Projektpraktikum/trackinglosses_rad_length_endVelo.ipynb

592 lines
283 KiB
Plaintext
Raw Normal View History

2024-01-22 16:03:16 +01:00
{
"cells": [
{
"cell_type": "code",
2024-01-26 11:34:42 +01:00
"execution_count": 24,
2024-01-22 16:03:16 +01:00
"metadata": {},
"outputs": [],
"source": [
"import uproot\t\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"from mpl_toolkits import mplot3d\n",
"import awkward as ak\n",
"from scipy.optimize import curve_fit\n",
"from methods.fit_linear_regression_model import fit_linear_regression_model\n",
"import sklearn\n",
2024-01-26 11:34:42 +01:00
"import seaborn as sns\n",
"import pandas as pd\n",
2024-01-22 16:03:16 +01:00
"%matplotlib inline"
]
},
{
"cell_type": "code",
2024-01-26 11:34:42 +01:00
"execution_count": 10,
2024-01-22 16:03:16 +01:00
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
2024-01-26 11:34:42 +01:00
"41978 8523\n",
2024-01-22 16:03:16 +01:00
"50501\n"
]
}
],
"source": [
"file = uproot.open(\n",
2024-01-26 11:34:42 +01:00
" \"tracking_losses_ntuple_B_EndVeloP.root:PrDebugTrackingLosses.PrDebugTrackingTool/Tuple;1\"\n",
2024-01-22 16:03:16 +01:00
")\n",
"\n",
"# selektiere nur elektronen von B->K*ee\n",
"allcolumns = file.arrays()\n",
2024-01-26 11:34:42 +01:00
"found = allcolumns[\n",
" (allcolumns.isElectron) & (~allcolumns.lost) & (allcolumns.fromB)\n",
"] # B: 9056\n",
"lost = allcolumns[\n",
" (allcolumns.isElectron) & (allcolumns.lost) & (allcolumns.fromB)\n",
"] # B: 1466\n",
2024-01-22 16:03:16 +01:00
"\n",
"electrons = allcolumns[(allcolumns.isElectron) & (allcolumns.fromB)]\n",
"\n",
"print(ak.num(found, axis=0), ak.num(lost, axis=0))\n",
"print(ak.num(electrons, axis=0))\n",
"# ak.count(found, axis=None)"
]
},
{
"cell_type": "code",
2024-01-26 11:34:42 +01:00
"execution_count": 11,
2024-01-22 16:03:16 +01:00
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
2024-01-26 11:34:42 +01:00
"stretch factor: 0.20303492305493354\n"
2024-01-22 16:03:16 +01:00
]
}
],
"source": [
"rad_length_found = ak.to_numpy(found[\"rad_length_frac\"])\n",
"eta_found = ak.to_numpy(found[\"eta\"])\n",
2024-01-26 11:34:42 +01:00
"phi_found = ak.to_numpy(found[\"phi\"])\n",
2024-01-22 16:03:16 +01:00
"rad_length_lost = ak.to_numpy(lost[\"rad_length_frac\"])\n",
"eta_lost = ak.to_numpy(lost[\"eta\"])\n",
2024-01-26 11:34:42 +01:00
"phi_lost = ak.to_numpy(lost[\"phi\"])\n",
2024-01-22 16:03:16 +01:00
"\n",
"stretch_factor = ak.num(eta_lost, axis=0) / ak.num(eta_found, axis=0)\n",
"print(\"stretch factor: \", stretch_factor)"
]
},
{
"cell_type": "code",
2024-01-26 11:34:42 +01:00
"execution_count": 12,
2024-01-22 16:03:16 +01:00
"metadata": {},
"outputs": [
{
"data": {
2024-01-26 11:34:42 +01:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAHLCAYAAAAnR/mlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAx7klEQVR4nO3dT4zb6IH3+V9N8nbFeQtuVjmXHF5gTAFzWmANqnLYxiJuwBJyyGEXsGTfkgEaJSKom4EU47m4fBktC3MtIJIxmH5z6xKN3T3MYSB60M4hwK4txgEWi/1X9AA55AXedBVj1Bun+p2B9uCQLpVUKhUlSqL5/QCFbpMin0ekSvzVw4fPs9Lv9/sCAAAoiL9YdAUAAADmifADAAAKhfADAAAKhfADAAAKhfADAAAKhfADAAAKhfADAAAKhfADAAAKhfCDQguCQO12e9HVKLwoitRutxWG4aKrgividwh5RPhBIYVhqHq9rnK5rFarNbB8fX19pl/mWexzUkEQyHEclctllcvluZc/iXa7rZs3b8q2bUVRNNW+4vdbr9dVKpW0t7c3m0qmtMhzn7VRv0O+76tUKmllZUUrKysql8vyPG9oW8/zVC6Xk9cEQTC2rDx8jpEvhB8Ukmma6nQ6Q8ujKFIURTo8PEy13zAMhy7g0+5zGpZl6f79+5deXObp/DFqNBpqNBpT7zcIAt25c0eu66rT6ahWq831mC/buc/aqN+hSqWiXq+X/Nu2bdVqtaFta7WabNuWYRjq9XqyLGtsWcv4OUa+EX6AMyzLUr/fl+u6qbav1+s6Ojqa6T6nddmFZd5GHaMbN25Mvd9ms6mNjY3k367rDrTqZW0Zz/0iGIahnZ0dSRr5B0as1+vp4cOHE+932T7HyDfCDzAj9Xqdv0wvkeUxWuSx59wPikON7/sXHpeDg4OZtPgBaRB+kAue56larcr3fbXbba2vr8u27WT93t6ebNtO+gWM6mMRRZFs205+RvUH8TxP9Xpd9Xp9aN24MjzPS77kbdseuBiO22dcJ8dxVK1Wk/d4dn273U76Tvi+n/SVGLW/qwqCQPV6XdVqVaVSSY7jTFV2fGxLpdJQIBh3jGJHR0dJmZO+x3a7rXq9rjAMk34o9Xo9OY6z/uzE5+ns+V3mcz/LczzJ75D0rvUnvt3VbDaH1nuep0qlIsMwJqrnZS47lsCQPrDkOp1O3zTNvqR+o9Ho7+zs9C3L6luW1e/3+/2dnZ3+2Y9yt9vtS+p3u91k2eHhYd8wjIFlruv2JSX7OTw8TJZVKpWBOkxSRvyaw8PDgXIv2mev1+sbhtHv9XrJslar1ZfUd1032b5WqyXb7+zs9Hu9Xr/RaAy87jJn3+fZ8s/WqdPpJMc4TdmWZfV3dnaSbSX1JfVN00z2OeoY9fv9gWPkum6q92iaZt80zYFls/rsmKY5UGfDMPqGYST/XtZzP8tzPMnv0FlnPwPHx8cD6yzLGtjPZfWMXfQ5vuxYAucRfpAL8ZdsfHE9q1KpDFyIjo+Ph15bq9WGLkD9/ugv01EXq0nKuOjCftE+LcsaWSfLsgb2E18Izn+Rj9rnRUa9T8uyBi4Y/f67i/rZi9WkZcevO7u/+AJ69nhcFn5arVbq9zgq/Jzdd9rPjmVZQ+8/3md8nJb13M/yHF/ldyhWqVSGjmccoq5az4vKmvRYAmdx2wu5EDePf+973xta1+l0Bp4wefnypSQlT96EYZjc+kjrsjKuKgxDBUEwshNnfEvmfGfds7cIYuc72F61/GazmdyWOXubI35/k5b94sWLofXx/q7SF2Zzc3Oo3GnH/pn2sxMEgSqVysB2Ozs76vf7I4/LZeZ17md5jtP+DsW3rs7eSnRdd6Cj81XrOeo9XuVYApL0zUVXALiKUV/QhmHIMAx5nqcvvvhi6CIXXzxN05yq3HFlXNW4QBAHgCwH/IvLH/c0zlXEx8P3/aEL0bI8pZPmsxMfpzQh5yLzOvezPMdpf4cqlYpM01QYhmq322o0Gjo4ONDr169nUs9F/x4hv2j5Qe6FYahyuawwDNXpdJLHbM+ul9K3kkxSRlqjWo7iC+3Zx7ZnLT4ms7ow1Go1VSoVNZtN+b6vKIrkuq52dnamCp1Zm/Szk8UFNOtzP8u6T/M7FLf+uK4rz/O0ubk5ECZnUc9F/R4hvwg/yL1qtaqNjY0LA0l88T17e2PWZVxV3Boy6omU+Iu8VCrNpKxR4mMyavTdi+p1mU6no0qlkkx34Lru0o9vc9l5jc/TRa0SaS7Y8zr3szzH0/wONRqN5Pbl1tbWwJN209Zz0b9HyC/CD3Itfrz57F+S8Zde/Fdq3PzdbrdH/oV4Wb+dScq4yv6kd1/4lmUl+z7r5cuXMgwj0zFQ4j4sjuMM3TpIOxVDvV5PWk92dnbG3u46f4y++uorSdO1zh0dHV1p+6t+ds5fYB3HGWpVWKZzP8tzPO3v0Nk+PudHfJ6mnov+PUJ+EX6QC/GX6/kv2fji43me2u222u120sweBEHy12T8l325XJbv+wrDMHldGIbJeCWjQs0kZURRlPyF2Wq1kg6iF+1TeteaYBjGwF/C8e2iJ0+eJBflaQLBRc6Owlsul1Wv17W3t6dqtarDw8PkgjRp2XE4iPfTbrcHxr+JXXSMLhJF0dTvf9rPTtx6Va1WVa/Xk/GASqVSco6W8dzP8hyf39e436FR4gAyKohMWs+LTHosgQGLftwMuMzZsVpM0xx6HLrVavUNw+ibppk8UttoNPqGYQw8YttqtZL9WJaVjN+ys7PTPzw87Pd6vWTME/350d/4MdtJy7Asq28YRjI+ybh99vvvHq2OHyFuNBr9RqMx8Mhvr9dLHtk1TbPf7Xb7x8fHyWPkGvGI8llnx2wZVb7ruhce26uUHR/LePnZH9M0B8o8f4w6nU7yWHP8yPP5ckY9pn7Re2w0GskYMrP67HQ6neRYnB+j5qL3tehzH5vVOY6P17jfoXEajcbY11xWz3Gf48uOJXDeSr/f72cXrQAUQRAE+uKLL/Tw4UMdHR0NtNh0Oh2VSqWZ9ZcCgGnxqDuAqcRPTB0fHyePjp9lmiZTDQBYKvT5ATCVuKPp1tbWQB+feGyXVqtFp1MAS4XbXgCmtre3p2azOdCp2LIsua57aYdVAJg3wg+AmYn7+izzwIYAQPgBAACFQp8fAABQKIV42uv3v/+9/umf/kl/+Zd/qWvXri26OgAAYAJv377Vv/zLv+gHP/iBvvOd78xsv4UIP//4j/+ov/7rv150NQAAQAqff/65fvzjH89sf4UIP9/97nclSU+ePBk739A07t69q6dPn2ay7w+pjJOTE92+fVvPnz/X2tpaZuVk/T44F5P7EI4V56I4ZXAulquMIAi0tbWVXMdnJbPw85Of/ESbm5v67LPPsipiYt/61rckSX/1V3+VWfi5du1aZvv+kMp48+aNJOnWrVu6fv16ZuVk/T44F5P7EI4V56I4ZXAulquMk5MTSe+v47OSSYfn169fq9VqMZw9AABYOpm0/Ny8eVOtVouxPgAAwNLJ7LbX1tZWVrsGAABILbNxfn7wgx/o1atXWe0eAAAgldQtP/fv379wXRRF8n1fBwcHunXrVtoiAAAAZi51+Ol0OhO95m//9m/TFpEr29vblLFEsn4fnIvJfQjHinNRvDKy9qEcp7yei9Rze927d0+u62pjY2No3eHhodrttn7+859PXcFZ+OUvf5mM2/D9739/0dUptDdv3ujjjz/WH/7wh0wfI8XlOBfLg3OxPDgXyyWr63fqlh/btnXz5s2R6yzLUrlc1t/8zd8sVcvPj370I337298euW57ezu3CRYAgLza39/X/v7+yHV//OMfMykzdfi5c+fO2PWmaepnP/vZUoWfX/ziF7T8AACwRMY1PsQtP7OWOvyMe5IrDEM5jpN21wAAAJlJHX4sy9LKysqF6/v9vvb29tLuHgAAIBOpw49hGLp3754Mwxhad+PGDVmWdemtMQAAgHlLHX6ePHmiu3fvzrIuAAAAmUs9wjPBBwAA5FFmc3v95Cc/0ebmpj777LOJt4miSM1mU5Lkuu7Y1/q
2024-01-22 16:03:16 +01:00
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.hist(\n",
" rad_length_lost,\n",
" bins=100,\n",
" density=True,\n",
" alpha=0.5,\n",
" color=\"darkorange\",\n",
" histtype=\"bar\",\n",
" label=\"lost\",\n",
" range=[0, 1],\n",
")\n",
"plt.hist(\n",
" rad_length_found,\n",
" bins=100,\n",
" density=True,\n",
" alpha=0.5,\n",
" color=\"blue\",\n",
" histtype=\"bar\",\n",
" label=\"found\",\n",
" range=[0, 1],\n",
")\n",
"plt.xlim(0, 1)\n",
"# plt.yscale(\"log\")\n",
"plt.title(\"radiation length fraction endVelo\")\n",
"plt.xlabel(f\"$x/X_0$\")\n",
"plt.ylabel(\"a.u.\")\n",
"\n",
"plt.legend()\n",
"plt.show()"
]
},
{
"cell_type": "code",
2024-01-26 11:34:42 +01:00
"execution_count": 13,
2024-01-22 16:03:16 +01:00
"metadata": {},
"outputs": [
{
"data": {
2024-01-26 11:34:42 +01:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAABiMAAAL7CAYAAACfnvZxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC4UElEQVR4nOz9fXhb133g+/62SEdVIikQnTkdR85cG8i0dpwXzwYdtc2dOD0GnrGcpnOmIuXU0zYZv4BNeey4UkLUz+2UYueFgRprkviwCSjFJz1JPZUAtXPqiaUOkJO4c52JbAHxJHHk2xaw20Z1p+OQiKSGUSxq3T8UwCSx1iKwib2xAXw/z4PH1vrttdZvvwBcGwt7b0cppQQAAAAAAAAAAMAnm7qdAAAAAAAAAAAA6G9MRgAAAAAAAAAAAF8xGQEAAAAAAAAAAHzFZAQAAAAAAAAAAPAVkxEAAAAAAAAAAMBXTEYAAAAAAAAAAABfMRkBAAAAAAAAAAB8xWQEAAAAAAAAAADwFZMRAAAAAAAAAADAV0xGAAAAhEy5XJaDBw9KPB6XZDLZ7XR6RrValfn5+b7cZsViUSYmJmTHjh2Sz+e7nQ56FJ8t/gjjdu3nz0MAANC7mIwAAAAIkXK5LEePHpV0Oi3lclm7TD6flx07dsjBgwcDySno/tpVLpclmUxKLBaTiYkJKRaL3U6po/L5vGSzWZmfn5dareZLHwcPHpTx8XHZsWOH7NixQyYmJnzrq9PCfnyGRSufLWifbbvm83mJx+PiOM6qVzKZNB6v5XJZxsfHVy0/Pj4u1Wq15Xz6+fMQAAD0NkcppbqdBAAAAFYbHx+XfD4viURCCoXCqlg8HpdyuSzRaFQqlUpH+qt/8RyJRJpifvTnh/n5eZmYmBARkV4d4tr2g+M4IiKSy+VkbGysY/3ddtttkkgkJJPJSK1Wk3g8LtVqVTKZjExNTXWkn43qh+MzLGyfLZ1m22/9xrZdk8lkY1LAdV0plUrrtnfw4EFJp9Oe34f98HkIAAD6D1dGAAAAhNDIyIgxlslkGl8ed4rtl7d+9OeHaDTa7RQ2rJ1fQHdC/dfc9S8tI5GIVCoVKRQKoZmIEOmP4zMsbJ8tnRb08dxNtu2ay+Ua/9/qVSnf/e53JRKJeH4f9sPnIQAA6D/D3U4AAAAA7UkkEpJIJDrWXjqdtt7Ko9P9QW+9/eCH+fl5EWn+IjVM+5vjszd143gOq0gkIqlUqvF+O3jw4LqTDPPz85JKpYJIDwAAIDBcGQEAADDA8vk899oPgW7sh174xTrHZ29ivzVbeeXO7OysddlisSi1Wk0eeughv9MCAAAIFJMRAAAALSgWizI+Pt74ZevExETjQaQr5fN5SSaTMj4+LslkUuLxeKOOSTqdllgsJvF4vKXlq9WqpNNpicfjxmVaySOfz8t9993X+Pdtt93WeIBxu/2JXPm1b72vWCwmyWTSuC61Wk3m5+dXLTM/Py+xWEwcx2k8B6DTarWaTExMrOpH96VpJ/Krb4/6vp2YmJB8Pt/0YOhW98Na6XRaduzY0fb2mp+flx07dqzan9dff32jz5Xbw8/jfuX22bFjhySTyVXr0K/HZ6vbqhM5tPvZsp5W3j/tHM9ejpuN5FZfrhvbNRKJNJ71UqvVJJ/PG5fNZDIyNjbW9KyNVtexHe28LwAAADZMAQAAwCiTyahoNKpERImIymazKpFIqEgk0iirVCpKKaUSiYQSEbW4uNioPzU1pUREZTKZprYXFxeV67oqkUisqjM2NtZoO5FINMpLpVKjDxFRkUhEm3M7eSwuLjbaK5VKq2Kt9lcqlVQ0GlVjY2Or2q2vx9r1KxQKynXdRruZTEaNjY0p13VVKpVatb1X1ltPoVBo1DPFXddVhUJBKaVUpVJprJ/ruh3Nz3XdVW3mcrlGnZWvldvLtB/qVh6D9eNmamrK8/aqVCpNx3Cdn8d9pVJR0WhUpVKpRp2VueRyuZa2S68dn+1sq43m0O5nSytaff/U+1/veG73uOlEbt3eriuP82g0al2mvi7truPK5W2fh+2+LwAAADqByQgAAIB1rPxiLRqNNr4MymQyKpVKKaVe/eJn7Rei9S+WdF+Uuq5r/AK1/qWv7outVCplbLPdPFr50tDWXz3X9SZGdOtRX8dIJLLqi7fFxcVGrJ0vJW1fvtXXf+06rlz/qampjuRX/0