JOzY2Vg6Hw6Vvm5zz58+rZMmSSkhIUM2aNfXaa6+pVq1alsvJdgMn48ePV/HixTVjxgzntlKlSjn/3xijqVOn6uWXX3aOUs2aNUtFihTR3Llz1b9/f8XGxuqjjz7S7Nmz1aJFC0nSp59+quLFiys6OlqtW7fWDz/8oDVr1mj79u2qX7++JOnDDz9Uw4YN9eOPP6pChQpau3atvv/+ex07dkwRERGSpEmTJql37956/fXXFRISkkWtAgAAAADXcM8EAAAAdxLkla41SVLP85rixYu7bI+KitKoUaMynP+lS5f04osvqmfPnqn2IytWrKiZM2eqWrVqOnv2rN566y01btxY3377rcqVK2eprGz3qK5ly5apbt266tq1qwoXLqxatWrpww8/dH5++PBhxcTEqFWrVs5t/v7+atKkib7++mtJ0u7duxUXF+eSJiIiQlWrVnWm2bZtm0JDQ503AJLUoEEDhYaGuqSpWrWq8wZAklq3bq3Lly+7TIO/0eXLl3X27FmXFwAAAADYhXsmAAAA3ErHjh1TbGys8zV8+PAM5xkXF6cHH3xQV69e1bvvvptq2gYNGujhhx9WjRo1dNddd+mzzz5T+fLl0zTjOdsNnPzyyy967733VK5cOX3xxRd64oknNGjQIH3yySeSpJiYGElSkSJFXPYrUqSI87OYmBj5+fkpLCws1TSFCxdOUn7hwoVd0txcTlhYmPz8/JxpbjZu3Djn839DQ0OTjL4BAAAAQEZwzwQAAAB3EuSdKS/p2sLsN74y+piuuLg4devWTYcPH9a6devSPGvZy8tL9erV06FDh6zvk9Ygb7WrV6+qdu3aGjt2rGrVqqX+/fvrscce03vvveeSzuFwuLw3xiTZdrOb0ySXPj1pbjR8+HCX0bZjx46lGhMAAAAApAX3TAAAAHAnXt6Z8rJb4qDJoUOHFB0drQIFCqQ5D2OM9u3bp6JFi1reJ9sNnBQtWlSVK1d22VapUiUdPXpUkhQeHi5JSX69dPLkSecvncLDw3XlyhWdPn061TQnTpxIUv6pU6dc0txczunTpxUXF5fkV1WJ/P39k4y4AQAAAIBduGcCAABAdnH+/Hnt27dP+/btk3TtsbL79u3T0aNHFR8fry5dumjXrl2aM2eOEhISFBMTo5iYGF25csWZxyOPPOLyOLDRo0friy++0C+//KJ9+/apX79+2rdvn5544gnLcWW7xeEbN26sH3/80WXbwYMHVbJkSUlS6dKlFR4ernXr1qlWrVqSpCtXrmjz5s0aP368JKlOnTry9fXVunXr1K1bN0nS8ePH9d1332nChAmSpIYNGyo2NlY7duzQHXfcIUn65ptvFBsbq0aNGjnTvP766zp+/LhztGrt2rXy9/dXnTp10liz7ZICUvn8eQt5TLCQZquFNI0tpLGD+3Icjmhb8jGmhYWyLlrIJ9BCPu5jthKPMVEWyhrtNk1WlWMlHyvsyscudtXdk46VXWVl5bHypPMiK78P2VFW1t3dscit5ygA5Nx7JiB5qfUJ+DcaAIDkXZWP7YvDX1Xqs5eTs2vXLjVr1sz5/tlnn5Uk9erVS6NGjdKyZcskSTVr1nTZb+PGjWratKkk6ejRo/Ly+v85ImfOnNHjjz+umJgYhYaGqlatWtqyZYuzz2pFths4eeaZZ9SoUSONHTtW3bp1044dO/Svf/1L//rXvyRdmwY+ZMgQjR07VuXKlVO5cuU0duxY5cmTRz179pQkhYaGql+/fho6dKgKFCig/Pnza9iwYapWrZpatLj2B+1KlSqpTZs2euyxx/TBBx9Ikh5//HG1b99eFSpUkCS1atVKlStXVmRkpCZOnKi///5bw4YN02OPPcavogAAAADcEtwzAQAAILto2rSpjDEpfp7aZ4k2bdrk8n7KlCmaMmVKhuLKdgMn9erV0+LFizV8+HC9+uqrKl26tKZOnaqHHnrImeb555/XxYsXNWDAAJ0+fVr169fX2rVrFRwc7EwzZcoU+fj4qFu3brp48aKaN2+umTNnytv7/0fZ5syZo0GDBqlVq1aSpI4dO2r69OnOz729vbVy5UoNGDBAjRs3VmBgoHr27Kk333wzC1oCAAAAAJLingkAAADu3LiYu3155hwOY2XIBpnm7NmzCg0NlfSisuZRXVak/ugra4+9svK4oKx6JFj2fFSXFZ70+KecOgWeR3XlLHYcT0/7PnhaPFnJkx7VBcC6xP5vbGwsMw5gCecM3OFRXQAAT+dJ/ZnEWL6IramgEHsHTi6cTVDr0H0eUc+MynYzTgAAAAAAAAAAQPox4yR1DJx4iNjY4amOwllbJN09a79YT70sazMq7PlVj32/9ren/RyOrVmWjx1t6Gm/rsqOv4zPqhk5OXWmSFYe86wqy9Pa2NPiyUo5se7Z8ToJAJ4uvf0srrfZB8cKAADYjYETAAAAAAAAAABykQR5ZcKMk5yzKggDJwAAAAAAAAAA5CLx8la8zQMn8Tlo4MTrVgcAAAAAAAAAAADgKZhxAgAAAAAAAABALpIgHyXYPDyQkxaHZ8YJAAAAAAAAAADAdcw48RChoeMkBaSSorGFXNyncThGWw0pQxyOLCnmelnu62RMVJblk5XcxZNVx9tqWZ7WflZkVRtmz7aJ9rCyrFwns5ec+r0CACAr8W8lAABAUlflbfvi8FdZ4wQAAAAAAAAAACDnYcYJAAAAAAAAAAC5SEImzDhJYMYJAAAAAAAAAABAzsOMEwAAAAAAAAAAcpF4eSne5hkn8bpqa363EgMnAAAAAAAAAADkIgnyUYLNwwM56VFdDJx4iNjY4QoJCUnxc4djtIVcnnebwpgWaYgqc1mpkzFRNpUVbUtZVvKRttpUlpVj3jiLyrEi9Visl+U+H086jyV7ztOs/D5YYVc8Dof774N9rJSV8XMnK4+VXd/hrMwnK7mL2dPitSI7xgwAAAAAQE7DwAkAAAAAAAAAALlI5iwOn3Me1cXi8AAAAAAAAAAAANcx4wQAAAAAAAAAgFyEGSepy/CMk/j4eDviAAAAAIAci/smAAAAIPvI8MBJvXr19Nlnn9kRCwAAAADkSNw3AQAAwJMkyFvxNr/snsFyK2X4UV3R0dEaPXq03n77bb3++utq0qSJHXEhHYwJdJvG4Yi2kNPWjAej523IwxpHGZvycYx2m8aYKAv52BGNtbLcsXK8rdXJnvPGWlnuj4PUwkKarGMt5uxTzjWN3aawdl7YxY7rkjXu2tmO76ZVdl2XcqrcXPes4knnoCfFAqQH902AZ/WzcovU2pz2pn0AACnL8IyTAgUK6O2339asWbP07rvvqlOnTvrhhx/siA0AAAAAcgTumwAAAOBJEuSTKa+cIsM1OXnypDZs2KCDBw/Kx8dH27ZtU5MmTVSgQAFVqFBBS5YssSFMAAAAAMi+uG8CAACAJ0mQVyYsDp9ga363UoYHTho1aqQePXqocuXKuvfee/Xuu+8qNDRU8fHx+t///mdHjAAAAACQrXHfBAAAAGQfGR44Wbp0qapUqZI0Yx8fVa1aNaPZAwAAAEC2x30TAAAAPElCJizmnpMWh7e8xklkZKT++eefJNuT6/wDAAAAQG7EfRMAAACQ/TmMMcZKQm9vbx0/flyFCxeWJPXv319vvPGGwsLCnGni4uLk6+ubOZHmUGfPnlVoaKikFyUFZDC3xu6TlG7hPs3h0al+bEyU2ywcjmj35ViJV1uzMB8radyz0j7ZjcOR+jmR1XJiG2dHVr7nxri/5tiVT3Zj5Xtl7XprTz7IfPZ9Z7LfMc+OMSPzJPZ/Y2NjFRIScqvDsR33TfbL6edMZkvtGsy1FwCArOFJ/ZnEWCbGRiowxM/WvC+evaLnQmd7RD0zyvKMk5vHV+bNm6fTp0873584cULBwcH2RQYAAAAA2Qz3TQAAAED2l+41TpKbqHLlypUMBQMAAAAAOQn3TQAAAPBECfJWPGucpMjyjBMrHA6HndkBAAAAQI7DfRMAAADg2dI0cDJ37lzt2bNHcXFxkujwAwAAAMDNuG8CAACAp0uQT6a8cgrLNbnzzjsVFRWlc+fOydfXV/Hx8XrppZd05513qnbt2ipUqFBmxgkAAAAAHo/7JgAAAGQHCfK2/dFaOelRXQ6T3EN3U3Ho0CHt3r1be/bs0e7du7V3716dOXPG+SuqhISETAk0pzp79qxCQ0MVGxurkJCQFNM5HKOzMCo7PG8hzYQsK8uYQFtKcjgu2lKWleNpTJSlmDJajhVWYrFWVlYeq6xpY6tlSY3dxNLClljsYt81J/V6X7PVbYqsPFZZ9d2zq045FccKyLms9n+zO+6b7JNbzhkgq6XWD6L/AwD28qT+TGIsr8b2V0CIn615Xzp7RSNDP/CIemZUmufOlCtXTuXKldODDz7o3Hb48GHt2rVLe/futTU4AAAAAMiOuG8CAACAJ0uQVybMOLF1SfVbypaHjpUuXVqlS5dW165d7cgOAAAAAHIc7psAAACA7CHnrNYCAAAAAAAAAADcipe34m2ecWJ3frdSzpk7AwAAAAAAAAAAkEEZmnGyZ88eVa1aVX5+9i4ikxuFho6TFJBKCnsWWLa2aLubfLpYWMT6P9EWyrGHtcXYrcRjpf3cu77eZ45ipf2ycvFAT1vM2UpZ7mJ2ONx/x62d6/Ys6p61i0FauKZY4EnnhbVzwsr3yp62yY5Y+D1jcnPdAU/EfRPgmXL74ug5pY65/TgCQHolyEcJNj+QKkEJtuZ3K2Voxkm9evV05MgRm0IBAAAAgJyH+yYAAAAge8nQkJIxxq44AAAAACBH4r4JAAAAnuaqvJVg85okV3PQGicsDg8AAAAAAAAAQC6SkAkDJ3bndyuxODwAAAAAAAAAAMB1zDgBAAAAAAAAACAXSZBXJsw4yTnzNBg4yXUmZDgHs7CFhVTu0zgcW92XZaIs5BNtIZ7GFtK4j8dKPsZYaR/3HI7RFspKvX3sar+srJMV1uqV8fazyo6yrJ3H9hwHu9rP2vfKCnuuBXax6zx1x9PqlJXxIPNxPAEAcI9/L3MGjiMAIDMwcAIAAAAAAAAAQC4SL2952zzjJJ41TgAAAAAAAAAAAHKeDM04iYqKUsGCBe2KBQAAAAByHO6bAAAA4GkS5KMEmx9IZXd+t1KGB04AAAAAACnjvgkAAADIXnLOEBAAAAAAAAAAAHDrqryVYPOaJFdz0BonDJxkG1ttycUY9792c3R187njooWS3MdrKRZHtC1lWdPYllwcjtFu01ipu7X2Sb0sK3lYa78WGY7lGvdtbIz7sqyw6/yyFo/7ellrH3d52PO9ssKufKy1cdbFbMf3067vuBVZeT3xNFnZzgAAJCe1f4v4NwjpxXkFAPAUCZkwcJKe/LZs2aKJEydq9+7dOn78uBYvXqz77rvP+bkxRqNHj9a//vUvnT59WvXr19c777yjKlWqpJrvokWLNGLECP38888qW7asXn/9dXXu3NlyXCwODwAAAAAAAAAAstyFCxdUo0YNTZ8+PdnPJ0yYoMmTJ2v69OnauXOnwsPD1bJlS507dy7FPLdt26bu3bsrMjJS3377rSIjI9WtWzd98803luNixgkAAAAAAAAAALlIvLzlZfOMk/h05Ne2bVu1bds22c+MMZo6dapefvll3X///ZKkWbNmqUiRIpo7d6769++f7H5Tp05Vy5YtNXz4cEnS8OHDtXnzZk2dOlXz5s2zFFeGBk7OnDmjL774Qr///rscDoeKFi2q1q1bKywsLCPZAgAAAECOwX0TAAAAcpOzZ8+6vPf395e/v3+a8zl8+LBiYmLUqlUrl7yaNGmir7/+OsWBk23btumZZ55x2da6dWtNnTrVctnpflTXRx99pDvuuEPbt2/X1atXlZCQoO3bt6tBgwb66KOP0pstAAAAAOQY3DcBAADAE11b48TH5te1GSfFixdXaGio8zVu3Lh0xRgTEyNJKlKkiMv2IkWKOD9Lab+07nOzdM84mTBhgvbs2aO8efO6bH/ttddUp04d9evXL71ZAwAAAECOwH0TAAAAcptjx44pJCTE+T49s01u5HA4XN4bY5Jss2OfG6V74MThcOj8+fNJbgDOnz+fpgBwTWzscJeT6WYOR7SFXLbaE8x/Ui/LmBZus3A43Mdi7TSxUqfG7pOUdh+zDltpYyssxGMTY6JS/dzKeeMuj2v5jLYQjft6Wzt3rMRsJR97Yrav7u6OlftyrByrrORpMdt1rNyxq05Z2X6edqyssOPa5Gl1ssLaeeyep9U9O56DgF24b8p8mfXvAdel3C218yoj5wbnFQDAU1ybcWLvGieJ+YWEhKT6t26rwsPDJV2bQVK0aFHn9pMnTyaZUXLzfjfPLnG3z83SPXDy5ptvqkmTJqpataqKFSsmSfrtt9904MABTZo0Kb3ZAgAAAECOwX0TAAAAkD6lS5dWeHi41q1bp1q1akmSrly5os2bN2v8+PEp7tewYUOtW7fOZZ2TtWvXqlGjRpbLtjxwEhkZqQ8++EB58uSRJLVv315t27bVjh079Mcff8gYo2LFiumOO+6Qt7e9I1UAAAAAkB1w3wQAAIDsIDNnnKTF+fPn9dNPPznfHz58WPv27VP+/PlVokQJDRkyRGPHjlW5cuVUrlw5jR07Vnny5FHPnj2d+zzyyCMqVqyYcy2VwYMH6+6779b48ePVqVMnLV26VNHR0frqq68sx2V54GTu3LmaNGmS8wagf//+euONN9SwYUNJ154RFh8fT+cfAAAAQK7FfRMAAACyg6uZMHByNR357dq1S82aNXO+f/bZZyVJvXr10syZM/X888/r4sWLGjBggE6fPq369etr7dq1Cg4Odu5z9OhReXl5Od83atRI8+fP1yuvvKIRI0aobNmyWrBggerXr285LssDJ8YYl/fz5s3TCy+8oLCwMEnXnhFWsmRJXbp0yXLhAAAAAJCTcN8EAAAAWNe0adMkfegbORwOjRo1SqNGjUoxzaZNm5Js69Kli7p06ZLuuNK9xklylbly5Uq6AwEAAACAnIb7JgAAAHiieHnLYfOMk3ib87uV0j1wkhyHw2FndrlKaOg4SQEZzOV5tykcjtEW8mmc6Xlcs9VtCmOi3KaxFM9h90mMaWFPWZa4L8sKO+Kx9rW1cjytlOVZ7WffORid4UjsOtet5GOFXcfKrpizW93ti8XKuZV157GV62RWsqud7WDXv42eVCc72fE9z8q2ycprDnIn7pvslVO+j6lde3JKHbMT2hypyerva065PuSUegDIHbzcJ/l/c+fO1Z49exQXFyeJDj8AAAAA3Iz7JgAAAHi6a4vD+9j8yoUzTu68805FRUXp3Llz8vX1VXx8vF566SXdeeedql27tgoVKpSZcQIAAACAx+O+CQAAAMj+LA+cbNmyRZJ06NAh7d69W3v27NHu3bs1YsQInTlzhl9RAQAAAMj1uG8CAABAdpAgb3nZPEMkV844SVSuXDmVK1dODz74oHPb4cOHtWvXLu3du9fW4AAAAAAgO+K+CQAAAMi+bFkcvnTp0ipdurS6du1qR3YAAAAAkONw3wQAAABPwYyT1DmMMeZWB5GbnT17VqGhoYqNjVVISEiK6RyO0e4zKx1lT1CH3ZXV2G0WxrSwJRSHI9pCqq22lJWV9bLC4biY4TyMCbRQjoVzy1JZ7s8/a3WakPFgZC0eK+xqH3fsijcrWWkba+eFlTb2rO9nVsnaNnbPrrKy6rzI2mu2PfX2tLKAzGC1/wsk4pwBAADZnSf1ZxJjaRE7W74heWzNO+7sP4oOjfSIemaU160OAAAAAAAAAAAAwFPY8qguAAAAAAAAAACQPVyVjxJsHh64moOGG5hxAgAAAAAAAAAAcF3OGQICAAAAAAAAAABuJchbDhaHTxEzTgAAAAAAAAAAAK5jxomHCA0dJykglRSN3Wdy+KKFkiZYjCg17mNxOKIt5LM146FIMibKbRq74nE47InZGgvH3E3MDof7HOxqP4djtE1luU0ia+eg+3istbEVz1tIk/Hvnl1tbFdZdrWfXTFbkZVtaA8r55Y97LoW2NV+1uJxdzxb2JCHtVjside+sjxN9vvuAchJUrsGce0B0ofvFfB/7d19fFTVve/x75aQECkZBA0BH0NVfEAtBcWAgpYIx8fTKmirh0rr41FUCpTWeu4J6amlhxZKhdqK10K9aPVF0Ba1V4GqIA8+EPF1VJR6S1rEklorTFAxIWHdPwypkcxev0z2TGYyn/frNa+XzP7NWr+19tpr9nZnzwKyX5MOSsETJ13nOY2u0xIAAAAAAAAAAIAO4okTAAAAAAAAAABySKO6SRE/cdLIGicAAAAAAAAAAABdD0+cAAAAAAAAAACQQ5qUpyDi2wNNXeh2Q9dpSZaLx29XUVFRwu2mxc1LC/0xNYZkVnsWchudvoXfo1sE3LLAcjoXfs+0fMI5Z1lgOQ2JtIimb6JrVxQLv1uOq3SyLPzu3w+2/sucsS5Z55RMklkLl0clXfshnW3K5YVSc7ntADofcxAQPY4rAMh++9RNTRH/tNY+fqoLAAAAAAAAAACg6+GJEwAAAAAAAAAAckhTChaHj/oJls7EEycAAAAAAAAAAADNeOIEAAAAAAAAAIAcwhMn4bL6iZNZs2YpCAJNmTKl5T3nnGbOnKkBAwaosLBQ55xzjl5//fVWn6uvr9ctt9yiQw89VD179tQll1yi7du3t4rZuXOnJk6cqFgsplgspokTJ2rXrl2tYrZt26aLL75YPXv21KGHHqpbb71VDQ0NqWouAAAAALQb100AAABA+2TtEycvvfSSFi5cqFNPPbXV+7Nnz9bcuXO1ePFiHX/88frBD36g8847T1u2bFGvXr0kSVOmTNFjjz2mhx56SH379tW0adN00UUXqbq6Wt26fXJX7Morr9T27dv15JNPSpKuv/56TZw4UY899pgkqampSRdeeKEOO+wwrV27Vv/4xz909dVXyzmn+fPnt7s9sdgsST0SB5RW+AsZaqioZqQ/ZpKhHC9DPWnkXKE3Jhho6OOaSkNt/rab8gnW+avyjQtTvn5B4C/HOX//BcGeKNIxmuGNCIJVhnL8+8HWdl8fGva3QVRtso3jKNodnejG4OwO12Nh2VfOlRvKieb4jKpdFtHNKeHlRDX+uuo+R2L0MbqSrnbdhNwVNjczJwPIBr5zzFTMZcydCNOog+Qif+Ikq5/TaCUrW/LBBx/oqquu0r333qtDDjmk5X3nnObNm6c77rhDl156qQYPHqxf//rX+uijj/Tggw9KkuLxuO677z7NmTNH5eXlGjJkiJYsWaJXX31Vq1Z98j803njjDT355JP63//7f6usrExlZWW699579fjjj2vLli