2024-01-17 15:59:39 +01:00
|
|
|
{
|
|
|
|
"cells": [
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2024-01-19 11:22:15 +01:00
|
|
|
"execution_count": 30,
|
2024-01-17 15:59:39 +01:00
|
|
|
"metadata": {},
|
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
|
|
|
"import uproot\t\n",
|
|
|
|
"import numpy as np\n",
|
|
|
|
"import matplotlib.pyplot as plt\n",
|
|
|
|
"from mpl_toolkits import mplot3d\n",
|
|
|
|
"import awkward as ak\n",
|
|
|
|
"from scipy.optimize import curve_fit\n",
|
|
|
|
"%matplotlib inline"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2024-01-19 11:22:15 +01:00
|
|
|
"execution_count": 31,
|
2024-01-17 15:59:39 +01:00
|
|
|
"metadata": {},
|
2024-01-19 11:22:15 +01:00
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"name": "stdout",
|
|
|
|
"output_type": "stream",
|
|
|
|
"text": [
|
|
|
|
"40402 10099\n",
|
|
|
|
"50501\n"
|
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
2024-01-17 15:59:39 +01:00
|
|
|
"source": [
|
|
|
|
"file = uproot.open(\n",
|
2024-01-20 15:37:00 +01:00
|
|
|
" \"tracking_losses_ntuple_B_default_radlength_endVelo.root:PrDebugTrackingLosses.PrDebugTrackingTool/Tuple;1\"\n",
|
2024-01-17 15:59:39 +01:00
|
|
|
")\n",
|
|
|
|
"\n",
|
|
|
|
"# selektiere nur elektronen von B->K*ee\n",
|
|
|
|
"allcolumns = file.arrays()\n",
|
|
|
|
"found = allcolumns[\n",
|
|
|
|
" (allcolumns.isElectron) & (~allcolumns.lost) & (allcolumns.fromB)\n",
|
|
|
|
"] # B: 9056\n",
|
|
|
|
"lost = allcolumns[\n",
|
|
|
|
" (allcolumns.isElectron) & (allcolumns.lost) & (allcolumns.fromB)\n",
|
|
|
|
"] # B: 1466\n",
|
|
|
|
"\n",
|
|
|
|
"electrons = allcolumns[(allcolumns.isElectron) & (allcolumns.fromB)]\n",
|
|
|
|
"\n",
|
|
|
|
"print(ak.num(found, axis=0), ak.num(lost, axis=0))\n",
|
|
|
|
"print(ak.num(electrons,axis=0))\n",
|
|
|
|
"# ak.count(found, axis=None)"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2024-01-19 11:22:15 +01:00
|
|
|
"execution_count": 32,
|
2024-01-17 15:59:39 +01:00
|
|
|
"metadata": {},
|
2024-01-19 11:22:15 +01:00
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"name": "stdout",