J15ZfqSr36hWU0GlWLi4urvuhrZzIiGo02LVPPZ+062NgmI9bm1OnjfuUXoHX1Y2Xll7T9eHy2s6285uD1s8Wk3ffPevvNy7boVG5KdXe7rpxAWzvhoJRqTDBudB3Xm4zw+r4AAADYCG7TBAAAsI5IJNK4XcbKh+VOTU1JNptdtWw0Gl317/qDgWu12qrb88zPz0u5XDbeE9z2QN71bkfTTh6tsPWXTqelVqsZH7Rav096sVhsui1JPcdUKrVqfSORiIyOjoqISKVSaStXW56RSERc111VvrJs7a1JvOZXX8+1+2BiYkJEXn1Ww9pbsLQqk8k0rUc9v04+B8KP4z6dThuP+0wmI5FIpO2HUffa8dnOe9NLDhv5bDHx8v5pRSc+p4J6b3dqu6bT6cb/r3yOxMp+6p8VK+t0cvtv5H0BAACwEcPdTgAAAKCXmL74TCQSUqlUmr5cW/nl8MLCQuPL3fqXPWu/XKqrfynXbqzdPFph66/+RdUtt9yijbuuK9FoVKrVqhw9erRxz/T11PPv1Jfr9TxjsVhTrN5H/QvQVraNLb962cLCwqrylV9WtrsPNpJPJ3TquK9/Yao77l3XlcXFxbZz65Xjs9PvTVMOG/lsMen0+6eT2yKo93antmsikRDXdaVcLkuxWJRyudxos/5MmbWTBJ1eR7/eFwAAAOthMgIAAKBDVn6xls/n5ejRo01fttXVv0AyxYPKY6Na+TK2/qWWHw+kbkW930QiIYVCIdB+Tb+W9mt/dEOrx1u1WpVarRbouoft+Azivdnpzxa/3j+d2BZBvrc7uV0feughGR8fFxGR2dlZyeVyjf9f++BqP9YxbO8LAAAwOLhNEwAAQAfNz89LLBaThYUFyeVy2lt6+PXr9Xbz2Ki1v2I2qX95Z1vGT/V+g9juItL4VfPaWxnVbzvTj78ybue4D+o4COvx6ed7049j3M/3z0a3RVDv7U63PzY21jju8vl840t/3W2gOr2OYX1fAACAwcCVEQAAAB2STCalWCxqbz+y0sp7oVer1Y7/MrrVPDZqZdu2e+fXf+XbrasB6rdPCWoyIpvNSrValWKxKOPj45LJZGRkZETGx8fFdd3Gr6D7RavH29rnAXTyNlU6YTw+/X5v+vHZ4tf7pxPbIqj3th/bNZ1ON54NUb8FVDQabboNVKfXMYzvCwAAMDi4MgIAAKAD0um0FItFSaVS6355s/LLpk7fAqOdPDqh3kexWDQuU/8Srf5g2KCtvR2MSa1W8/QQXp1CoSCu68rIyIik0+nGF4+lUqkj7YeF1+Petp2r1WrHv3gNw/EZxHvTj88WP94/ndoWQb23/diuqVRq1bNU5ufnVz3cus6PdQzT+wIAAAwWJiMAAAA6wPaAUZ36l0Gzs7NdzWMlL7fjqP+yt1wuG79Arn95p/uiLQiRSKSxve+7775Vv3JeaXx83PiMh3aNj49LLpeTbDbb+G+rt2fqpduitHu81b/UnZ2dNR4vExMT2i+oe/343Mh7sx2d/mzZ6PtHt986tS2CfG/78Zm99pZMax9cLeLPOobpfQEAAAYLkxEAAAAdUP/C7ejRo6vKV35xtfJLpPptOWq1WuNBpiuXO3bsmIjob81R70v3pVS7eegelLq2X1t/U1NTjS/K6uu0Uv3LrpXLtaLTX8iv3N7xeHzVupbLZYnH4+K6bss52vKbmJho+1YureyHTjN9qdmOjRz38Xhc5ufnG/FisSixWGzVl5/9dHy2u6285rCRzxaTdt8/6+23Tm6LoN7bfmzXqampxv/rJiJ0fXdiHf16XwAAAKxLAQAAYF0iokREpVIpbTyVSjWWiUajamxsTEWjUZXL5ZrKK5WKts7U1JSamppS0WhUua7
2024-01-22 16:03:16 +01:00
"text/plain": [
"<Figure size 2000x800 with 3 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"nbins = 100\n",
"vmax = 80\n",
"\n",
"fig, ((ax0, ax1)) = plt.subplots(nrows=1, ncols=2, figsize=(20, 8))\n",
"\n",
"a0 = ax0.hist2d(\n",
" rad_length_found,\n",
" eta_found,\n",
" density=False,\n",
" bins=nbins,\n",
" cmap=plt.cm.jet,\n",
" cmin=1,\n",
" vmax=vmax,\n",
" range=[[0, 0.6], [2, 5]],\n",
")\n",
"ax0.set_xlabel(f\"$x/X_0$\")\n",
"ax0.set_ylabel(f\"$\\eta$\")\n",
"ax0.set_title(f\"found $\\eta$ rad_length_frac\")\n",
"\n",
"a1 = ax1.hist2d(\n",
" rad_length_lost,\n",
" eta_lost,\n",
" density=False,\n",
" bins=nbins,\n",
" cmap=plt.cm.jet,\n",
" cmin=1,\n",
" vmax=vmax * stretch_factor,\n",
" range=[[0, 0.6], [2, 5]],\n",
")\n",
"ax1.set_xlabel(f\"$x/X_0$\")\n",
"ax1.set_ylabel(f\"$\\eta$\")\n",
"ax1.set_title(f\"lost $\\eta$ rad_length_frac\")\n",
"# ax1.set(xlim=(0,4000), ylim=(-1000,1000))\n",
"\n",
"plt.suptitle(\"radiation length fraction and eta endVelo\")\n",
"plt.colorbar(a0[3], ax=ax1)\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
2024-01-26 11:34:42 +01:00
"execution_count": 14,
2024-01-22 16:03:16 +01:00
"metadata": {},
2024-01-23 16:00:16 +01:00
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Parameterisation for rad_length_frac:\n",
"intercept= 0.0\n",
2024-01-26 11:34:42 +01:00
"coef= {'1': 0.19830920321074946, 'x': -4.49175976974402e-05, 'y': 0.00039490060416272056, 'tx': 0.00015102371088508598, 'ty': -0.3004315695136339, 'qop': -15.314945266490128, 'x^2': -1.8619394568578818e-05, 'x y': -4.953907513838906e-06, 'x tx': 0.021617503882699386, 'x ty': 0.03829244150062255, 'x qop': -0.41798007270055415, 'y^2': -2.4410328131494868e-05, 'y tx': -0.03443063985633742, 'y ty': 0.024201355785359608, 'y qop': 0.069823295273139, 'tx^2': -9.507076220830514, 'tx ty': -0.3980701633198789, 'tx qop': -0.04742639222342226, 'ty^2': -5.342167619183405, 'ty qop': 0.04842038611881145, 'qop^2': 0.2070268831284635, 'x^3': 1.5823479402461545e-07, 'x^2 y': -5.806838940825474e-07, 'x^2 tx': -0.00023418353598118923, 'x^2 ty': 0.0037081774556846224, 'x^2 qop': 0.01641641113222204, 'x y^2': 6.398758958085149e-08, 'x y tx': -0.002932641224303519, 'x y ty': -0.001396824762733282, 'x y qop': -0.020888196868450136, 'x tx^2': 0.09096908124129072, 'x tx ty': -2.939755357349759, 'x tx qop': -8.73057282483271, 'x ty^2': -0.15340975596199197, 'x ty qop': 9.249941815315987, 'x qop^2': 0.030205199863621846, 'y^3': 1.6478595155078324e-07, 'y^2 tx': 0.0013152209574444013, 'y^2 ty': -0.000257931039205234, 'y^2 qop': -0.0057816482028933735, 'y tx^2': 2.685350530706497, 'y tx ty': 0.17814134491255038, 'y tx qop': 9.050929476915277, 'y ty^2': 0.10064678584510746, 'y ty qop': 4.6142369495362185, 'y qop^2': -0.00046589334175238057, 'tx^3': -0.6242025517665986, 'tx^2 ty': -0.017658603327465147, 'tx^2 qop': -0.022216794668845363, 'tx ty^2': -0.01024816705930792, 'tx ty qop': 0.024042119917448937, 'tx qop^2': 