2SpBUrVmjz5s1asmSJhgwZovLycs2ZM0f33nuv6urq0t8pAAAAAPApXDcBAAAAycnKGyc333yzLrzwQpWXt/6rzJqaGtXW1mrs2LEt7xUUFGj06NFav369JKm6ulp79+5tFTNgwAANHjy4JWbDhg2KxWIaPnx4S8yZZ56pWCzWKmbw4MEaMGBAS8y4ceNUX1+v6urqhLnX19errq6u1QsAAAAAopat101cMwEAAKRek/JS8uoqsq4lDz30kF5++WW99NJLB2yrra2VJPXr16/V+/369dNf/vKXlpj8/PxWf3G1P2b/52tra1VcXHxA+cXFxa1iPlvPIYccovz8/JaYtsyaNUuVlen76RoAAAAAuSebr5u4ZgIAAEg9FocPl1VPnLz99tu67bbbtGTJEvXokXg9kCAIWv3bOXfAe5/12Zi24pOJ+azbb79d8Xi85fX222+H5gUAAAAA7ZHt101cMwEAAKCzZdWNk+rqar377rsaOnSo8vLylJeXp9WrV+uuu+5SXl5ey18yffYvl959992WbSUlJWpoaNDOnTtDY/72t78dUP/f//73VjGfrWfnzp3au3fvAX9R9WkFBQUqKipq9QIAAACAqGT7dRPXTAAAAKm3T93UFPFrXxd64iSrfqprzJgxevXVV1u9941vfEMnnHCCvvOd72jgwIEqKSnRypUrNWTIEElSQ0ODVq9erf/+7/+WJA0dOlTdu3fXypUrdfnll0uSduzYoddee02zZ8+WJJWVlSkej+vFF1/UGWecIUl64YUXFI/HNWLEiJaYO++8Uzt27FD//v0lfbLwYUFBgYYOHRp94y1Flhliqsv9MTW+x+Jn+MsoLTTUsyeSctxWf5uCwPKov6FdEQkCQ9st+Xj7cKQhl2h+BsFSjnMVhnL8OVvaJc02xKRvn/tydi6qcbzOEONvt3P+Yy+qsWMZFxbBBEtdhrlJ0eTjVWrZ56vSkEhmimJOiWpeiorlOLeVk76ccxV9jGyX09dN6LKYmwFku86Yx5g7geRl1Y2TXr16afDgwa3e69mzp/r27dvy/pQpU/TDH/5Qxx13nI477jj98Ic/1MEHH6wrr7xSkhSLxXTNNddo2rRp6tu3r/r06aPp06frlFNOaVk08cQTT9S//Mu/6LrrrtM999wjSbr++ut10UUXadCgQZKksWPH6qSTTtLEiRP14x//WO+//76mT5+u6667jr+IAgAAANBpuG4CAACAT6O66aCInxDhiZMMNmPGDO3Zs0c33XSTdu7cqeHDh2vFihXq1atXS8xPf/pT5eXl6fLLL9eePXs0ZswYLV68WN26/XPHPvDAA7r11ls1duxYSdIll1yiBQsWtGzv1q2bnnjiCd10000aOXKkCgsLdeWVV+onP/lJ+hoLAAAAAEngugkAAABILOtvnDz77LOt/h0EgWbOnKmZM2cm/EyPHj00f/58zZ8/P2FMnz59tGTJktC6jzrqKD3++OPtSRcAAAAA0o7rJgAAAHxak7rJRXx7oCs9cZJVi8MDAAAAAAAAAACkUtY/cQIAAAAAAAAAAOw+eeKENU4SCZxzrrOTyGV1dXWKxWKKx+OhiyMGAw2F1awyBI30h4wvDN9e5a/HuXJvTBBU+nOx5Fvqr0s1ewx1rTPEpFMU+Rj6z8C2Py3jz9ImS86ZVo5Fx/encxUR5JFe6R0Xfpax7BPZ3GUQRb5WlnZFNQajGxfh0nnM2MaFnyXndNYFpIL1/BfYzzdmfPNiJs13Ybl2Rp6Zlg8AZArmR0Qtk86B9+dyaPw1HVTUy/+BdthXt1vvxQZnRDs7ip/qAgAAAAAAAAAAaMZPdQEAAAAAAAAAkEOa9nWT2xfxT3VFXF5n4okTAAAAAAAAAACAZjxxAgAAAAAAAABADmlq7KZ9jdE+IeIiLq8z8cQJAAAAAAAAAABAM544yRY1q/wxc8r9MdP85bil4eUEgb+aIKj0Bxk4529TVHVZOFfhjQkCQx+b2rXOn9B4Tz5VUeXi72Nb3xjapJERxcw2xPjZ+sdwfHpz9vdNMNBQjWGuiK5NFv522cbOHkNd/n0eBP6x41yhoS4fy1j3s8y30e3PGYaYaFhyljrerujmrmjKiY5lHKdvbgeAztYZc1XYHBqej+U8Nn3Cck2+jQCQ/bLruwVITlNjnoLGaG8PuIjL60w8cQIAAAAAAAAAANCs69wCAgAAAAAAAAAAXk2NBymIfI2TrvOcBjdOAAAAAAAAAADIIU2N3VJw44TF4QEAAAAAAAAAALocnjgBAAAAAAAAACCHNDZ2U7CXJ04S4cZJhojFZknqkXC7cxXeMoKB0eTiL2dkNBUZygmCPZGUY+FcuTcmCCojqUvy12VStSp0s61N4WV8Uo5//NlY9tW6SGJMx0xk+9MiPOfI8h1vKceyzy1jx3J8+veVJR8by/iabYjx9aG/nqiOPds86R8XtvHlzycI0nfsWcrx9XMQeIuITFTHlUVU31dRjYuo2gUAyfLNecmey4aVm2yZ2TRnRncNkJ1Ssf8BIEwmzS3MgQA/1QUAAAAAAAAAQE5xTXnaF/HLNbXvOY1jjjlGQRAc8Lr55pvbjH/22WfbjH/zzTej6JJWeOIEAAAAAAAAAACk1UsvvaSmpqaWf7/22ms677zzNGHChNDPbdmyRUVFRS3/PuywwyLPjRsnAAAAAAAAAADkksZun7yiLrMdPnvD40c/+pE+//nPa/To0aGfKy4uVu/evdubXbvwU10AAAAAAAAAACASdXV1rV719fXezzQ0NGjJkiX65je/qcCzaOmQIUPUv39/jRkzRs8880xUabfCjRMAAAAAAAAAAHLJ/idOon5JOvLIIxWLxVpes2bN8qbz29/+Vrt27dKkSZMSxvTv318LFy7UsmXL9Mgjj2jQoEEaM2aM1qxZE1WvtAiccy7yUmFWV1enWCymeDze6nfZPisIVvkLG1/uj6na448pLQzfXhNBGZJUY2iTyTp/SGlFJDW5rf4Y074yGRlROVEw9LFh/Lml/mJs/WfIRzMMMbMNMRHtB1//VFVGU4+JpW8sfWyJ8XMumuPTIggs/ezrH3+7nTPMxwa2fP0sfRzVsZdJ+9PWbn8fp7NNFpZ9FdUYBFLBev4L7JeJYyZsLk52Dg77Tsq07yIAXV+ycxJzGdC2TDqf2Z+LquPS5yLO5YM6aWhMb7/9dqt2FhQUqKCgIPSj48aNU35+vh577LF2VXnxxRcrCAItX748qZQT4YkTAAAAAAAAAAAQiaKiolYv302Tv/zlL1q1apWuvfbadtd15pln6q233ko21YRYHB4AAAAAAAAAgFzS2PyKuswkLFq0SMXFxbrwwgvb/dlNmzapf//+yVUcghsnAAAAAAAAAAAg7fbt26dFixbp6quvVl5e69sVt99+u9555x3df//9kqR58+bpmGOO0cknn9yymPyyZcu0bNmyyPPixgkAAAAAAAAAALkkQ544WbVqlbZt26ZvfvObB2zbsWOHtm3b1vLvhoYGTZ8+Xe+8844KCwt18skn64knntAFF1zQkazbxOLwnaxlMR79VlLPxIGlhgUGDYu2O+dftN2/6Kx/sWxbPYZF5k2Ld0e1CLjBHMNCZgsM5Rj2lU0E7SqNaHG2of6Q6BaHtyzYHs3C75bFPaNYqNnWbj9bvulbDNu2uHn69kMU81dUbbLxL8ZuYjnOa6JZHD4qUS3sHkU9FrZc/N9Xtu/PzDqG01VXV11MNJ19nCkyaWFMZAfGTNeRq3M9AACZdD7T8v+j16VocfiRmdHOjuKJEwAAAAAAAAAAckmGPHGSqQ7q7AQAAAAAAAAAAAAyBU+cAAAAAAAAAACQSxol7U1BmV0EN04AAAAAAAAAAMglTc2vqMvsIvipLgAAAAAAAAAAgGY8cZIh4vFzVVRUlHB7EOzxFzK+0BtiKicCQbDKHzS+3FBShT+k2lDMUEM5VYa+mWZol0YaYtb5Qyz9U+Wry5BLTaU/xqLG0m7LPreY7Y1wzr/PLeM0CKLpnyAI3+e2fP25+Oqx12UZ61ExHA+mseMfg85Z5snwfrb0X3T87baMC7fVX1MQWI5hP+eiOc4tYzC9+yJcOnPJtLpMYzCD9lVUomp3V+wbIBeEzQEc14nRN0D2YJ5DIpl1zYwOYXH4UDxxAgAAAAAAAAAA0IwnTgAAAAAAAAAAyCU8cRKKJ04AAAAAAAAAAACa8cQJAAAAAAAAAAC5hCdOQvHECQAAAAAAAAAAQLPAOec6O4lcVldXp1gspng8rqKiooRxQbDHW1asPu6NiT9f4k9qtKeu0kJ/GTX+fG3lrPLHzCn3x0wz5KPZhpgZhph1hpiRhhg/58L7MBhoKMSyr0ws/WcRTd9YOOcfO6Y+HGqIqar0BEQ0tkzHgy8XyZSP6Ri21GXZ55bjysJfl29cBIG/Tc5VmDPqaF22seM/PqPK2SII/HO76fg09U/msPRxOscX0Fms57/AfowZ//cD3w2ZJWx/pXtfZVIuADIL80N6ZdL5zP5ctDQuHRxxLh/VSRMyo50dxU91AQAAAAAAAACQS/iprlD8VBcAAAAAAAAAAEAznjgBAAAAAAAAACCX8MRJKJ44AQAAAAAAAAAAaMYTJwAAAAAAAAAA5JK9za+oy+wiuHGSLUoLvSHxE/wxqqk01FVhSCgCNasMQSP9IQsslc32h0TV7pp10ZRjEAS+CEP/GcaWSY2lrnJDOYYxammX/PshCAz7arxhXFRZcvaxjBtDu6dZjqsZ/hDLuLAcw5bjyrTP/Zzz1xUEeyKpy19P+tpkE005QeDf584ZjnPT8ekvJbr+CRdVu6Maf5bxla6+scrGnAEgkzBHZpdM2l+ZlEtHhJ1LdJU2dhXsq+zB/gDCceMEAAAAAAAAAIBc0tT8irrMLoI1TgAAAAAAAAAAAJrxxAkAAAAAAAAAALmkSVJjCsrsIrhxAgAAAAAAAABALmlU9DdOoi6vE/FTXQAAAAAAAAAAAM144iRLuK3+mGBgRJVN9myfVmkoZIYhZqQhZrY/ZGiFP6bGkE/NHn9MVMaXR1NOlS/ndf4yagwxJv4+No3jwFCOKzSU46/LOf9+CIJV/oJMY9kXYxjrBrY2GY5hyzFjGV+TDWN9WlT73N8u5wzzhZdlf0d1XPmZ9mda+fe5ZT9Y2hUEHe/naMaEba6wHZ/RjK8gsHynWfovmrEcxT6Pal8BQGcKm+uY58K/Ty3fo+i6OD4SS9U5VLLzFfsKyCI8cRKKJ04AAAAAAAAAAACa8cQJAAAAAAAAAAC5hCdOQvHECQAAAAAAAAAAQDOeOAEAAAAAAAAAIJc0KfonRJoiLq8T8cQJAAAAAAAAAABAM544yRJBsCeagsZX+GOm+eqaYain0B9T5W/TPPdXb8yUNf6qVDXbEBQRSx9XVfpjSg3laJ2njHJ/ETWGakzl+NsUBIa6VlvabTHSGxEMNBQTUdt9+8o5f7uDYJUhJqK5QhEdM975RFKpf74IAksfG/a5oQ+j2VeeY1OSLV9/uy35WNj62FKOpY/9bc8kzhnmgchY+sYyviwxFv580ts/AJDdovre7qr4TkEiYeequXBcRXWu3h650K/JyoXxmAtthFjjxIMnTgAAAAAAAAAAAJrxxAkAAAAAAAAAALlkr6RuKSizi+DGCQAAAAAAAAAAuaRJ0S/mzuLwAAAAAAAAAAAAXQ9PnHQlhgWWy5Y+443ZMPDcKLKJxJRggiHKsvh0GheuqrIsjDzDH2JZcDyKhdRHG2KGGmJq/G1yzrIIuH9/BpZFj8cbFpas9oeoJqrF1sMXWDYt9jfesL+rosrXMEZNC8gb9lWNZRFrSz4GhnnSl09k+8rALfWP4+gWY49mEXBLPra5wBsi/7jwj9H0LrQZzTwp+cdXVO2yLPxoqctSji8mqnoyrRwASLV0L/Abdi7QGYu/J9t+FkZOXir6Ltf7PNfbn2myaX8ke12QTW1EB7A4fCieOAEAAAAAAAAAAGjGEycAAAAAAAAAAOSSJkX/hAhrnAAAAAAAAAAAAHQ9PHECAAAAAAAAAEAuaZTULQVldhE8cQIAAAAAAAAAANCMJ06yxjp/yORyb8iGNef6y6lZFb59tb8ejd7jjyktNOTib3esfrA3Zle+v64g8LTbzLCvNNIQM8MfstGzfZqhTaWG/VlV6Y8ZX+ENMfWxJZ8af4iqLPvTsh/8nLO03dOHpf4ybLlYxnr6yjH1sWWfG7itkRSjIAjP2Tl/vrb5xN83QWCZTyz85dja5Z8LbMdDVPPtbM92yzEeTR9H1+5o9oNFJHNXhHz9Y8nXIp3lRHXMAOgcYcdwNh276c817Ls1mvO+9ki2/anqt64yrsJkUzvSvT9yYf8jecmOD8YVkrZX0T9WsTfi8joRN04AAAAAAAAAAMglTYp+MXcWhwcAAAAAAAAAAOh6eOIEAAAAAAAAAIBc0qToF3PniRMAAAAAAAAAAICuhydOAAAAAAAAAADIJY2K/rGKqJ9g6UTcOMkaI6MpZn4EdY3eE0UmUo2hnPEV3pD4Vf5igjJDPqXl/pjJhnKmWeoq9MdY+mdapSdghiEZg1L/flDVKn/MakMfjzaUY+Ccv65goKGgGks+hnZ56zHs78X+cRMEvjEh0/4MAn8+zlnKMeRTYxinhmPGUpclZ98caGqTac5e5w+xzEs1lnz8gsASFc13ken4DAz9k2Us7baVE9Gxl0ZR5GMbo/5xY5sHohHVvkpnzgD+Kd3HXth80JFcUlFuqnLNBanoH/ZH8tgfXUOy55qZtj+SzSeTvq+kzOtXIFncOAEAAAAAAAAAIJfslWT6A7V2ltlFsMYJAAAAAAAAAABAM544AQAAAAAAAAAglzQ1v6Ius4vgiRMAAAAAAAAAAHJJY4pe7TBz5kwFQdDqVVJSEvqZ1atXa+jQoerRo4cGDhyoX/7yl+2r1IgnTgAAAAAAAAAAQNqdfPLJWrVqVcu/u3XrljC2pqZGF1xwga677jotWbJE69at00033aTDDjtMl112WaR5ceOkK5m2xx8zvtAfU+qJGWrIpWqVP2ZOuT9mg6GuqCw2xIw29LFG+kMsfVjjD3GuInR7EBjyXWzIZbRhf1raPclQjNZZgryCwFKOIedSwziNxGx/yOiIqqqJZn8GQWXHc5H8c44k1fjHsu94kKRggiUh374wjJuIxrFqLHWlMR9TOek6ZqJhGjeGsW6JsdQVlajqsvWPZU6x1BXF2Enf+LO029KmdI4LAJktbD7wfc+EfTYV80yq5q6wdjJfIlswVtMvk/q8I/MYcyDSrkntfkLEVGY75eXleZ8y2e+Xv/yljjrqKM2bN0+SdOKJJ2rjxo36yU9+EvmNE36qCwAAAAAAAAAARKKurq7Vq76+PmHsW2+9pQEDBqi0tFRf/epXtXXr1oSxGzZs0NixY1u9N27cOG3cuFF79+6NLH+JGycAAAAAAAAAAOSWvSl6STryyCMVi8VaXrNmzWozheHDh+v+++/XU089pXvvvVe1tbUaMWKE/vGPf7QZX1tbq379+rV6r1+/fmpsbNR7772XbE+0KetunMyaNUunn366evXqpeLiYn35y1/Wli1bWsU45zRz5kwNGDBAhYWFOuecc/T666+3iqmvr9ctt9yiQw89VD179tQll1yi7du3t4rZuXOnJk6c2LKDJ06cqF27drWK2bZtmy6++GL17NlThx56qG699VY1NDSkpO0AAAAA4MM1EwAAADrT22+/rXg83vK6/fbb24w7//zzddlll+mUU05ReXm5nnjiCUnSr3/964RlB0HQ6t/OuTbf76isu3GyevVq3XzzzXr++ee1cuVKNTY2auzYsfrwww9bYmbPnq25c+dqwYIFeumll1RSUqLzzjtPu3fvbomZMmWKHn30UT300ENau3atPvjgA1100UVqavrnD7FdeeWVeuWVV/Tkk0/qySef1CuvvKKJEye2bG9qatKFF16oDz/8UGvXrtVDDz2kZcuWadq0aenpDAAAAAD4DK6ZAAAA4NWUopekoqKiVq+CggJTSj179tQpp5yit956q83tJSUlqq2tbfXeu+++q7y8PPXt29facpOsWxz+ySefbPXvRYsWqbi4WNXV1Ro1apScc5o3b57uuOMOXXrppZI+uUPVr18/Pfjgg7rhhhsUj8d133336f/8n/+j8vJPFu1csmSJjjzySK1atUrjxo3TG2+8oSeffFLPP/+8hg8fLkm69957VVZWpi1btmjQoEFasWKFNm/erLffflsDBgyQJM2ZM0eTJk3SnXfeqaKiojT2DAAAAABwzQQAAIDsVF9frzfeeENnn312m9vLysr02GOPtXpvxYoVGjZsmLp37x5pLll34+Sz4vG4JKlPnz6SpJqaGtXW1rZaJKagoECjR4/W+vXrdcMNN6i6ulp79+5tFTNgwAANHjxY69ev17hx47RhwwbFYrGWCwBJOvPMMxWLxbR+/XoNGjRIGzZs0ODBg1suAKRPFqOpr69XdXW1zj333APyra+vb7UYTl1dnamdzhV6Y4I1hoI2GmJu8WyfbyhjfLk/ZlqloaAZhrr8faMFhqpqDPnMqYimLoNYfdwbEwz0tN3SN6NXGbIZ6Q9ZbahrkqGqyBhythjqDwkmWAry5DPHf8y4qYZcBhpSqbHscwvD8al1/pCI8rE9kRnFuPC3yTn/XBEE/jnHNPcHljZZYgz7arylXXsMdRmUGuZbH8O8Hl3/+QWBYaxbvj+rLH082xthGacWzvlztox3/zEczbEXlajaHd18kb62I/t09Wsm3zHSFY6PrtAGi7B2hu3nVPRPuuvriEzLp6vIpjGQbvRNYsnOY77PJisV+8r3OcZHFmmUFO2vW31SZjtMnz5dF198sY466ii9++67+sEPfqC6ujpdffXVkqTbb79d77zzju6//35J0o033qgFCxZo6tSpuu6667Rhwwbdd999+s1vfhNxQ7Lwp7o+zTmnqVOn6qyzztLgwYMlqeVRnbYWidm/rba2Vvn5+TrkkENCY4qLiw+os7i4uFXMZ+s55JBDlJ+ff8AjQ/vNmjWr1cI4Rx55ZHubDQAAAAAmXDMBAACgTY0perXD9u3b9bWvfU2DBg3SpZdeqvz8fD3//PM6+uijJUk7duzQtm3bWuJLS0v1+9//Xs8++6y+8IUv6L/+679011136bLLLkuyExLL6idOJk+erP/5n//R2rVrD9jW1iIxvgViPhvTVnwyMZ92++23a+rUf/7ZeF1dHRcCAAAAAFKCayYAAABkqoceeih0++LFiw94b/To0Xr55ZdTlNE/Ze0TJ7fccouWL1+uZ555RkcccUTL+yUlJZLU5iIx+//SqaSkRA0NDdq5c2dozN/+9rcD6v373//eKuaz9ezcuVN79+494K+q9isoKDhgcRwAAAAAiBrXTAAAAEioUdLeiF/tfOIkk2XdjRPnnCZPnqxHHnlETz/9tEpLS1ttLy0tVUlJiVauXNnyXkNDg1avXq0RI0ZIkoYOHaru3bu3itmxY4dee+21lpiysjLF43G9+OKLLTEvvPCC4vF4q5jXXntNO3bsaIlZsWKFCgoKNHSoYWEEAAAAAIgY10wAAABAx2TdT3XdfPPNevDBB/W73/1OvXr1avnrpVgspsLCQgVBoClTpuiHP/yhjjvuOB133HH64Q9/qIMPPlhXXnllS+w111yjadOmqW/fvurTp4+mT5+uU045ReXlnyz0eeKJJ+pf/uVfdN111+mee+6RJF1//fW66KKLNGjQIEnS2LFjddJJJ2nixIn68Y9/rPfff1/Tp0/Xddddx19FAQAAAOgUXDMBAADAq0nRLw7fFHF5nShwzrnOTqI9Ev0O7qJFizRp0iRJn/yFVWVlpe655x7t3LlTw4cP189//vOWxRAl6eOPP9a3v/1tPfjgg9qzZ4/GjBmju+++u9Vv577//vu69dZbtXz5cknSJZdcogULFqh3794tMdu2bdNNN92kp59+WoWFhbryyiv1k5/8RAUFBab21NXVKRaLKR6Ph144BHMNhS0wVelXsyp8e2m5t4int47wxnwp+IM/lzmF/phh/hCNrjTUVeGPsfSx5Q/nygwxUdRVFVG7p3nGhCSN948LVe3xx2i2oS5Dzqa61nkjnnb/6Y350oT1Hc7HOf9YDwJLm/yiq8vff5b5QjWGcaqR0cSMN8wp1Z7tvjnSmkupIRdT38wwxFgY9qdpP1jK8cc45z/Og8C3L/z5Wo6HqER1DJvmyVLDPGkYX7b9kJ5yMimXT1jGl2EONLDl42dpezpYz3+RvFy9ZkqnsOMy2WOtI8d6uuvMlPkESKVUHOeZVJ9P2Ll2VOc4nS2qc6xPy7T5MdPGVS7LpPOZ/bno7LiUF3EujXXSc5nRzo7KuidOLPd5giDQzJkzNXPmzIQxPXr00Pz58zV//vyEMX369NGSJUtC6zrqqKP0+OOPe3MCAAAAgHTgmgkAAABeqViPhDVOAAAAAAAAAAAAup6se+IEAAAAAAAAAAB0AE+chOLGCQAAAAAAAAAAuaRRUtSrn3ehxeH5qS4AAAAAAAAAAIBmPHGSLaat8oZc7173xixcc5u/rvnl4dtv8RfxlYZH/EGrC/0xk/whmmyIGV/hjxlmKGexIcZioyGmxr/PVTPSE+DbLmmBIRdDOW6pv5RgoGGf18zwx5T5Q1S1zhDkb9eXJqw31OXfV7H6waHbgzWGvtFsQz03eGOCwFCVLP1niKmx1GXY54a2q9Qzd0lStaEq37E33lCPYUzY+sag1HJcGfKxsMzboy0FGeamKIz35xsE/r5xzr/Pg6DSkJBlrFuOPUM5Nf58nPN/NwbBnkjKiYKtj9PHNi6iGV/p6mMAdqk4LlN1rIfNn8wvqZGKPk/2ezCb9nGmjdV015lp+yrsHCXT9lWysinXZPs8m9qITpCKp0N44gQAAAAAAAAAAKDr4YkTAAAAAAAAAAByCWuchOKJEwAAAAAAAAAAgGY8cQIAAAAAAAAAQC7hiZNQ3DjJEqYFSCcYFiw2KFv6TOj2U/Q/3jIWBif7KyotsabUcVX+xW1VbVj02LIQvWWxdUs5cyLYnwsMZQw1lGNYxNqygLBtgW//wmWxybXemLil7RaWsbPaX1e8IHwxR8ui7vHx/r6JF1j2g4Vl8W7DItaWBdsNi1hbxoVpLFtEsWi7qd2GfRVVOZb9Ocey8Hs0C6A7F82i7V6W49fQx8FAQ11zDGN0mmWh9WjmrmCCZeF3Sx/7x45lsdooFqW0LWbvzyWqfG39Z5gnFdH3FYCEusoixslKRRtzvU99cn1R8bDvyLBznc5oR7K5poLlHKUtHem3VCw4nmyZvvZ35LOJJT7XTff+l1LTd6n4XFfRkTGH3MCNEwAAAAAAAAAAckmjpH0Rlxl1eZ2IGycAAAAAAAAAAOSSJkX/U11d6MYJi8MDAAAAAAAAAAA044kTAAAAAAAAAABySaOif6yCJ04AAAAAAAAAAAC6nsA5F/UvmaEd6urqFIvFFI/HVVRUlDAuCCr9hZVWeEOu3/ozb8yrOjV0+4Y15/pz2egPiU2u9cbEF5T4C1rgD5m39QZvTEWDv4/jVxnyqfaHmNTs8ceML+x4PZZ8h0ZUTo1hHI/3j+NME3sggrE8bZW/ovHl/hjTfjDUFZVSQ86W8WVRZoix9LPWdTQT03wc3X4Y6Q+xzBVVhjknMrMNMZZ2ecZXlaGP5xjG6DR/3zjn7+Ngrr8q0xi1HFeW+dbSx1Ex5exru+HYnOM/9txUfzFRCYKo5hz/vnLO0McZwnr+C+zX0TETfiwmPgady77z0vYKu87sjPZnWj7pZrrub0OyfZPr/d0R9F1mYX9EL+y7M5vOOzNJJp0D789F/eLSQRHnsq9O+ltmtLOjeOIEAAAAAAAAAACgGWucAAAAAAAAAACQS/aKNU5C8MQJAAAAAAAAAABAM544AQAAAAAAAAAgl+yTFPXq511oNXVunAAAAAAAAAAAkEsaJQURl9mFbpwEzrku1JzsU1dXp1gspng8rqKiog6VFcyNJqenp44I3f6lgeu9ZcTerPXGVOZXmHMKM2XCPf6gakNBNXu8IbH6uDcmflWJoTK/2AP+Powv8NS1IZJUpFsMMfMjKmejIWaBIWaoIaZqlSFonSFmpD9kfLknl4jGn29MSNI0f10mpYX+GMNxZerjUk//Wesa78/5+qU/C92+MDjZX48p30p/jGYYYmb7Q0oN822N4XiwtMsiqnHhO65Mc79lPxiO8dWGvhkdzRg1zV1RHTNRzYGWcerhXDTnDUFg2edRsfSNv4+janumiPL8F7khlWMmbE5IxbGX7vpyBf2afqno81R8R/tySbbOVLQxrMxsGuPZlGuYIEh8ruxc4nP2VLU/k/rVd9yk//hIfH3kXOLrolS1I5FMOgfen4s+F5eCiHNxddIHmdHOjuKJEwAAAAAAAAAAcglPnIRicXgAAAAAAAAAAIBmPHECAAAAAAAAAEAu2SueOAnBEycAAAAAAAAAAADNeOIEAAAAAAAAAIBc0iSeOAkROOe6UHOyT11dnWKxmOLxuIqKijpUVjDQH7Nja29vzAkNb4Zujxe85q9odbk3pGzUM96YDRPO9cbMW3qDN6aiodIbYxG/qsQfVGYoaIMhxlLOAs/2xYYy5htibjHEbDTE+PI1mrfVv8+nzL3HX9Awf0jszFpvzEn5b3hjNqzxjGXLfrCo2mMIWucPKfUfw6ox1DWn0Bvy9NQR3pgvDVwfTT4W4z05W/p4tb/dGr3KkMxIf4gv3yhVGXI2zP+RtT0ShuNhvKFNlr6xHFcWNZbvNEv/pXF8GfrHufD+CQJ/u52rMKcUXlfH8/2knGj2laWubBLl+S9yQ1caM2HzS9ixbptPEpUbzdyIzhU2BsL2cbJjpyPjJhV1Jtt+n1SVi7Z1pL+TnT9ToSNzcrKSHY+dMcbTXWf4uXvi6z3/mIu2HZl0PrM/FykuBRHn4uokZUY7O4onTgAAAAAAAAAAyDU8UpEQa5wAAAAAAAAAAAA048YJAAAAAAAAAABAM26cAAAAAAAAAAAANOPGCQAAAAAAAAAAQLPAOccSMJ2orq5OsVhM8XhcRUVFHSorCPZ4Y2L1cW9M/KqS8DIeqPWXsSC8DEmKTY6mHG3wh5hyPsFQ11B/yPVLf+aNebjhikjyib0Z3q4380/wltF/zS5vjEav8sesLvfHTPKHqMY/jp0r9Mb0bohon1ss9odcPyp8XCwceFvacolqP0jr/CHjDePCoswQMyyaqrz9U2M4HjTSHzLeP45VFVFdBmXueW/Mep3rjQkGGipbbMhn1DPemA3BmvCA8RX+iix9PMcwji3jb6MhZprl2LNI4/FZFVHOnmPCLfUXEQSV/qBSw7gwHef+PnbOX5cpZxP/XOBcRPu8g6I8/0Vu6KwxE3Z8hh3f6f6c77NhLPNU2/UlniczZa7pqI7sj2TLDdOROhG99B9zqRmP6a4zdfNc2HlQ4nO2dM/lnSEV48P3/x8t/8+m/XVG/73TkX2VTL9m0jnw/lykuKSoc6mTlBnt7CieOAEAAAAAAAAAAGiW19kJAAAAAAAAAACAdNrb/Iq6zK6BJ04AAAAAAAAAAACa8cQJAAAAAAAAAAA5pbH5FXWZXQNPnAAAAAAAAAAAADQLnHOus5PIZXV1dYrFYorH4yoqKupQWUFQ6Q8aX+GPqQ7f7L4feIvoffkOb8wV+Q97Yxauuc0bYzJ6lTekzHXzxjyir3hjKuTfD6/qVG/MhrnnemO0wLN9sr8IbTDElEVTTtnSZ/zFBE3+gsaXe0NiD9R6Y+InlHhjdmzt7Y3pH1R5Y7w5e467tFtsiJnkD3l66whvzJeC7/sLMuxz0zgdZojZ6NluOWZuMcQY5iXNMbTbwjdXSFLNHn/MnEJ/TFRzioWnrnlLb/AWMWXuPR2uR5JUZei/UkP/WVj2laWuoYa6TGPZkI/WGWJGhm+2jL+oxnpk+8pwbhYR5wzneAZB4J+bnOvY3BTl+S9yQyaOGdO1Vzt15DhONp+o5o6opKId4WXOCCkzou+CiGTamAsTlmuydaai/R2RSceOr2/SnWuy+z8IfOdoic8nkz036TpzZ9j5m+U8vC2J50dpdugnk9/PYeVm1nydzDjPpPOZ/blIb0uKOpc6SUdmRDs7ip/qAgAAAAAAAAAgp/BTXWH4qS4AAAAAAAAAAIBmPHECAAAAAAAAAEBOaZS0NwVldg08cQIAAAAAAAAAANCMJ066kMgWBR0Yvn3Evz3tLSO+xr/otkYZE/LxLeQsSaX+hcI2GBZDPaH+TW+MZcFxi9ibhsXNN3jqsixobFiU3LLQeuVU//h7WF/1V2ZZDNvQrvhVhv1gWBj5DZ3kDzKML98i1VMGGhaoXuwPsSzYrsmGGMNxZRmjXwr+4C/IsODzvKn+Rb5P1avR5LO64wvLlY16xhtzp/tPb8xXGgZ7Y+ILDGPdshj2eH+7Y5P9+3zX2P7emOAS58/HMk6rwudt03FlqKdsqX9/blhzrr+gSf4Q04LtQw1j1DC3m5i+Yy0L0Rvmdl/Olu80y1i3sIw/y0L04w3nZrcYyhntX7jUtrjpSG9ERxd+B7oS/0LFbQtfFNd/zRF1nckKn1fC5pOwBZyTzzPZz2baIs5dRfILgEe/GHdHFo5P97GT7PzQke/nsLksNYtqJ54fkp9Xwvsg2T5P9/zQkbGarHQv1P5JuWHtDPtscgvSB0FYNsl9X0nJj53E7f84tL7OsVfRP3ESdXmdhydOAAAAAAAAAABAWs2aNUunn366evXqpeLiYn35y1/Wli1bQj/z7LPPKgiCA15vvun/g/f24IkTAAAAAAAAAABySqOiX5OkfeWtXr1aN998s04//XQ1Njbqjjvu0NixY7V582b17Nkz9LNbtmxRUVFRy78PO+ywpDJOhBsnAAAAAAAAAAAgrZ588slW/160aJGKi4tVXV2tUaPC13koLi5W7969U5YbP9UFAAAAAAAAAEBOadQ/1zmJ6vXJEyd1dXWtXvX19aaM4vG4JKlPnz7e2CFDhqh///4aM2aMnnnGvzZpe3HjBAAAAAAAAACAnNKYopd05JFHKhaLtbxmzZrlzcY5p6lTp+qss87S4MGDE8b1799fCxcu1LJly/TII49o0KBBGjNmjNasWZNMJyQUOOdcpCWiXerq6hSLxRSPx1v9JluqBEGlP2h8Rfj2MkNFwwwx8w0xt/hDrh/1M0NBfg83XOGNiZ9Q4o25fms0+Vj4co4v8OerDf6QeUtv8Oeir/qrCs70xsTq496YeEEsmnKu8vePpe1TBt7jjfEaaogxHHvXT/WPv5O02RszZa6hTYbjvGyU/46/ZVxoTqG/rqn+ujY3nOiNeTP/hNDt/efu8pahBf4Q1azyx8wpj6Su2Ju13hjL8WCZky0s48Kyr+LPe3K2fM9UG2ImG2Is33uj9xiCDEr9x4MpZwvLWF5siJlkiPHNg1X+/itzz3tjNkw415BMRCzHzKRUJ/EplnlH67wRznnOFT3Sff6L7JcrYybsWq2jx10ydUojQ7YlnivCcvVfjyau07nE50Xp7jvTdXUSku27VI2PZAVB4u+bsP0YXmZnHB+Jzz2cS3w+Ftb+ZI+dzpBsO1Il2f4J24/Jmx2yLWzuDNsmhfdrqubdBML+32CV55yyNOQ4Dz0fDWv/jJD6Qq6Pkq7PU2fo/mi7/Zl0PrM/F+lFSZ+LuPQPJJ2ht99+u1U7CwoKVFBQEPrJm2++WU888YTWrl2rI444ol21XnzxxQqCQMuXL08m6TaxxgkAAAAAAAAAADll/89rRV2mVFRU1K4bRLfccouWL1+uNWvWtPumiSSdeeaZWrJkSbs/F4YbJwAAAAAAAAAAIK2cc7rlllv06KOP6tlnn1VpaWlS5WzatEn9+/ePNDdunAAAAAAAAAAAkFP+uSZJtGXa3XzzzXrwwQf1u9/9Tr169VJt7Sc/NR6LxVRY+MnPsN1+++165513dP/990uS5s2bp2OOOUYnn3yyGhoatGTJEi1btkzLli2LtCXcOAEAAAAAAAAAAGn1i1/8QpJ0zjnntHp/0aJFmjRpkiRpx44d2rZtW8u2hoYGTZ8+Xe+8844KCwt18skn64knntAFF1wQaW7cOAEAAAAAAAAAIKc0Kvo1Ttr3xIlzzhuzePHiVv+eMWOGZsyY0a56khE4S3ZImbq6OsViMcXj8XYtmJNKQbDKEzHSW0asPu6NiS8o8SczzB9iMskfUrb1GW/MhgnnemOuX/ozb8zDDVd4Y+JX+funbGl4zhvm+vONjGFfzRt1gzdmypp7vDGxM2u9MZX5Fd6YioZKb4xpnEZgx9Te3pj+A3f5y9lqKGeNvxyTjYaYDYaYMkOMYXxZxkX8ecNxNSr8uDpF/+MtY2FwsjdG48v9uXiOcUna3HCiNyZ+gr/d12+NZu66Iv9hb8zCNbd5Y0wsY9AjNtk/bkxtmuBv09NLR3hj7tCd3hjTPo/gO0Syfe+Zyllj+D6a7w/xsXwHLwyu9xc0p9Afs8CQ0GR/yPVTDTlbjpnR/u80yzmchXP++StMJp7/IrNl25gJv55aF7It8THqO+6CwDIHRFtncrl0ZB4K67vkOJf4miH5Pu2MOtO9H8Oloo3Jl5lZYy5MeBt9/58mrNzEYyDp+ao05Hq7JvH+6Iw2hgkdO6FtTC7Xjs3l0ZzHmZV27HwvoZo9IRvDxlyS+YSdj/v+f0V14k1ua+Jtiffjx5J+lBHnM/vPraQ/SOoZcekfShqTEe3sKJ44AQAAAAAAAAAgp3T+GieZjBsnAAAAAAAAAADklL2K/qe6oi6v8xzU2QkAAAAAAAAAAABkCp44AQAAAAAAAAAgp/BTXWF44gQAAAAAAAAAAKAZT5zgAM6Vh24Pgj3eMuIFrxlquscQM9IQYzAnvE1mVf62L5x7m7+cYRHkImlD0BQeMMdSiD8k9kCtNya+oMQbM8Wwz68f9TNvzKs61V/XBMP4usUfYtpX8/0hvj7sP2GXv5CaVd6Q/sEOb0yZe8Ybc4Ue8sZMmWTo48X+EG30h8TONIzBgpihMn8fbhgfPl88svQr3jIWjt/lT8Uw/jasOdcbY+mbeVtv8MZs1knemJPy3/DGWI5PyzFTttQ/TjefeWLo9sr8Cn8ZhnZ/VQ97Y15d6m/3Q7rCG2M59m6bsdAbE8h5Yyws8/+GCf5xatmfp4z6n9DtJ2mzt4zblvj7ptL5x8XDhn01ZYNhDjR8h1japUn+EJX622VS4z/XCYLK0O3O0MdA17Yu4ZaucnyEzQNhbfTNH8kKrzPx+V94PmHXoon3sS+f1Eica/j1e1g7ZnjqTPzZsD5Ptm86Y18FQfhnkxO2r8KuVcJyCf//Jsn3XYia5I7l5Mej5B+TbRuhkPPQOSHjcUFIoaUh14yG6/bEwtoY0j9h+YQJ24+TE5cZmxx+jRD+/wQTtyNWn/i6NR6yP8qmJt7HodfUYftYUuzNxO3s3RD2yUT7sU7Sj8IrTbtGRb8mCU+cAAAAAAAAAAAAdDk8cQIAAAAAAAAAQE5hjZMwPHECAAAAAAAAAADQjCdOAAAAAAAAAADIKXsV/RonUZfXebhxAgAAAAAAAABATuHGSZjAOec6O4lcVldXp1gspng8rqKios5OB0ipIKg0RI00xKxLWznOVXhjgoH+mtxWTxlr/GVokiGmxtDHpf42xd6s9cbEF5QYEjJY4A8p2/qMN2bD3HP9BW0w5HOLZ/v8CMqQVDYqfW0qWxpRXcP8Ie6RwBsTXOo/9Zg36gZvzGadFLp94YTbvGXEHvCPdYs380/wxvRfs8sbY2n3bUsWemN6X77DG7Prj/29MSMGP+2NuUIPeWN8+0qSTtLm0O2WdusL/pAbBs/zxtwzZYq/IMPxUDnRH9PbXe8PMpgy9x5vzI6pvb0xFfJ/jywMTg7d7lx56HbOf9FejBl0hrBrF981QhCsCvls+ByZDNt1VltmhGybnWSZ4cL6LrwdYbmGXdf5rvks141RslzLtiUkz1LPmKrZk2SdYULaEZZPaC6+vgnZPj7kmKxKclyNLwwpM6Qdc0I+Ny3x3CBJ17vXE24LvbYJyyesHWHXrZNCtk0O2SaFX+OHfDbsXPWEhjc9lbaf5RoukUv1aMJtG4IzE2ypk1SSEecz+8+tpF9JOjji0j+S9M2MaGdH8cQJAAAAAAAAAAA5hcXhw7A4PAAAAAAAAAAAQDOeOAEAAAAAAAAAIKc0Kvo1SXjiBAAAAAAAAAAAoMvhiRMAAAAAAAAAAHIKa5yECZxzrrOTyGV1dXWKxWKKx+MqKirq7HQAoEsLglWGqHWhW52rMNRT6Y2xlePP17lyQzl7vDE24X0jSRrvz0dVhv2w2lDOaE85pf4yYm/WemNOyn/DG7NhzbneGM33h5QtfcYbs7nhRG/MFfkPe2Ne1anemA1z/e2KTfb3ocWb+SeEbi95Le4v5JVIUtGIf3vaGzMu+JI3ZpQr88asCTZ4Y2aujuZ0fd6oG7wxUybc4y+oyjenzPZs/1jSjzj/hRnXTAAyTfj5/siEWyzn7m3X14Hz+dLChJvc1pA6J4SUGXo+H3bNMCPxptWJ85QkjQ7p8zkh11YLwotNZN7WxOdNU9YYzpfaEDsz/Lw57Loj9Lw8pI3Xb/1Zwm2VStxvYefevY/fkbhCSTv69E+4rfD5xJ+rHRxLuK1Ciff/gGBKaD6JzOgZvr3w2sTbKhN3q2ZqZYItH0r6ckacz+w/t5LukuQ59tptj6RbM6KdHcUTJwAAAAAAAAAA5JS9iv72QNRrpnQebpwAAAAAAAAAAJBT+KmuMCwODwAAAAAAAAAA0IwnTgAAAAAAAAAAyCmNiv6ntXjiBAAAAAAAAAAAoMsJnHOus5PIZXV1dYrFYorH4yoqKursdAAAANolCCoNUTO8Ec4VRlCPwfgKf0y1oZzJHc4kUjum9vbGVMjfhwOCKf5yRodv37MxfHudk0o+Eue/MOOaCQDQFfjPZ8POmdeFbBuZ3OfmlCfeNm1PSJnhytzzCbdtmHtuwm2xybUJt8WfL0m4zf1nkDiZLyTeVPmzxNtS4WNJP1JmnAPvP7eSKiX1iLj0jyVVZEQ7O4onTgAAAAAAAAAAAJpx4yQCd999t0pLS9WjRw8NHTpUzz33XGenBAAAAAAZhesmAACATLI3Ra+ugRsnHfTwww9rypQpuuOOO7Rp0yadffbZOv/887Vt27bOTg0AAAAAMgLXTQAAAMgmeZ2dQLabO3eurrnmGl177bWSpHnz5umpp57SL37xC82aNeuA+Pr6etXX17f8Ox6PS/rkt+UAAACyz8eGGP95Tl2d7y+TLPUY7DWcc+0zlBNROlHZXedftrDBkLRpbzaGb9/jSWV383aWWswt7blu4poJANA1+c60wr7nPoz+cx+HfS75NU4a65Kr09XtTvy5Dw9OuCn03LQ+8aZ0n87vTyWzzoE/lOQ5uW+3kE7PMiwO3wENDQ06+OCDtXTpUn3lK19pef+2227TK6+8otWrVx/wmZkzZ6qyMqLFTQEAAIAs9ac//UkDBw7s7DSQBu29buKaCQAAdFWZcA788ccfq7S0VLW1tSkpv6SkRDU1NerRI+qF59OLJ0464L333lNTU5P69evX6v1+/folHHi33367pk6d2vLvXbt26eijj9a2bdsUi8VSmi+6hrq6Oh155JF6++23VVRU1NnpIAswZtBejBm0B+MF7RWPx3XUUUepT58+nZ0K0qS9101cM3U9fFdkP/ZhdmP/ZT/2YfbLpHPgHj16qKamRg0NDSkpPz8/P+tvmkjcOIlEEASt/u2cO+C9/QoKClRQUHDA+7FYjIkP7VJUVMSYQbswZtBejBm0B+MF7XXQQSy3mGus101cM3VdfFdkP/ZhdmP/ZT/2YfbLlHPgHj16dImbG6mUGXsqSx166KHq1q3bAX8l9e677x7w11QAAAAAkIu4bgIAAEC24cZJB+Tn52vo0KFauXJlq/dXrlypESNGdFJWAAAAAJA5uG4CAABAtuGnujpo6tSpmjhxooYNG6aysjItXLhQ27Zt04033mj6fEFBgSoqKtp8FB1oC2MG7cWYQXsxZtAejBe0F2MmN3Xkuokxk/3Yh9mPfZjd2H/Zj32Y/diH2SdwzrnOTiLb3X333Zo9e7Z27NihwYMH66c//alGjRrV2WkBAAAAQMbgugkAAADZghsnAAAAAAAAAAAAzVjjBAAAAAAAAAAAoBk3TgAAAAAAAAAAAJpx4wQAAAAAAAAAAKAZN04AAAAAAAAAAACaceMkDe6++26VlpaqR48eGjp0qJ577rnQ+NWrV2vo0KHq0aOHBg4cqF/+8pdpyhSZoj1j5pFHHtF5552nww47TEVFRSorK9NTTz2VxmzR2do7x+y3bt065eXl6Qtf+EJqE0TGae+Yqa+v1x133KGjjz5aBQUF+vznP69f/epXacoWmaC9Y+aBBx7QaaedpoMPPlj9+/fXN77xDf3jH/9IU7bobGvWrNHFF1+sAQMGKAgC/fa3v/V+hvNfcM2U/biGyX5cV2Q3zvGzH+fc2Yvz366JGycp9vDDD2vKlCm64447tGnTJp199tk6//zztW3btjbja2pqdMEFF+jss8/Wpk2b9L3vfU+33nqrli1blubM0VnaO2bWrFmj8847T7///e9VXV2tc889VxdffLE2bdqU5szRGdo7XvaLx+P6+te/rjFjxqQpU2SKZMbM5Zdfrj/84Q+67777tGXLFv3mN7/RCSeckMas0ZnaO2bWrl2rr3/967rmmmv0+uuva+nSpXrppZd07bXXpjlzdJYPP/xQp512mhYsWGCK5/wXXDNlP65hsh/XFdmNc/zsxzl3duP8t4tySKkzzjjD3Xjjja3eO+GEE9x3v/vdNuNnzJjhTjjhhFbv3XDDDe7MM89MWY7ILO0dM2056aSTXGVlZdSpIQMlO16uuOIK9x//8R+uoqLCnXbaaSnMEJmmvWPm//7f/+tisZj7xz/+kY70kIHaO2Z+/OMfu4EDB7Z676677nJHHHFEynJE5pLkHn300dAYzn/BNVP24xom+3Fdkd04x89+nHN3HZz/dh08cZJCDQ0Nqq6u1tixY1u9P3bsWK1fv77Nz2zYsOGA+HHjxmnjxo3au3dvynJFZkhmzHzWvn37tHv3bvXp0ycVKSKDJDteFi1apD/96U+qqKhIdYrIMMmMmeXLl2vYsGGaPXu2Dj/8cB1//PGaPn269uzZk46U0cmSGTMjRozQ9u3b9fvf/17OOf3tb39TVVWVLrzwwnSkjCzE+W9u45op+3ENk/24rshunONnP865cw/nMtkhr7MT6Mree+89NTU1qV+/fq3e79evn2pra9v8TG1tbZvxjY2Neu+999S/f/+U5YvOl8yY+aw5c+boww8/1OWXX56KFJFBkhkvb731lr773e/queeeU14eXwG5Jpkxs3XrVq1du1Y9evTQo48+qvfee0833XST3n//fX4DOQckM2ZGjBihBx54QFdccYU+/vhjNTY26pJLLtH8+fPTkTKyEOe/uY1rpuzHNUz247oiu3GOn/045849nMtkB544SYMgCFr92zl3wHu++LbeR9fV3jGz329+8xvNnDlTDz/8sIqLi1OVHjKMdbw0NTXpyiuvVGVlpY4//vh0pYcM1J45Zt++fQqCQA888IDOOOMMXXDBBZo7d64WL17MX6TlkPaMmc2bN+vWW2/Vf/7nf6q6ulpPPvmkampqdOONN6YjVWQpzn/BNVP24xom+3Fdkd04x89+nHPnFs5lMh9/FpBChx56qLp163bA3eF33333gLuK+5WUlLQZn5eXp759+6YsV2SGZMbMfg8//LCuueYaLV26VOXl5alMExmiveNl9+7d2rhxozZt2qTJkydL+uSE2TmnvLw8rVixQl/60pfSkjs6RzJzTP/+/XX44YcrFou1vHfiiSfKOaft27fruOOOS2nO6FzJjJlZs2Zp5MiR+va3vy1JOvXUU9WzZ0+dffbZ+sEPfsBfT+EAnP/mNq6Zsh/XMNmP64rsxjl+9uOcO/dwLpMdeOIkhfLz8zV06FCtXLmy1fsrV67UiBEj2vxMWVnZAfErVqzQsGHD1L1795TlisyQzJiRPvkrrUmTJunBBx/k9yxzSHvHS1FRkV599VW98sorLa8bb7xRgwYN0iuvvKLhw4enK3V0kmTmmJEjR+qvf/2rPvjgg5b3/vjHP+qggw7SEUcckdJ80fmSGTMfffSRDjqo9Slmt27dJP3zr6iAT+P8N7dxzZT9uIbJflxXZDfO8bMf59y5h3OZLJHOlehz0UMPPeS6d+/u7rvvPrd582Y3ZcoU17NnT/fnP//ZOefcd7/7XTdx4sSW+K1bt7qDDz7Yfetb33KbN2929913n+vevburqqrqrCYgzdo7Zh588EGXl5fnfv7zn7sdO3a0vHbt2tVZTUAatXe8fFZFRYU77bTT0pQtMkF7x8zu3bvdEUcc4caPH+9ef/11t3r1anfccce5a6+9trOagDRr75hZtGiRy8vLc3fffbf705/+5NauXeuGDRvmzjjjjM5qAtJs9+7dbtOmTW7Tpk1Okps7d67btGmT+8tf/uKc4/wXB+KaKftxDZP9uK7IbpzjZz/OubMb579dEzdO0uDnP/+5O/roo11+fr774he/6FavXt2y7eqrr3ajR49uFf/ss8+6IUOGuPz8fHfMMce4X/ziF2nOGJ2tPWNm9OjRTtIBr6uvvjr9iaNTtHeO+TQucHJTe8fMG2+84crLy11hYaE74ogj3NSpU91HH32U5qzRmdo7Zu666y530kknucLCQte/f3931VVXue3bt6c5a3SWZ555JvTchPNftIVrpuzHNUz247oiu3GOn/04585enP92TYFzPL8FAAAAAAAAAAAgscYJAAAAAAAAAABAC26cAAAAAAAAAAAANOPGCQAAAAAAAAAAQDNunAAAAAAAAAAAADTjxgkAAAAAAAAAAEAzbpwAAAAAAAAAAAA048YJAAAAAAAAAABAM26cAAAAAAAAAAAANOPGCQAAAAAAAAAAQDNunAAAuqxzzjlHU6ZM6ew0AAAAAHQyrg0AAO3BjRMAAFJk1KhRCoLggNdVV11l+vykSZP03e9+N7LyAAAAAHQOrg0AILvkdXYCAAB8WkNDg/Lz8zs7jQ5zzumVV17RT37ykwMuXj73uc95P79v3z498cQTWr58eSTlAQAAANmGa4NPcG0AAOnHEycAgIScc5o9e7YGDhyowsJCnXbaaaqqqmrZfs455+jWW2/VjBkz1KdPH5WUlGjmzJntLmPy5MmaOnWqDj30UJ133nmSpN27d+uqq65Sz5491b9/f