|
|
|
|
"output_type": "stream",
|
|
|
|
"text": [
|
|
|
|
"stretch factor: 0.24996287312509283\n"
|
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
2024-01-17 15:59:39 +01:00
|
|
|
"source": [
|
2024-01-19 11:22:15 +01:00
|
|
|
"rad_length_found = ak.to_numpy(found[\"rad_length_frac\"])\n",
|
|
|
|
"eta_found = ak.to_numpy(found[\"eta\"])\n",
|
|
|
|
"rad_length_lost = ak.to_numpy(lost[\"rad_length_frac\"])\n",
|
|
|
|
"eta_lost = ak.to_numpy(lost[\"eta\"])\n",
|
2024-01-17 15:59:39 +01:00
|
|
|
"\n",
|
2024-01-19 11:22:15 +01:00
|
|
|
"stretch_factor = ak.num(eta_lost,axis=0)/ak.num(eta_found,axis=0)\n",
|
|
|
|
"print(\"stretch factor: \", stretch_factor)"
|
2024-01-17 15:59:39 +01:00
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2024-01-19 11:22:15 +01:00
|
|
|
"execution_count": 33,
|
2024-01-17 15:59:39 +01:00
|
|
|
"metadata": {},
|
2024-01-19 11:22:15 +01:00
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"data": {
|
|
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAHLCAYAAAAnR/mlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAw8UlEQVR4nO3dQYgc+4Hn+Z/anleWu9CLKnkPXhiwIqEPzUCLyPLAmsF6oEwM68sMVSnBHOxeHpWJqZuWzkB9UenSSRS+FjhSNP3Wh4VXGWJmYfvQnaHmyQwNM1JGy7Asy+xWyOCDG9avKixqLNdrt3MOcoQqK7OqsiIzMjMqvh8o3lNkRvz/GVHK+On//8f/f63f7/cFAABQEH8w7woAAADMEuEHAAAUCuEHAAAUCuEHAAAUCuEHAAAUCuEHAAAUCuEHAAAUCuEHAAAUCuEHWCBBEKjdbs+7GoUXRZHa7bbCMJx3VQBkgPADLIAwDFWr1VQul+W67sD2lZWVqQaiLI45riAIZNu2yuWyyuXyzMsfR7vd1q1bt9RoNBRF0UTHij9vrVZTqVTSzs7OdCqZ0jyvPbBIvjzvCgCQTNNUp9PRtWvXBrZHUaQoirS/v5/quGEYanV1VYZhTO2Yk7AsS5K0s7OT/P+8nT5H9Xpd+/v7EweVIAh09+5dHR4eSpJs257pOV+0aw8sEsIPsMAsy9Iky+/VajV1Op2BG+Ckx5zUooSe2KhzdPPmzYmP22q1tLq6mvzZcZyJj3kZi3jtgUVBtxdwRdVqNQVBMO9qLLQsz9E8zz3XHjgf4QdIwfM8VatV+b6vdrutlZUVNRqN5PWdnR01Go1kfMuoMRZRFKnRaCQ/o7pZPM9TrVZTrVYbeu28MjzPS25+jUZj4GZ43jHjOtm2rWq1mnzGk6+3222Vy2V5niff91Uul3Xt2rWRx7usIAhUq9VUrVZVKpVk2/ZEZcfntlQqDQWC885R7ODgIClz3M/YbrdVq9UUhmEylqtWqyXncdq/O/F1Onl983jtgZnqA7iUTqfTN02zL6lfr9f7zWazb1lW37Ksfr/f7zebzf7Jv1rdbrcvqd/tdpNt+/v7fcMwBrY5jtOXlBxnf38/2VapVAbqME4Z8Xv29/cHyj3rmL1er28YRr/X6yXbXNftS+o7jpPsv7GxkezfbDb7vV6vX6/XB953kZOf82T5J+vU6XSSc5ymbMuy+s1mM9lXUl9S3zTN5JijzlG/3x84R47jpPqMpmn2TdMc2Dat3x3TNAfqbBhG3zCM5M+LfO2BRUD4AVKIbyLxzfWkSqUycCM6PDwceu/GxsbQDajfHx0KRt2sxinjrBv7Wce0LGtknSzLGjhOHEpO3+xGHfMsoz6nZVkDN99+/91NXVL/8PDwUmXH7zt5vPgmffJ8XBR+XNdN/RlHhZ+Tx077u2NZ1tDnj48Zn6dFvvbAIqDbC0ghHkT6zW9+c+i1TqejXq+X/Pnly5eSlDw2HYZh0vWR1kVlXFYYhgqCYORg5LhL5uQj+JIGBtLGDg4OJiq/1Wol3TInu1Lizzdu2S9evBh6PT7eZcbCrK2tDZU76dw/k/7uBEGgSqUysF+z2VS/3x95Xi4y72sPzANPewETGHUTMAxDhmHI8zx9+umnQze5+OZpmuZE5Z5XxmWdFwjiAJDlhH9x+Z1OZyrHi8+H7/tDN/VFedosze9OfJ7ShJyzzPvaA/NAyw8wZWEYqlwuKwxDdTodNZvNodelyf6lfFEZaY1qOYpvtCcf2562+JxM6ya7sbGhSqWiVqsl3/cVRZEcx1Gz2ZwodGZt3N+dLMLIvK49MA+EH2DKqtWqVldXzwwk8c33ZPfGtMu4rLg15OTTPbH4plgqlaZS1ijxOfE8b+Tro+p1kU6no0qlkiwZ4jjOzOfauayLrmt8nc5qIUsTiuZ97YF5IPwAUxQ/3nx6Vl3pfUtP3JXQbrdH/mv7onE745RxmeNJ78KHZVnJsU96+fKlDMNQvV6/8DhpxWNYbNse6oZJuxRDPMlfs9lUs9k8t7vr9Dn6/PPPJU3WOndwcHCp/S/7u3M6rNi2PdRCk4drD8wD4QdIIb6pnL65xDcfz/PUbrfVbreTuWqCIEhaNuJ/2ZfLZfm+rzAMk/eFYZjM+TMq1IxTRhRFyb/WXddNBlmfdUxJyWzAJ+ecibuLnjx5ktyUsxjYahjGwDmp1Wra2dlRtVrV/v5+Eo7GLTsOB/Fx2u32wPw3sbPO0VmiKJr480/6uxO3XlWrVdVqtWQ+oFKplFyjPF17YC7m/bgZkDcn52oxTXPocWjXdfuGYfRN00weUa7X633DMAYeWXZdNzmOZVnJ/C3NZrO/v7/f7/V6ybwq+v3jxfGjzOOWYVlW3zCMZF6b847Z7797tDp+DL9er/fr9frA4+K9Xi95/Nk0zX632+0fHh4mj5FrxGPQJ52cF2ZU+Y7jnHluL1N2fC7j7Sd/TNMcKPP0Oep0Oskj9vHj96fLGfWY+lmfsV6vJ/P0TOt3p9PpJOfCsqyBeYDO+lzzvvbAIrnW77PQC4CrJQgCffrpp3r48KEODg4GWmw6nY5KpdLUxksByB8edQdwpcRPTB0eHiaPjp9kmmaqAdQArg7G/AC4UuJBu5ubmwNjfMIwVLvdluu6DOAFCo5uLwBXzs7Ojlqt1sCgYsuy5DjO0OzIAIqH8APgyorH+izyxIYAZo/wAwAACoUxPwAAoFAK8bTXL3/5S/3N3/yNvvGNb+j69evzrg4AABjD27dv9bOf/Uzf+c539LWvfW1qxy1E+Pnrv/5r/emf/um8qwEAAFL45JNP9P3vf39qxytE+Pn6178uSXry5Mm56/tMYn19XU+fPs3k2FepjKOjI925c0fPnz/X8vJyZuVk/Tm4FuO7CueKa1GcMrgWi1VGEATa3NxM7uPTkln4+cEPfqC1tTV9/PHHWRUxtq985SuSpD/6oz/KLPxcv349s2NfpTLevHkjSbp9+7Zu3LiRWTlZfw6uxfiuwrniWhSnDK7FYpVxdHQk6f19fFoyGfD8+vVrua7L9PEAAGDhZNLyc+vWLbmuy9waAABg4WTW7bW5uZnVoQEAAFLLLPx85zvfkeM4un37dlZFXNr3vvc9ffWrXx352tbWlra2tmZcIwAAim13d1e7u7sjX/v1r3+dSZmpw8/9+/fPfC2KIvm+r729vYUKPz/+8Y/17W9/e97VAAAAv3de48NPfvIT3blzZ+plpg4/nU5nrPf8xV/8RdoicmUWrUZXpYxZyPpzcC