6.093129132646114e-05, 'ty^3': 0.09834545208780196, 'ty^2 qop': 0.011664187426493774, 'ty qop^2': -2.1825340747940462e-05, 'qop^3': -1.559907925017188e-06, 'x^4': -2.9483981922595603e-09, 'x^3 y': -6.13444928188045e-09, 'x^3 tx': 7.101384723817716e-06, 'x^3 ty': 7.16725431293419e-06, 'x^3 qop': 4.00953960828232e-05, 'x^2 y^2': 1.0679747086683733e-08, 'x^2 y tx': 7.616826922074438e-06, 'x^2 y ty': -3.91052449297824e-05, 'x^2 y qop': 9.93899828579223e-05, 'x^2 tx^2': -0.005400741368580057, 'x^2 tx ty': -0.009338160688408294, 'x^2 tx qop': -0.0017215190824096578, 'x^2 ty^2': 0.0007665795500993852, 'x^2 ty qop': 0.08528819041114723, 'x^2 qop^2': 8.037042310903203, 'x y^3': 8.933181749881669e-09, 'x y^2 tx': 1.766907321343325e-05, 'x y^2 ty': -2.1412010806409754e-05, 'x y^2 qop': -7.010215747540322e-05, 'x y tx^2': -0.0021778144582400415, 'x y tx ty': 0.0326584774738, 'x y tx qop': -0.1598215452174385, 'x y ty^2': 0.012945427966444779, 'x y ty qop': -0.23950569088511311, 'x y qop^2': -0.8775916738593352, 'x tx^3': 1.366672968587086, 'x tx^2 ty': 1.7459886700480327, 'x tx^2 qop': 0.4423601484422016, 'x tx ty^2': -1.0803356692637864, 'x tx ty qop': -0.0706577637682464, 'x tx qop^2': 0.006422119173581787, 'x ty^3': -2.2905272843167253, 'x ty^2 qop': -0.0063092971067729734, 'x ty qop^2': -0.001963650254414034, 'x qop^3': -1.0318719588655238e-06, 'y^4': -2.213189409516758e-09, 'y^3 tx': 7.716181404937572e-08, 'y^3 ty': 3.7462658548648164e-06, 'y^3 qop': -2.6897178570957402e-05, 'y^2 tx^2': -0.019391135282039867, 'y^2 tx ty': 0.003922857934752042, 'y^2 tx qop': 0.30048105074735626, 'y^2 ty^2': -0.0014404468920953982, 'y^2 ty qop': 0.017062949506976018, 'y^2 qop^2': -0.5172314152946776, 'y tx^3': 1.1761566789450086, 'y tx^2 ty': -1.8639649790914088, 'y tx^2 qop': -0.07088661078488609, 'y tx ty^2': -2.1282820437243197, 'y tx ty qop': -0.001276549939024397, 'y tx qop^2': -0.0019180156335069092, 'y ty^3': -0.06849699842395515, 'y ty^2 qop': -0.0351395250211265, 'y ty qop^2': -0.0005408300561230844, 'y qop^3': 4.1258598459708434e-06, 'tx^4': -0.02399482130004447, 'tx^3 ty': 0.010297903626621132, 'tx^3 qop': 0.0018304232474417028, 'tx^2 ty^2': -0.01163526658236639, 'tx^2 ty qop': -0.00029701477688915344, 'tx^2 qop^2': 2.0001744822333693e-06, 'tx ty^3': -0.014645131120788562, 'tx ty^2 qop': -2.1232731978440055e-05, 'tx ty qop^2': -3.4544969537609295e-06, 'tx qop^3': 8.78704309226661e-09, 'ty^4': -0.001422061237110601, 'ty^3 qop': -0.00017083649574085
"r2 score= -0.008270330873300091\n",
"RMSE = 0.10823208615961777\n",
2024-01-23 16:00:16 +01:00
"\n"
]
},
{
"data": {
2024-01-26 11:34:42 +01:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAHLCAYAAAAa1ZjDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABqCElEQVR4nO3de3xTdZ4//lcoFAqFpgVF5NoTQLmOJODozCijTXQcbyNt4Lff3bntSCNf9js762oDu4OAjpRUd3Z3drtjijPjzuxlpKkj3jVBR2d0HGgiIjeBpoBcRCENpdB7zu8PSOw5TXM7SU4ur+fjkQecnHzOeec07Xnnc9WIoiiCiIiISCXD1A6AiIiI8huTESIiIlIVkxEiIiJSFZMRIiIiUhWTESIiIlIVkxEiIiJSFZMRIiIiUhWTESIiIlIVkxGiNPB4PGhoaMjb86eC3+9HQ0MDvF6v2qEQkUJMRijreTweWK1WmM1m6HQ61NXVqR1SiNfrhdlshsFggN1uz4rzB6+nwWCAwWBIcYSJaWhoQHl5OSwWC/x+f9KOm8mfJaJcNlztAIiU8Hg8qKioQFtbGwDAarWipaVF5ai+IAgCGhsbodFosub8er0eAFBXVxf6v9q8Xi/Kysqg1WoBANXV1WhpaUlqspDpnyWiXMZkhLJabW0tysrKQts2m03FaHJHpiQhQWazGY2NjaFkBADGjx+f1HPws0SkHjbTUFbzeDxqh0ApZjab0/Jz5meJSD1MRigrNTQ0wGw2w+v1hvpFmM1muFyu0Gv8fj8sFgusVitMJhNMJpNkv8PhQGlpKTQaTehG5HK5YDabodFoYDabQ8dpaGiAwWCAw+GAy+WCwWCQvGag4HmDj3iaEhwORyjOhoYGlJaWwmKxhPbX1dWF3pPBYAjbKVXJ+WPh8XhgNpthMpmg0+lgtVol547nWgEIxanT6QYlHg6HI7RtsVjCJiY+ny90zkjnGUq0z1KyfybBzyKTH6IBRKIsJgiCKAjCoOfdbreo1WpFt9sdes5ut4sARJvNFnquurpaBCB5XUtLiwhArKqqCm1XVVWJAESj0SjW1NSIbrc7VHbg8VpaWkStVis6nc7QczabTQQg6vX6iO+lsbFRFARBBCBWV1eLNTU1ol6vD5WrqakRB/7KOp1OEYDkXErOLxeujNvtFo1GoyTmYLzB88d6rURRFPV6vVhTUxMqC0AEIAqCEDpm8H23tLRIygbfl9FoFG02W8TzxCLcZylZPxNBECTxa7VaUavVxh0jUa5iMkJZbahkRK/XS26aA58feGML3kwGJiNtbW2SZEQUv7jpym9ywZthUFVVVdjzxpoMBG+wwRv0QEajUXIDC8Y58LVKzx+tjF6vl1wrUbx0YwUgtrW1iaIY+7UKvm7g8YLJxMAbd7RkxG63RzxPrIb6LCn9mej1+kHXInjM4DUjyndspqGc4/V64fF4wnbCDFavJzrMdmAHyiCfzxc6b7BKP1HB4y9ZsmTQvsbGRrjd7tB2c3MzAISGtibj/JEEr2ttbW2oKWNgk0gwnqBI1woAdu7cOWh/8HjxNGEsXrx40HmTOfeI0p+Jx+OB0WiUlKupqYEoimGvEVE+4mgayjmRbmTBG1cqJsoKHlMQBMXHCneT0mq10Gq1cDgcePbZZwfdHJN5/nCC17WxsTEpxwvG73K5BiWOmTaaB0jsZxK8Zkw6iCJjzQjlrHCTYQVvCgOHcCZLMBkY+O0/2cc3GAzwer1obGxETU1N2s8/8F+lqqqqYDQaUVtbC5fLBb/fD5vNhpqampQlVMkW68+Es8QSRcZkhHJO8Fv1wJEzQcEERafTJf28wRvowGr7ZDKZTCgrKxt0w0vX+YPHdzgcYfeHu97RNDY2wmg0hqart9lsWTW/R7SfSfCzOFRtEpMUokuYjFBW8/l8g2oCBEGAXq8PDdUcqLm5GVqtFtXV1QC+mDhr4OuC/493mvFgE1BDQ0PYskqmLQ++l4HV/cHjBd9/Ks8PINTvwWq1DmoKS3Tdm+BkZjU1NaipqYnYPCOP/+zZswCSVxMU7rMUSbw/E3myZrVaU1JDR5SNmIxQTgrO1jlwPohgM8CWLVtCN5Dgzc9qtYbmkQh2bnW5XKHOoLHcpLRabegbssFggMvlgtfrDc3D4fV6o875EbyZyW+8wZuWw+FAQ0MDGhoaQsf1eDyh2gql54/n/ZnNZtTV1cFkMqGlpSWUrMR6Qw/eoIPHaWhokMwrEhSsxbLb7aFOupH4/f6kNlUp/ZkEa3pMJhPMZnNoPhKdTse+JERBag/nIUrEwDklcHkOiIFzO4jipWGWwaGu1dXVYnV19aBhqaJ4aZhlcN6H4JBMQRBCc2S43e7QkGBBEESn0ym2tbVJzj9w6Kbdbg/NTaHX60PzTNTU1AwanjrQwDktBEEYNGTVbreLWq02dCxRvDQUdmDc8Zw/GHu4h/y9DRyCarPZhowznmsVjCvc+QVBkJxTr9eLWq02NPdIY2NjaEhxcLix/DwDr0mk9xrps5Ssn0ljY2Pouuj1+kGfVaJ8pxFFUUxdqkNEFJ7H48Gzzz6LtWvXwufzSWo0GhsbodPphuyLQUS5JS+G9nq93qzpnU+UD4KjUNra2kLDYwcSBCGhDrFElJ0yNhkJTq4kCAL8fj9MJhOqqqpiKitfLl2v16dshAERxS/YSXjlypVYu3ZtqO+O1+uFy+VCS0tLVo2qIco2fr8ftbW1AMKvUB3LPVjJfVouI5OR4Lcmt9sd+iOl0+ng8/lCoyCG0tDQgOrqasnQTfnsh0SkLqPRCJvNhtraWkmHVL1eD5vNFvX3nIgS53K5YLfb4XA4wv6uxXIPVnKfDicj+4wERzA4nc7Qcw0NDbBYLIgWrslkkpQjoswW7CvCplSi9NJoNKiurh60PEYs92Al9+lwMm5or9/vlwypDBo4Xn8oDocDzc3NMJvNCc97QETppdVqmYgQZYhY7sFK7tNDybhkJLjQlPyPU7AaKFKth9PphN/vh8PhgMViQWlpKTvBERERxSiWe7CS+/RQMq7PSLBj21CTAUWaPtlut8Nut8Pj8cBut6OhoSE0IdNQ37zOnDmDl19+GZMmTcKoUaMSjruwsBCFhYUJlyciotTr6elBT09PwuW7urpw6tQp3HnnnZgwYUISI5M6duwYTp48qShWAJg0aRJmzZoV8+tjuQcruU8PJWXJSHt7O3w+X2hY7YwZM2Iq19LSAmDohcximdJar9fDbrdLZjwcam2Il19+Gd/73vdiio2IiAgAnnnmGXz3u99NybGPHTuGmdOnozcJxxoxYgQOHz6MadOmxfT6WO7BybhPyyU9GXnzzTexefNmbN++HQAgimJoqK1er0ddXR1uueWWIcsHR8EMNZ1zPG3LVVVVqKqqirik/KRJkwAAP/vZz/ClL30p5mMP9O1vfxvPPvtswjUjlZWVaGpqSqismuU7OjqwdOlSvP322yguLk7ruXOhvNrXj9cue9+/kvL5fu16enqwYsUK/OY3v4m5zIcnzmOr5xSunTgG80Z8hr/70Y9C945UOHPmDHoBLANQquQ4ALb19uLMmTMxJyOx3IOTeZ8OSmoy0tTUhNraWqxYsWLQIlA+nw9utxsPP/wwHnjgAdx///1hjxF8E0NlVvG+SZPJFLHfSLBp5ktf+hJuvvnmuI4dNGbMGNxwww0JlQWAoqKiiAuEZWr59vZ2AMB1112HcePGpfXcuVBe7evHa5e9719JeV67S3+zY/17/8pHp+Dc3YL7bpuFv62YhXf/+AcAUNSsH6spACYrKD8mgTKx3IOTfZ8GkpyMNDc3hzq2hFNRUYGamhqsWbNmyNcEe+PK25yC2waDIe64gsckUkqj2SjZnjNHpUCIKKVEUURj83H85v2juPtLk3D/1wQMG6aJXjDLxXIPTsV9OqmjaYLLsUcTqdOPVquFXq8f1Bs3WLuxfPnyuGJyOp2SlVuJiIgiEUURv3r3CH7z/lH8ny9Pw8qb1ElECnCpxiDRR0EC54zlHpzs+zSQ5GTk8OHDWLt2LY4ePRp2/5EjR/Dkk0+GOr8MZcuWLaHlz4N
2024-01-23 16:00:16 +01:00
"text/plain": [
"<Figure size 640x480 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
2024-01-22 16:03:16 +01:00
"source": [
"rad_length_frac = found[\"rad_length_frac\"]\n",
"# @ z = 9400.mm or 770.mm\n",
"state = 1\n",
"\n",
"if state == 1:\n",
" slopex = found[\"ideal_state_770_tx\"]\n",
" slopey = found[\"ideal_state_770_ty\"]\n",
" x = found[\"ideal_state_770_x\"]\n",
" y = found[\"ideal_state_770_y\"]\n",
" qop = found[\"ideal_state_770_qop\"]\n",
"elif state == 2:\n",
" slopex = found[\"ideal_state_9410_tx\"]\n",
" slopey = found[\"ideal_state_9410_ty\"]\n",
" x = found[\"ideal_state_9410_x\"]\n",
" y = found[\"ideal_state_9410_y\"]\n",
" qop = found[\"ideal_state_9410_qop\"]\n",
"\n",
2024-01-26 11:34:42 +01:00
"data = ak.zip({\n",
" \"rad_length_frac\": rad_length_frac,\n",
" \"x\": x,\n",
" \"y\": y,\n",
" \"tx\": slopex,\n",
" \"ty\": slopey,\n",
" \"qop\": qop,\n",
"})\n",
2024-01-23 16:00:16 +01:00
"lin_reg, features, xx0_test, xx0_predicted = fit_linear_regression_model(\n",
" data,\n",
" \"rad_length_frac\",\n",
" [\"x\", \"y\", \"tx\", \"ty\", \"qop\"],\n",
2024-01-26 11:34:42 +01:00
" 5,\n",
2024-01-23 16:00:16 +01:00
" include_bias=True,\n",
")\n",
"\n",
"nbins = 100\n",
2024-01-26 11:34:42 +01:00
"vmax = 100\n",
2024-01-23 16:00:16 +01:00
"\n",
"a0 = plt.hist2d(\n",
" xx0_test,\n",
" xx0_predicted,\n",
" density=False,\n",
" bins=nbins,\n",
" cmap=plt.cm.jet,\n",
" cmin=1,\n",
" vmax=vmax,\n",
2024-01-26 11:34:42 +01:00
" range=[[0, 0.5], [0, 0.5]],\n",
2024-01-23 16:00:16 +01:00
")\n",
2024-01-26 11:34:42 +01:00
"plt.plot([0, 0.5], [0, 0.5], marker=\"\", alpha=0.8)\n",
2024-01-23 16:00:16 +01:00
"plt.xlabel(f\"True $x/X_0$\")\n",
"plt.ylabel(f\"Predicted $x/X_0$\")\n",
"plt.title(f\"found rad_length_frac\")\n",
"\n",
"plt.colorbar(a0[3])\n",
"plt.show()"
2024-01-22 16:03:16 +01:00
]
},
{
"cell_type": "code",
2024-01-26 11:34:42 +01:00
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABMAAAAIoCAYAAACPjZdDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACdcUlEQVR4nOz9f5wb+X3feb6bHA3VMkVimn5EURyvRUDK2rlTPFPoSXa1PlMSASlZbfZW0wDpfVxi6U5DQBPs5XE3JzXUlzyW5K4jDDpzvjvvIRqgpY1WyWP3MQRaziYrry1gZFGJtbHYKFFW4h+Jujiy7CiJZkAMh1arZ9is+6NZmC6g0I0fBaAAvJ6PBx4zhar61hfV3ezqd33r812wbdsWAAAAAAAAMKOOTboDAAAAAAAAwCgRgAEAAAAAAGCmEYABAAAAAABgphGAAQAAAAAAYKYRgAEAAAAAAGCmEYABAAAAAABgphGAAQAAAAAAYKYRgAEAAAAAAGCmEYABAAAAQB9M01SpVJp0N+Zes9lUqVSSZVmT7gr6xM8QJoEADAAAAAB6YFmWksmkotGoisWi6/1HHnnE1z/oR9Fmr0zTVDabVTQaVTQaHfvxe1EqlXT27Fml02k1m82h2nI+bzKZVCQS0fr6uj+dHNAkv/aj5vUzVKvVFIlEtLCwoIWFBUWjUVUqlY59K5WKotFoaxvTNA891jR8H2O8CMAAAAAAoAfhcFjlcrnj/WazqWazqe3t7YHatSyrI8QZts1hGIahixcvHhkwjFP7OUqlUkqlUkO3a5qmzp8/r3w+r3K5rEQiMdZzHrSv/ah5/QzFYjHV6/XWcjqdViKR6Ng3kUgonU4rFAqpXq/LMIxDjxXE72NMFgEYAAAAAAzBMAzZtq18Pj/Q/slkUo1Gw9c2h3VUuDBuXufozJkzQ7eby+W0tLTUWs7n867RfaMWxK/9JIRCIa2urkqSZ8jsqNfrWltb67ndoH0fY7IIwAAAAABgQpLJJCNUjjDKczTJc8/X3s0Jtmq1Wtfzcu3aNV9G/mE+EYABAAAAmEmVSkXxeFy1Wk2lUkmPPPKI0ul0a/36+rrS6XSrTpBXzaVms6l0Ot16edWHqlQqSiaTSiaTHesOO0alUmn9oZ9Op12ByGFtOn3KZrOKx+Otz3hwfalUatVSqtVqrdpJXu31yzRNJZNJxeNxRSIRZbPZoY7tnNtIJNIRCh12jhyNRqN1zF4/Y6lUUjKZlGVZrbpUyWSydR79/t5xvk4Hv75B/tr7+TXu5WdI2h8F5jz6mMvlOtZXKhXFYjGFQqGe+nmUo84lZpANAAAAADOmXC7b4XDYlmSnUil7dXXVNgzDNgzDtm3bXl1dtQ/+OVStVm1JdrVabb23vb1th0Ih13v5fN6W1Gpne3u79V4sFnP1oZdjONtsb2+7jtutzXq9bodCIbter7feKxaLtiQ7n8+39k8kEq39V1dX7Xq9bqdSKdd2Rzn4OQ8e/2CfyuVy6xwPcmzDMOzV1dXWvpJsSXY4HG616XWObNt2naN8Pj/QZwyHw3Y4HHa959f3TjgcdvU5FArZoVCotRzUr72fX+NefoYOOvg9cPv2bdc6wzBc7RzVT0e37+OjziVmDwEYAAAAgJnk/KHtBCwHxWIxVxhx+/btjm0TiURHCGHb3n9QewUWvRyjW7jTrU3DMDz7ZBiGqx0nDGj/Y96rzW68PqdhGK7QwLb3g52DgUWvx3a2O9ieE6IcPB9HBWDFYnHgz+gVgB1se9DvHcMwOj6/06ZznoL6tffza9zPz5AjFot1nE8nSOu3n92O1eu5xGzhEUgAAAAAM8l5VOrxxx/vWFcul10zz21tbUlSa0Y+y7Jaj8EN6qhj9MuyLJmm6VnY23k8r72A+8HHxRztRdf7PX4ul2s9onfwkTfn8/V67Bs3bnSsd9rrpzbW8vJyx3Ety+p5fy/Dfu+YpqlYLObab3V1VbZte56Xo4zra+/n13jQnyHnMcaDj5Xm83lX8ft+++n1Gfs5l5gND026AwAAAAAwSl5/pIdCIYVCIVUqFT3//PMdQYcToITD4aGOe9gx+nVYKOSEQMMGP70c/7BZ+vrhnI9ardYRRgRl9r5Bvnec8zRI0NXNuL72fn6NB/0ZisViCofDsixLpVJJqVRK165d061bt3zp56R/jjA5jAADAAAAMHcsy1I0GpVlWSqXy1pdXe1YLw0+WqqXYwzKawSZE7YsLS35cgwvzjnxKxxIJBKKxWLK5XKq1WpqNpvK5/NaXV0dKngctV6/d0YRooz6a+9n34f5GXJGgeXzeVUqFS0vL7sCRT/6OamfI0wOARgAAACAuROPx7W0tNQ1lHICmIOPuvl9jH45o6K8Zqpz/piPRCK+HMuLc04qlYrn+kFm0CuXy4rFYjJNU6VSSfl8Xvl8fqh+jtpRX1fn69RtdNIgoc24vvZ+fo2H+RlKpVKtR1kvXbrkmoFz2H5O+ucIk0MABgAAAGCuWJYly7JcI0qcP3yd0SrOo1ClUslzpMhRdbx6OUY/7Un7f/QbhtFq+6CtrS2FQiGlUqkj2xmUU9Mqm812PEZ2sF5TP5LJZGsU1erq6qGPPrafo5dfflnScKP0Go1GX/v3+73THrJks9mO0UVB+tr7+TUe9mfoYM2vRCLhWz8n/XOEySEAAwAAADCTnD+w2//QdgKISqWiUqmkUqnUeuTKNM3WqBJnhE80GlWtVpNlWa3tLMvS+vq6q/2DQUovx2g2m62RJsVisVU0vFub0v6oolAo5BoR4zw6uLGx0QpmhgmFugmFQq5zkkwmtb6+rng8ru3t7VYo0euxnYDIaadUKqlSqXQEGt3OUTfNZnPozz/s944zii0ejyuZTCqbzSoajSoSibS+RkH82vv5NW5v67CfIS9OCOUVRvXaz256PZeYMZOehhIAAAAA/FYul+1wOGxLssPhsF0sFl3ri8WiHQqF7HA4bK+urtq2bdupVMoOhUKtZWc7px3DMOzt7e3WPtvb23a9XrcTiYQtyZZk5/N5+/bt230dwzAMOxQK2alUyrZt+9A2bdu2b9++bScSCTsWi9mpVMpOpVJ2vV5vra/X67ZhGK3PXq1W7du3b9upVMrVZjf1er1j24PHz+fzXc9tP8d2zqXz/sFXOBx2HbP9HJXLZTsUCrW+LvV6veM4B8/xUZ8xlUrZ1Wq11bYf3zvlcrl1LgzDaLV/UNC+9g6/vsbO+TrsZ+gwqVTq0G2O6udh38dHnUvMngXbtu3RxWsAAAAAAHQyTVPPP/+81tbW1Gg0XCO3yuWyIpGIb/XTAOChSXcAAAAAADBfnJkUb9++rVAo1PHIWTgcHqioPgB0QwAGAADGqlKpqFqttmZ3CofDHTN+maapXC6ncDisZrOpeDzeUQAXADC9nOLjly5d0traWqv4vWVZqtVq2t7eDvxskACmC49AAgCAsalUKsrlcq4p0ePxuAzDaP2hY1mWIpGI6vV66w+iSCSibDbLrEwAMEPW19eVy+Vchead3wdHFTEHgH4RgAEBZZqmtra2JvbH3qSPPwrNZlPXrl1TLBZTOByedHeAuRSPxxUOh1UsFlvvra+vq1gsant7u7WNJFWr1dY2pVJJ6XRaXLYAwOxxan9xfQZglI5NugPAJJimqWw2q2QyqUgkcuj0u+NmWZaSyaSi0ajrD8QgH985n9FoVNFodMQ9HEypVNLZs2eVTqc7prMeRpC/l4AgajQaHTVdtre3W3/0NJtN1Wq1VgjmWF5elrT/swwAmC2hUIjwC8DIEYBh7pimqfPnzyufz6tcLiuRSLRGHQRBOBxWuVyequMbhqGLFy/KNM0R9ap/lmW5gq5UKuX7aLagfy8BQZROp1tBu7T/c3Tt2rXW449bW1uS1PGHkPMo5MFRYQAAAECvKIKPuZPL5bS0tNRaprimP5w/ToMimUyqXC67ZhQ6c+aMr8fgewmz4A//8A/10ksvdbz/2muv6bXXXhuq7be//e1617ve5XovlUqpXq+rVCopEokoHA7r1q1brZ9Vpyhy+2xgDmc9MC1eeukl/cZv/Ibe8Y53aHFxcdL
"text/plain": [
"<Figure size 1500x600 with 3 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"nbins = 100\n",
"vmax = 80\n",
"\n",
"fig, ((ax0, ax1)) = plt.subplots(nrows=1, ncols=2, figsize=(15, 6))\n",
"\n",
"# ax0.set_aspect(\"equal\")\n",
"\n",
"a0 = ax0.hist2d(\n",
" xx0_test,\n",
" xx0_predicted,\n",
" density=False,\n",
" bins=nbins,\n",
" cmap=plt.cm.jet,\n",
" cmin=1,\n",
" vmax=vmax,\n",
" range=[[0, 0.5], [0, 0.5]],\n",
")\n",
"ax0.plot([0, 0.5], [0, 0.5], marker=\"\", alpha=0.8)\n",
"ax0.set_box_aspect(1)\n",
"ax0.set_xlabel(f\"True $x/X_0$\")\n",
"ax0.set_ylabel(f\"Predicted $x/X_0$\")\n",
"ax0.set_title(f\"found rad_length_frac\")\n",
"plt.colorbar(a0[3], ax=ax0)\n",
"\n",
"ax1.hist(\n",
" xx0_test,\n",
" bins=100,\n",
" density=True,\n",
" alpha=0.5,\n",
" color=\"darkorange\",\n",
" histtype=\"bar\",\n",
" label=\"test\",\n",
" range=[0, 0.5],\n",
")\n",
"ax1.hist(\n",
" xx0_predicted,\n",
" bins=100,\n",
" density=True,\n",
" alpha=0.5,\n",
" color=\"blue\",\n",
" histtype=\"bar\",\n",
" label=\"predicted\",\n",
" range=[0, 0.5],\n",
")\n",
"ax1.set_xlim(0, 0.5)\n",
"ax1.set_title(\"radiation length fraction endVelo\")\n",
"ax1.set_xlabel(f\"$x/X_0$\")\n",
"ax1.set_ylabel(\"a.u.\")\n",
"ax1.set_box_aspect(1)\n",
"\n",
"ax1.legend()\n",
"\n",
"# plt.gca().set_aspect(\"equal\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 16,
2024-01-22 16:03:16 +01:00
"metadata": {},
"outputs": [
{
2024-01-23 16:00:16 +01:00
"data": {