/30pz9t9Xj9/fffr759+6q+vr5VfZdddpm+/vWvt9me+vp63XrrrSouLlaPHj101lln6aWXXmrZXlVVpVNOOUWFhYXq27evysvL9eGHH5q3f9pbb72l3bt3a9SoUSopKWn1slzMrFu3TgcddJCGDx8eSXkAAABAR3BtwLUBAOQSbpwAABL6j//4Dy1atEi/+MUv9Prrr+tb3/qW/u3f/k2rV69uifn1r3+tnj176oUXXtDs2bP1/e9/XytXrmx3GXl5eVq3bp3uueceSdLUqVO1bt06LV++XCtXrtRzzz2nl19+ueUzEyZMUFNTU8tfXUnSe++9p8cff1zf+MY32mzPjBkztGzZMv3617/Wyy+/rGOPPVbjxo3T+++/rx07duhrX/uavvnNb+qNN97Qs88+q0svvVTOOUnybv+s6upq5eXl6dRTT02i56Xly5fr4osv1kEHHRRJeQAAAEBHcG3AtQEA5BQHAEAbPvjgA9ejRw+3fv36Vu9fc8017mtf+5pzzrnRo0e7s846q9X2008/3X3nO99pVxlf+MIXWm2vq6tz3bt3d0uXLm15b9euXe7ggw92t912W8t7//7v/+7OP//8ln/PmzfPDRw40O3bt6+l7P3xH3zwgevevbt74IEHWuIbGhrcgAED3OzZs111dbWT5P785z+32R++7Z81ffp0FwSB69mzZ6vXtddea/r88ccf75YvX96u8h577DF3/PHHu2OPPdbde++9pnoAAAAAH64NWuPaAAC6PtY4AQC0afPmzfr4449bHo/fr6GhQUOGDGn592f/yql///56991321XGsGHDWm3funWr9u7dqzPOOKPlvVgspkGDBrWKu+6663T66afrnXfe0eGHH65FixZp0qRJCoLggPb86U9/0t69ezVy5MiW97p3764zzjhDb7zxhqZOnaoxY8bolFNO0bhx4zR27FiNHz9ehxxyiCTptNNOC93+WdXV1ZowYYLuvPPOVu8niv+0N954Q9u3b1d5ebm5vMbGRk2dOlXPPPOMioqK9MUvflGXXnqp+vTp460PAAAACMO1AdcGAJBruHECAGjTvn37JElPPPGEDj/88FbbCgoKWv67e/furbYFQdDyWWsZPXv2bLXNNT/i/tmLHPeZR9+HDBmi0047Tffff7/GjRunV199VY899lib7QkrMwgCdevWTStXrtT69eu1YsUKzZ8/X3fccYdeeOEFlZaWerd/1qZNm/T9739fxx57bJv5vPbaa/rXf/1XrVu3TiUlJXrvvfdUXl6uF198UcuXL9d5552nwsJCc3kvvviiTj755JZ+vuCCC/TUU0/pa1/7WpvxAAAAgBXXBlwbAECuYY0TAECbTjrpJBUUFGjbtm069thjW72OPPLIlJbx+c9/Xt27d9eLL77Y8l5dXZ3eeuutA2KvvfZaLVq0SL/61a9UXl6esNxjjz1W+fn5Wrt2bct7e/fu1caNG3XiiSdK+uTCaeTIkaqsrNSmTZuUn5+vRx99tCXet32/rVu3ateuXa3+cu6zBg8erK9+9at6+umnJUmVlZX6zne+o/z8fP3ud7/TJZdc0q7y/vrXv7a6AD3iiCP0zjvvJIwHAAAArLg24NoAAHINT5wAANrUq1cvTZ8+Xd/61re0b98+nXXWWaqrq9P69ev1uc99TldffXXKyujVq5euvvpqffvb31afPn1UXFysiooKHXTQQQf8VdhVV12l6dOn695779X999+fMJeePXvq3//931vKPOqoozR79mx99NFHuuaaa/TCCy/oD3/4g8aOHavi4mK98MIL+vvf/95y4eTb/mnV1dWSpH79+qm2trbVtuLi4pZFHU8++WT98Y9/1P/7f/9P1dXVuuuuu/Tuu+/qpZde0m9/+9t2lffZv7iTDvwLOgAAACAZXBtwbQAAuYYbJwCAhP7rv/5LxcXFmjVrlrZu3arevXvri1/8or73ve+lvIy5c+fqxhtv1EUXXaSioiLNmDFDb7/9tnr06NEqrqioSJdddpmeeOIJffnLXw4t80c/+pH27duniRMnavfu3Ro2bJieeuopHXLIISoqKtKaNWs0b9481dXV6eijj9acOXN0/vnnt9QTtv3TXn75ZUnS8ccf3+r97t27a/fu3S0/RXDcccfp8ccf1/e+9z3deeedCoJAjz32mIYPH67i4uJ2lXf44Ye3+iuy7du3a/jw4aH9AQAAAFhxbcC1AQDkksC1dRsaAIAM8+GHH+rwww/XnDlzdM0117Tadt555+nEE0/UXXfd1UnZJWfXrl067rjjNHz4cD3++OOSpEsuuURnnXWWZsyY0a6yGhsbdeKJJ+rZZ59tWQDy+eefV9++fVOROgAAANBpuDYIx7UBAHQcT5wAADLSpk2b9Oabb+qMM85QPB7X97//fUnSv/7rv7bEvP/++1qxYoWefvppLViwoLNSTVrv3r0lffLXbvudddZZSS3amJeXpzlz5ujcc8/Vvn37NGPGDC6MAAAA0CVwbdA+XBsAQMfxxAkAICNt2rRJ1157rbZs2aL8/HwNHTpUc+fO1SmnnNISc8wxx2jnzp36X//rf2n69OmdmG1y9u7dq8GDB2vLli2dnQoAAACQsbg2AACkG0+cAAAy0pAhQ1oWPkzkz3/+c3qSSZE333xTgwYN6uw0AAAAgIzGtQEAIN144gQAAAAAAAAAAKDZQZ2dAAAAAAAAAAAAQKbgxgkAAAAAAAAAAEAzbpwAAAAAAAAAAAA048YJAAAAAAAAAABAM26cAAAAAAAAAAAANOPGCQAAAAAAAAAAQDNunAAAAAAAAAAAADTjxgkAAAAAAAAAAEAzbpwAAAAAAAAAAAA048YJAAAAAAAAAABAM26cAAAAAAAAAAAANPv/SoXUIn0BteoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "#plot residual energy against energyloss and try to find a good split (eg energyloss before and after the magnet)\n", "fig, ((ax0, ax1)) = plt.subplots(nrows=1, ncols=2, figsize=(20,6))\n", "\n", - "a0=ax0.hist2d(energyloss_found, residual_found, bins=[100,500], cmap=plt.cm.jet, cmin=1, vmax=40)\n", - "ax0.set_ylim(0,0.5e5)\n", + "a0=ax0.hist2d(energyloss_found, residual_found, bins=(np.linspace(0,1,80), np.linspace(0,1e5,80)), cmap=plt.cm.jet, cmin=1, vmax=20)\n", + "ax0.set_ylim(0,1e5)\n", "ax0.set_xlim(0,1)\n", "ax0.set_xlabel(r\"energyloss $E_\\gamma/E_0$\")\n", "ax0.set_ylabel(r\"$E_0-E_\\gamma$\")\n", "ax0.set_title(\"found energyloss wrt residual electron energy\")\n", "\n", - "a1=ax1.hist2d(energyloss_lost, residual_lost, bins=[100,500], cmap=plt.cm.jet, cmin=1, vmax=40) \n", - "ax1.set_ylim(0,0.5e5)\n", + "a1=ax1.hist2d(energyloss_lost, residual_lost, bins=(np.linspace(0,1,80), np.linspace(0,1e5,80)), cmap=plt.cm.jet, cmin=1, vmax=20) \n", + "ax1.set_ylim(0,1e5)\n", "ax1.set_xlim(0,1)\n", "ax1.set_xlabel(r\"energyloss $E_\\gamma/E_0$\")\n", "ax1.set_ylabel(r\"$E_0-E_\\gamma$\")\n", "ax1.set_title(\"lost energyloss wrt residual electron energy\")\n", "\n", "fig.colorbar(a1[3],ax=ax1)\n", - "fig.suptitle(r\"$e^\\pm$ from $B\\rightarrow K^\\ast ee$, $p>5$GeV\")\n", + "fig.suptitle(r\"$e^\\pm$ from $B\\rightarrow K^\\ast ee$, $p>5$GeV, only photons w/ brem_vtx_z$<9500$mm\")\n", "\n", "\"\"\"\n", "\"\"\"\n", @@ -496,7 +619,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 68, "metadata": {}, "outputs": [], "source": [ @@ -523,6 +646,15 @@ " return (xv-tx*zv-a+b*z_ref)/(b-tx)" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "###" + ] + }, { "cell_type": "code", "execution_count": null,