3GdxXOFdeieGVk7aqcp7xei9Rre927d0+O42h1dXXotf39fbXbbf3oRz+auILTECfH58+f0/IzZ2/evNGHH36oX/3qV5k+RoqLcS0WB9dicXAtFktW9+/Uj7o3Gg3dunVLH3744dCPZVkql8v68z//86lVFAAAYBpSh5+7d++e+7ppmnJdN+3hAQAAMpF6zM+rV6/OfC0MQ9m2nfbQAAAAmUkdfizL0rVr1858vd/va2dnJ+3hAQAAMpE6/BiGoXv37skwjKHXbt68KcuyLuwaAwAAmLXU4efJkydaX1+fZl0AAAAyl3rAM8EHAADkUWbLW/zgBz/Q2tqaPv7446yKGNsHH3ww8F9czvb2eNvGsbS0pEePHmlpaWmSKmEKuBaLg2uxOLgWiyWr+3fqSQ7P8/r1a5VKJa2srOjzzz+f9uEvLQgClctlfeMb39D169dHvoe1vc42zfADAMBJ563t9fbtW/3sZz9Tr9eTZVlTKzOTlp9bt27JdV2ZppnF4VN7+vTpVE8eAACYzHmND3HjxbRl1u117949ffjhh1kdHgAAIJXUA54v8uzZMz18+DCrwwMAAKQyUcvP3/3d36nb7SqKooHtBwcHCoJABwcHarVakxQBAAAwVRPN89NoNM59T71eT3t4AACATKTu9nJdV91uV4eHh/rbv/1bOY6j3/3ud/rd736ng4MD1et1/ehHP7rUMaMokm3bY60L5vu+VlZW0lYfAAAUVOrwU6lUdPfuXX344YeqVCp6+fJl8pphGCqXy5ca8+P7vjY3N7WzszPUjTbKRa1
|
|
|
|
"text/plain": [
|
|
|
|
"<Figure size 640x480 with 1 Axes>"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
"metadata": {},
|
|
|
|
"output_type": "display_data"
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": [
|
|
|
|
"\n",
|
|
|
|
"\n",
|
|
|
|
"plt.hist(rad_length_lost,bins=100,density=True,alpha=0.5,color=\"darkorange\",histtype=\"bar\",label=\"lost\",range=[0,1])\n",
|
|
|
|
"plt.hist(rad_length_found,bins=100,density=True,alpha=0.5,color=\"blue\",histtype=\"bar\",label=\"found\",range=[0,1])\n",
|
|
|
|
"plt.xlim(0,1)\n",
|
|
|
|
"#plt.yscale(\"log\")\n",
|
|
|
|
"plt.title(\"radiation length fraction\")\n",
|
|
|
|
"plt.xlabel(f\"$x/X_0$\")\n",
|
|
|
|
"plt.ylabel(\"a.u.\")\n",
|
|
|
|
"\n",
|
|
|
|
"plt.legend()\n",
|
|
|
|
"plt.show()"
|
|
|
|
]
|
2024-01-17 15:59:39 +01:00
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2024-01-19 11:22:15 +01:00
|
|
|
"execution_count": 35,
|
2024-01-17 15:59:39 +01:00
|
|
|
"metadata": {},
|
2024-01-19 11:22:15 +01:00
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"data": {
|
|
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABiMAAAL7CAYAAACfnvZxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC8zklEQVR4nOz9f5wjV33g/X5rxnhomBlr2knAMezjUWf3egwGP9IYB+Z5eTBIScAhu8m0ZshrScKTx5aepCF2xtCK774u7c69u406MPzsLNL4Zsmvu4yl2WTxBkgkMPbuMMG0FMcGj3eT1jgbjJ2s6dH8CM0Y95z7RyN5uuuc06pqVXVJ+rxfr37Zc77nV/1Q6VQdVZWjlFICAAAAAAAAAAAQkC2b3QEAAAAAAAAAADDYmIwAAAAAAAAAAACBYjICAAAAAAAAAAAEiskIAAAAAAAAAAAQKCYjAAAAAAAAAABAoJiMAAAAAAAAAAAAgWIyAgAAAAAAAAAABIrJCAAAAAAAAAAAECgmIwAAAAAAAAAAQKCYjAAAAEDPNRoNmZ2dlWQyKel0erO70zeazaaUSqWBXGe1Wk1yuZzs2rVLKpXKZncHfYpjCwAAQP9iMgIAAAA91Wg05NixY5LP56XRaGjzVCoV2bVrl8zOzobSp7Db86rRaEg6nZaxsTHJ5XJSq9U2u0s9ValUpFgsSqlUklarFUgbs7OzkslkZNeuXbJr1y7J5XKBtdVrUd8/o6KbYwsAAACii8kIAAAA9FQikZBCoSDj4+PGPDMzM9JqtaRYLPas3VarZbz4HER7vZRIJKRarUa2f17otsP4+LiUy+XA2ksmk/Ld735XyuWynD59WkZHR6VUKkmpVAqkTT/6ef+Mim6OLb1m224AAADwhskIAAAABGJ0dNQYKxQKkkqlpFAo9Ky9TCYjzWYztPaCEI/HN7sLG2bbDkFo/0o+l8uJiEgsFpOFhQWpVqsyOTkZWj/WMwj7Z1TYji29Fvb+DAAAMMiu2OwOAAAAYPikUilJpVI9qy+fz1sfbdTr9qC33nYIQvvuh7UXqKO0vdk/+9Nm7M8AAACDjDsjAAAA0NcqlQrP2o+AzdgO/fCLdfbP/sR2AwAA6D0mIwAAAIZErVaTTCbT+SV5LpcTx3EknU6vylepVCSdTksmk5F0Oi3JZHLdZ+/n83kZGxuTZDLZVf5msyn5fF6SyaQxTzf9qFQqcuedd3b+/fa3v73zAmOv7YmsvAS53dbY2Jik02njsrRaLSmVSqvylEolGRsbE8dxJJlMBvKS3VarJblcblU7uoumvehfe320t20ul5NKpeJ6hn6322GtfD4vu3bt8ry+SqWS7Nq1a9X23L17d6fNy9dHkPv95etn165dkk6nVy3DoO6f3a6rXvTB67FlPd18frzsz372GwAAgKGlAAAAMNAKhYKKx+NKRJSIqGKxqFKplIrFYp20hYUFpZRSqVRKiYg6c+ZMp/zk5KQSEVUoFFx1nzlzRiUSCZVKpVaVGR8f79SdSqU66fV6vdOGiKhYLKbts5d+nDlzplNfvV5fFeu2vXq9ruLxuBofH19Vb3s51i5ftVpViUSiU2+hUFDj4+MqkUiobDa7an1fXm491Wq1U84UTyQSqlqtKqWUWlhY6CxfIpHoaf8SicSqOsvlcqfM5X+Xry/Tdmi7fB9s7zeTk5O+19fCwoJrH24Lcr9fWFhQ8XhcZbPZTpnL+1Iul7taL/22f3pZVxvtg9djSze6/fy0219vf/a63wAAAAw7JiMAAACGwOUX1uLxeOdiXKFQUNlsVin10oXwtRdE2xdZdRdKE4mE8QJq+6Kv7oJhNps11um1H91cNLS11+7rehMjuuVoL2MsFuus03af2jEvFyVtkxHt5V+7jJcv/+TkZE/6176gevlFdaVeuhAcj8fVmTNnVl2E9TIZEY/HXXna/Vm7DDa2yYi1fer1fn/5xEBbe1+Jx+PaPgzK/ullXfntg99ji4nXz896283PugAAABh2PKYJAABgCMRiMYnFYiKy+mW5k5OTUiwWV+WNx+Or/t1+MXCr1Vr1eJ5SqSSNRkPuvfdebZu2F/Ku9zgaL/3ohq29fD4vrVZLstmsNl4oFERk5XE/lUpF28dsNrtqeWOxmOzdu1dERBYWFjz11dbPWCwmiURiVfrlaWsfD+O3f+3lXLsNcrmciLz0rob2PuVVoVBwLUe7f718D0QQ+30+nzfu94VCQWKxmOeXUffb/unls+mnDxs5tpj4+fx0o5fHKQAAgEF3xWZ3AAAAAOEyXfhMpVKysLDgurh2+cXhxcXFzsXd9kXQtRf32toX5bzGvPajG7b22hdwb775Zm08kUhIPB6XZrMpx