2024-01-26 11:34:42 +01:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAHLCAYAAAAnR/mlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA3qklEQVR4nO3dT2wj+Z3394+yzsjtR+ih1L44wAI7RWAPvqRR1ByezcIyMCz44EsAsXr2ZC9gNAlDhwANrAraS3cfskQRexXgohBkMMhlmtX5c9jDLjkLtxMYyNNibe9lkScJaxZwAD9APFK5obitWa+ZQ29ViyIpUWSRLKreL0CYEYv1q69YJOvbvz/fWuv3+30BAADkxH+27AAAAAAWieQHAADkCskPAADIFZIfAACQKyQ/AAAgV0h+AABArpD8AACAXCH5AQAAuULyg1wLgkDNZnPZYeReFEVqNpsKw3DZoeCG+AxhFZH8IJfCMJRt2yqVSvI8b+Dxzc3NVL/M59HmpIIgkOM4KpVKKpVKCz/+JJrNpj744APVajVFUTRTW/Hfa9u2isWiGo1GOkFOaZnnft5GfYY6nY6KxaLW1ta0tramUqkk3/eH9vV9X6VSKXlOEARXHmsV3sdYLSQ/yCXDMNRqtYYej6JIURSp1+tN1W4YhkMX8FnbnIVpmvr444+vvbgs0uXXqFqtqlqtztxuEAT66KOP5LquWq2WKpXKQl/zrJ37eRv1GSqXy+p2u8nvtVpNlUplaN9KpaJaraZCoaButyvTNK88Vhbfx1htJD/ABaZpqt/vy3Xdqfa3bVsnJyeptjmr6y4sizbqNbp3797M7dbrdW1tbSW/u6470Ks3b1k898tQKBS0v78vSSP/gRHrdrs6ODiYuN2svY+x2kh+gJTYts2/TK8xz9doma89535QnNR0Op2xr8uzZ89S6fEDpkHyg5Xg+74sy1Kn01Gz2dTm5qZqtVqyvdFoqFarJfMCRs2xiKJItVot+Rk1H8T3fdm2Ldu2h7ZddQzf95Mv+VqtNnAxvKrNOCbHcWRZVvI3XtzebDaTuROdTieZKzGqvZsKgkC2bcuyLBWLRTmOM9Ox49e2WCwOJQRXvUaxk5OT5JiT/o3NZlO2bSsMw2Qeim3byeuY9nsnPk8Xz2+Wz32a53iSz5D0tvcnHu6q1+tD233fV7lcVqFQmCjO61z3WgJD+kDGtVqtvmEYfUn9arXa39/f75um2TdNs9/v9/v7+/v9i2/ldrvdl9Rvt9vJY71er18oFAYec123Lylpp9frJY+Vy+WBGCY5RvycXq83cNxxbXa73X6hUOh3u93kMc/z+pL6rusm+1cqlWT//f39frfb7Ver1YHnXefi33nx+BdjarVayWs8zbFN0+zv7+8n+0rqS+obhpG0Oeo16vf7A6+R67pT/Y2GYfQNwxh4LK33jmEYAzEXCoV+oVBIfs/quU/zHE/yGbro4nvg9PR0YJtpmgPtXBdnbNz7+LrXEriM5AcrIf6SjS+uF5XL5YEL0enp6dBzK5XK0AWo3x/9ZTrqYjXJMcZd2Me1aZrmyJhM0xxoJ74QXP4iH9XmOKP+TtM0By4Y/f7bi/rFi9Wkx46fd7G9+AJ68fW4LvnxPG/qv3FU8nOx7WnfO6ZpDv39cZvx65TVc5/mOb7JZyhWLpeHXs84ibppnOOONelrCVzEsBdWQtw9/uGHHw5ta7VaAytMjo+PJSlZeROGYTL0Ma3rjnFTYRgqCIKRkzjjIZnLk3UvDhHELk+wvenx6/V6MixzcZgj/vsmPfbLly+Htsft3WQuzPb29tBxZ639M+t7JwgClcvlgf329/fV7/dHvi7XWdS5T/McT/sZioeuLg4luq47MNH5pnGO+htv8loCkvS1ZQcA3MSoL+hCoaBCoSDf9/XZZ58NXeTii6dhGDMd96pj3NRVCUGcAMyz4F98/KtW49xE/Hp0Op2hC1FWVulM896JX6dpkpxxFnXu0zzH036GyuWyDMNQGIZqNpuqVqt69uyZvvjii1TiXPbnCKuLnh+svDAMVSqVFIahWq1Wssz24nZp+l6SSY4xrVE9R/GF9uKy7bTFr0laF4ZKpaJyuax6va5Op6MoiuS6rvb392dKOudt0vfOPC6g8z73acY+y2co7v1xXVe+72t7e3sgmUwjzmV9jrC6SH6w8izL0tbW1tiEJL74XhzeSPsYNxX3hoxakRJ/kReLxVSONUr8moyqvjsuruu0Wi2Vy+Xkdgeu62a+vs115zU+T+N6Jaa5YC/q3Kd5jmf5DFWr1WT48uHDhwMr7WaNc9mfI6wukh+stHh588V/ScZfevG/UuPu72azOfJfiNfN25nkGDdpT3r7hW+aZtL2RcfHxyoUCnOtgRLPYXEcZ2joYNpbMdi2nfSe7O/vXzncdfk1+vLLLyXN1jt3cnJyo/1v+t65fIF1HGeoVyFL5z7NczzrZ+jiHJ/LFZ9niXPZnyOsLpIfrIT4y/Xyl2x88fF9X81mU81mM+lmD4Ig+ddk/C/7UqmkTqejMAyT54VhmNQrGZXUTHKMKIqSf2F6npdMEB3XpvS2N6FQKAz8SzgeLjo6OkouyrMkBONcrMJbKpVk27YajYYsy1Kv10suSJMeO04O4naazeZA/ZvYuNdonCiKZv77Z33vxL1XlmXJtu2kHlCxWEzOURbPfZrn+HJbV32GRokTkFGJyKRxjjPpawkMWPZyM+A6F2u1GIYxtBza87x+oVDoG4aRLKmtVqv9QqEwsMTW87ykHdM0k/ot+/v7/V6v1+92u0nNE/3b0t94me2kxzBNs18oFJL6JFe12e+/XVodLyGuVqv9arU6sOS32+0mS3YNw+i32+3+6elpsoxcI5YoX3SxZsuo47uuO/a1vcmx49cyfvzij2EYA8e8/Bq1Wq1kWXO85PnycUYtUx/3N1ar1aSGTFrvnVarlbwWl2vUjPu7ln3uY2md4/j1uuozdJVqtXrlc66L86r38XWvJXDZWr/f788vtQKQB0EQ6LPPPtPBwYFOTk4GemxarZaKxWJq86UAYFYsdQcwk3jF1OnpabJ0/CLDMLjVAIBMYc4PgJnEE00fPnw4MMcnru3ieR6TTgFkCsNeAGbWaDRUr9cHJhWbpinXda+dsAoAi0byAyA18VyfLBc2BACSHwAAkCvM+QEAALmSi9Vev/rVr/S3f/u3+qM/+iPduXNn2eEAAIAJvHnzRv/8z/+s733ve/rmN7+ZWru5SH7+5m/+Rn/+53++7DAAAMAUPvnkE/3whz9Mrb1cJD/f+ta3JElHR0dX3m/oJnZ3d/X8+fPMtZX19s7OzrSzs6MXL15oY2MjlTaz/PdmOba8nYu02+Nc3M72OBfZai8IAj18+DC5jqdlbsnPj3/8Y21vb+tHP/rRvA4xsa9//euSpD/+4z9OLfm5c+dOJtvKenuvX7+WJN2/f193795Npc0s/71Zji1v5yLt9jgXt7M9zkW22js7O5P07jqelrlMeP7iiy/keR7l7AEAQObMpefngw8+kOd51PoAAACZM7dhr4cPH86r6an94Ac/0De+8Y2R2/b29rS3t7fgiAAAyLfDw0MdHh6O3Pab3/xmLsecW/Lzve99T67r6v79+/M6xI19+umn+s53vrPsMAAAwL+5qvPhZz/7mXZ2dlI/5tTJz8cffzx2WxRF6nQ6evbsWaaSHwAAgKmTn1arNdFz/uqv/mraQ2RamkNkaQ+3Zb29tGX5781ybPOQ9b83y+c2bVl+7VahvTRl/W/NenvzMPW9vR48eCDXdbW1tTW0rdfrqdls6ic/+cnMAaYh7jZ78eIFw15L9vr1a73//vv69a9/ndoyUkyHc5EdnIvs4Fxky7yu31Mvda/Vavrggw/0/vvvD/2YpqlSqaS//Mu/TC1QAACANEyd/Hz00UdXbjcMQ57nTds8AADAXEw95+fVq1djt4VhKMdxpm0aAABgbqZOfkzT1Nra2tjt/X5fjUZj2ubngjo/AABky0rV+SkUCnrw4IEKhcLQtnv37sk0zWuHxhaNOj8AAGTLStX5OTo60u7ubpqxAAAAzN3
2024-01-23 16:00:16 +01:00
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
2024-01-22 16:03:16 +01:00
}
],
"source": [
2024-01-23 16:00:16 +01:00
"plt.hist(\n",
" xx0_test,\n",
" bins=100,\n",
" density=True,\n",
" alpha=0.5,\n",
" color=\"darkorange\",\n",
" histtype=\"bar\",\n",
" label=\"test\",\n",
2024-01-26 11:34:42 +01:00
" range=[0, 0.5],\n",
2024-01-23 16:00:16 +01:00
")\n",
"plt.hist(\n",
" xx0_predicted,\n",
" bins=100,\n",
" density=True,\n",
" alpha=0.5,\n",
" color=\"blue\",\n",
" histtype=\"bar\",\n",
" label=\"predicted\",\n",
2024-01-26 11:34:42 +01:00
" range=[0, 0.5],\n",
2024-01-23 16:00:16 +01:00
")\n",
2024-01-26 11:34:42 +01:00
"plt.xlim(0, 0.5)\n",
2024-01-23 16:00:16 +01:00
"# plt.yscale(\"log\")\n",
"plt.title(\"radiation length fraction endVelo\")\n",
"plt.xlabel(f\"$x/X_0$\")\n",
"plt.ylabel(\"a.u.\")\n",
"\n",
"plt.legend()\n",
"plt.show()"
2024-01-22 16:03:16 +01:00
]
},
{
"cell_type": "code",
2024-01-26 11:34:42 +01:00
"execution_count": 17,
2024-01-22 16:03:16 +01:00
"metadata": {},
"outputs": [
2024-01-23 16:00:16 +01:00
{
"name": "stdout",
"output_type": "stream",
"text": [
"Parameterisation for rad_length_frac:\n",
"intercept= 0.0\n",
2024-01-26 11:34:42 +01:00