44dk/Hx8a7abPe/VxfX2/0cGxtzxdpttC+AdrNubP1rpy0uLq5Kv/wisNdtsJH+9EKv9vv2BWvdfp9IJOTMmTOe+9Yv+2evP5umPmzk2GLS689PEMcpAACAQcdkBAAAADouv7BWqVTk2LFjrottbe2LbqZ4WP3YqG4uxrYv9gbxQuputNtNpVJSrVZDbdf0K/Sgtsdm6HZ/azab0mq1Ql32qO2fYXw2e31sCerzE+ZxCgAAYBDwmCYAAACsUiqVZGxsTBYXF6VcLmsflRLUr9e99mOj1v6K2aR9gdGWJ0jtdsNY7yLSeSTQ2kcZtR870+2v7/uJl/0+rP0gqvtnkJ/NIPbxID8/YRynAAAABgV3RgAAAKAjnU5LrVbTPn7kcpc/C73ZbPb818Dd9mOjLq/b9uz89qNWNutXz+3H0oQ1GVEsFqXZbEqtVpNMJiOFQkFGR0clk8lIIpGQcrkcSj/C0u3+tvZ9AEE/gieK+2fQn80gji1BfX7COk4BAAAMCu6MAAAAgIisvOC1VqtJNptd98La5c9y7/WjYbz0oxfabdRqNWOe9kXM9gt3w7b2cTAmrVbL10t4darVqiQSCRkdHZV8Pi/5fF5yuZzU6/We1B8Vfvd723puNps9u/Adpf0zjM9mEMeWID4/YR+nAAAABgGTEQAAABAR+wteddoX4GZmZja1H5fz85iaXC4nIisXPk0XkNsXRfP5vOf6eyEWi3XW95133rnq1+OXy2Qyxnc8eJXJZKRcLkuxWOz8t9vHM23W46z88Lq/tS+Wz8zMGPeXXC6nvUDd7/vnRj6bXvT62LLRz49uu4W1LgAAAAYJkxEAAAAQkZcuuB07dmxV+uUXBC+/iFcoFDppmUxmVZlWqyUPPPCAiOgfjdJuS3dR0Gs/Ln9UzuW/pNY9b1/X3uTkZOdCZXuZLte+CHx5vm70+oL85es7mUyuWtZGoyHJZFISiUTXfbT1L5fLeX5ETjfboddMF5W92Mh+n0wmpVQqdeK1Wk3GxsZWTQoM0v7pdV357cNGji0mXj8/6223Xq8LAACAYcBkBAAAwJBoXxgzPWbn4MGDIrJy4W1sbEwymYyMjY3JzTff3MmTyWQkk8lIs9mU8fHxzouOK5VK5yJsPp+XZDLZuajXbDZl165dqx4zc/nz79desPPaDxHp/Jp5ZmZGZmdnJZ1Or7pQaWtPZOWRRPF4XEqlkszOznbSm82mZDIZyWaz2gvB7TZ0F0X9vOz48nrW9nN8fLxzZ0Kz2ZRkMimO44jjOJJMJmXv3r2uPvrt3wMPPCCNRkMcx5Fdu3bJ2NiYJJNJSafTkslkZHZ2Vrsebdth7bsA1mpf8PVygfnyvKZH+vR6v0+lUjI5OdmpO5fLya5du8RxHEmn05LL5Vy/rh+U/dPPZ9NPHzZybDHx8/mxbTc/6wIAAGDoKQAAAAy0QqGg4vG4EpHOXzabVeVy2ZU3m82qWCymYrGYymaz6syZM506RETF43FVrVZXlSmXyyqVSqlYLKbi8bgaHx9XCwsLanJyUo2Pj6/KX6/XVTabXdWXRCKhCoXChvqxsLCgEolEp752rNv2Ll9XqVRKxeNxlUgkVCqVci1vu95UKuVapwsLC2phYUGNj4+virXXicnCwkLX/SwWi531HYvFtH3caP/K5bKKxWKr8qz9i8Vine2y3nYol8ud9Pbf5OSkOnPmjLY/qVR
|
|
|
|
"text/plain": [
|
|
|
|
"<Figure size 2000x800 with 3 Axes>"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
"metadata": {},
|
|
|
|
"output_type": "display_data"
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": [
|
|
|
|
"nbins=100\n",
|
|
|
|
"vmax=80\n",
|
|
|
|
"\n",
|
|
|
|
"fig, ((ax0, ax1)) = plt.subplots(nrows=1, ncols=2, figsize=(20, 8))\n",
|
|
|
|
"\n",
|
|
|
|
"a0 = ax0.hist2d(\n",
|
|
|
|
" rad_length_found,\n",
|
|
|
|
" eta_found,\n",
|
|
|
|
" density=False,\n",
|
|
|
|
" bins=nbins,\n",
|
|
|
|
" cmap=plt.cm.jet,\n",
|
|
|
|
" cmin=1,\n",
|
|
|
|
" vmax=vmax,\n",
|
|
|
|
" range=[[0,0.5],[2,5]],\n",
|
|
|
|
")\n",
|
|
|
|
"ax0.set_xlabel(f\"$x/X_0$\")\n",
|
|
|
|
"ax0.set_ylabel(f\"$\\eta$\")\n",
|
|
|
|
"ax0.set_title(f\"found $\\eta$ rad_length_frac\")\n",
|
|
|
|
"\n",
|
|
|
|
"a1 = ax1.hist2d(\n",
|
|
|
|
" rad_length_lost,\n",
|
|
|
|
" eta_lost,\n",
|
|
|
|
" density=False,\n",
|
|
|
|
" bins=nbins,\n",
|
|
|
|
" cmap=plt.cm.jet,\n",
|
|
|
|
" cmin=1,\n",
|
|
|
|
" vmax=vmax * stretch_factor,\n",
|
|
|
|
" range=[[0,0.5],[2,5]],\n",
|
|
|
|
")\n",
|
|
|
|
"ax1.set_xlabel(f\"$x/X_0$\")\n",
|
|
|
|
"ax1.set_ylabel(f\"$\\eta$\")\n",
|
|
|
|
"ax1.set_title(f\"lost $\\eta$ rad_length_frac\")\n",
|
|
|
|
"# ax1.set(xlim=(0,4000), ylim=(-1000,1000))\n",
|
|
|
|
"\n",
|
|
|
|
"plt.suptitle(\"radiation length fraction and eta\")\n",
|
|
|
|
"plt.colorbar(a0[3], ax=ax1)\n",
|
|
|
|
"\n",
|
|
|
|
"plt.show()"
|
|
|
|
]
|
2024-01-17 15:59:39 +01:00
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": null,
|
|
|
|
"metadata": {},
|
|
|
|
"outputs": [],
|
|
|
|
"source": []
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": null,
|
|
|
|
"metadata": {},
|
|
|
|
"outputs": [],
|
|
|
|
"source": []
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"metadata": {
|
|
|
|
"kernelspec": {
|
|
|
|
"display_name": "tuner",
|
|
|
|
"language": "python",
|
|
|
|
"name": "python3"
|
|
|
|
},
|
|
|
|
"language_info": {
|
2024-01-19 11:22:15 +01:00
|
|
|
"codemirror_mode": {
|
|
|
|
"name": "ipython",
|
|
|
|
"version": 3
|
|
|
|
},
|
|
|
|
"file_extension": ".py",
|
|
|
|
"mimetype": "text/x-python",
|
2024-01-17 15:59:39 +01:00
|
|
|
"name": "python",
|
2024-01-19 11:22:15 +01:00
|
|
|
"nbconvert_exporter": "python",
|
|
|
|
"pygments_lexer": "ipython3",
|
2024-01-17 15:59:39 +01:00
|
|
|
"version": "3.10.12"
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"nbformat": 4,
|
|
|
|
"nbformat_minor": 2
|
|
|
|
}
|