"coef= {'1': 0.2484410418213911, 'x': -0.0007601095488043627, 'y': 0.0010569724392146917, 'tx': 0.6185505303064777, 'ty': -0.9394058560136732, 'qop': -9.741031889614183, 'x^2': -0.00016580416280366622, 'x y': 5.149038989659081e-05, 'x tx': 0.22996768886351043, 'x ty': -0.043161009059129354, 'x qop': -0.21658279194428842, 'y^2': 3.9826067539320166e-05, 'y tx': -0.033498957247677735, 'y ty': -0.08085122767618998, 'y qop': 0.06428923004582791, 'tx^2': -83.06687438225835, 'tx ty': 28.76266798578089, 'tx qop': -0.32072666519746007, 'ty^2': 32.80290436519906, 'ty qop': 0.29785759094660047, 'qop^2': 0.7177557091128425, 'x^3': -1.037888276319177e-06, 'x^2 y': 5.744977724613286e-07, 'x^2 tx': 0.0016261562680787358, 'x^2 ty': 0.00819223051446815, 'x^2 qop': 0.014940216048602184, 'x y^2': 1.55836456652794e-06, 'x y tx': -0.009042353485603404, 'x y ty': 0.002769481233443616, 'x y qop': 0.007035099510620806, 'x tx^2': -0.623629094925692, 'x tx ty': -0.5792857627094614, 'x tx qop': 3.819052794399519, 'x ty^2': -1.214138821848195, 'x ty qop': -4.179406422119741, 'x qop^2': -0.11723833703778899, 'y^3': -2.1060731703048674e-07, 'y^2 tx': -0.005136952674035623, 'y^2 ty': 0.0002523550890177065, 'y^2 qop': 0.020199755591199943, 'y tx^2': 0.8881296792413045, 'y tx ty': 2.1057062787476855, 'y tx qop': -4.322557205912296, 'y ty^2': -0.062185778412248593, 'y ty qop': -12.744670929978815, 'y qop^2': 0.10865361350283592, 'tx^3': -0.2772083890350773, 'tx^2 ty': -0.002155259913110253, 'tx^2 qop': 0.01973183125611695, 'tx ty^2': 0.2547275714314975, 'tx ty qop': -0.01267461996128659, 'tx qop^2': -0.0002315355231400779, 'ty^3': 0.12852489701010045, 'ty^2 qop': -0.03229168715651398, 'ty qop^2': 0.0001733290594162183, 'qop^3': -1.1131786479856305e-06, 'x^4': 1.4072631948636172e-09, 'x^3 y': -4.525309382774623e-08, 'x^3 tx': -5.048150129027817e-07, 'x^3 ty': 2.845994251238215e-07, 'x^3 qop': 6.161442924141475e-05, 'x^2 y^2': -1.8614020325102842e-08, 'x^2 y tx': 9.737839179148333e-05, 'x^2 y ty': -1.3038804363763035e-05, 'x^2 y qop': -8.415032085912991e-05, 'x^2 tx^2': -0.0010152847281566686, 'x^2 tx ty': -0.0032259545758118137, 'x^2 tx qop': -0.041785493301881166, 'x^2 ty^2': 0.013227443641328787, 'x^2 ty qop': 0.0035654519670473366, 'x^2 qop^2': 1.2621531315710728, 'x y^3': 3.906278722709544e-08, 'x y^2 tx': 6.858475435222999e-05, 'x y^2 ty': -5.862278080592809e-05, 'x y^2 qop': -0.00016236412225426912, 'x y tx^2': -0.06608751351613794, 'x y tx ty': -0.04864228625905696, 'x y tx qop': 0.06901548261804959, 'x y ty^2': 0.04159526642181612, 'x y ty qop': 0.28489071089527757, 'x y qop^2': 0.2535927965752249, 'x tx^3': 0.5018159233398294, 'x tx^2 ty': 0.9699678165589771, 'x tx^2 qop': 0.4741265130417677, 'x tx ty^2': 10.315681588678894, 'x tx ty qop': -0.22617149043686857, 'x tx qop^2': 0.00898570789717606, 'x ty^3': -12.737405175272935, 'x ty^2 qop': -0.014062351992903526, 'x ty qop^2': 0.005154120346378951, 'x qop^3': -4.609067543005094e-05, 'y^4': 9.455609628616912e-09, 'y^3 tx': -2.99210479094425e-05, 'y^3 ty': -2.583154312318925e-05, 'y^3 qop': 5.980622324156491e-05, 'y^2 tx^2': -0.016833583405836638, 'y^2 tx ty': 0.02458057322196644, 'y^2 tx qop': -0.169419352054439, 'y^2 ty^2': 0.02331391517451325, 'y^2 ty qop': -0.04589466917231106, 'y^2 qop^2': -1.206224538163147, 'y tx^3': 15.19059646701743, 'y tx^2 ty': 5.490478536183617, 'y tx^2 qop': -0.25278933198832354, 'y tx ty^2': -3.577260288354769, 'y tx ty qop': 0.03161480393545275, 'y tx qop^2': 0.005952281392129449, 'y ty^3': -6.821531531863169, 'y ty^2 qop': 0.09776598757839021, 'y ty qop^2': 0.0023614626852912395, 'y qop^3': -1.973415862163393e-05, 'tx^4': -0.05310859403428924, 'tx^3 ty': 0.023505514315239354, 'tx^3 qop': 0.0021762610547612377, 'tx^2 ty^2': 0.04763359558524625, 'tx^2 ty qop': -0.0009428124122745564, 'tx^2 qop^2': 1.2893218326397415e-05, 'tx ty^3': -0.018754843662608302, 'tx ty^2 qop': 4.8170564904883127e-05, 'tx ty qop^2': 1.6878183944633644e-05, 'tx qop^3': -4.12730477319448e-08, 'ty^4': 0.013919613173737298, 'ty^3 qop': 0.00022052138073417403, 'ty^2 qop^2': 9.713683885787424e
"r2 score= 0.01281806793978646\n",
"RMSE = 0.2644569540509028\n",
2024-01-23 16:00:16 +01:00
"\n"
]
},
2024-01-22 16:03:16 +01:00
{
"data": {
2024-01-26 11:34:42 +01:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhoAAAHLCAYAAACOMzExAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABka0lEQVR4nO3dfXyT9b0//le5aSkUCC2KKCK9Aii3kwScczdMm3gvTtrgb9+z23OkGafnu7OvZzayidw4Calu55ztdDNFz3bmdjZJ6gTvaVBxm3PSREQKCPQq94pCGkqhtLS5fn/UxKZN0yTXlVxXktfz8cgDkivXdb1ztU3e+Xw+788nT5IkCUREREQpMEztAIiIiCh7MdEgIiKilGGiQURERCnDRIOIiIhShokGERERpQwTDSIiIkoZJhpERESUMkw0iIiIKGWYaBBlOJ/Ph7q6OrXDUFQgEEBdXR1EUVQ7FCKSiYkGZS2fzwebzQaj0Qij0ah2OIoTRREWiwVGoxFOpzOufTLhmtTV1aG0tBRWqxWBQECRY4Zet8VigV6vR01NjSLHJaKhjVA7AKJUMRgMAICamprw/1NBFEUUFxdDp9Ol7BzRCIIAl8uFvLy8uPdJ1zVJRP/rV1lZiebmZsWSAZ/Ph7KyMrS2tgIAbDYbmpubFTk2EQ2NLRqU1dLxYWqxWOD3+1N+HqVoJcEIiXb9SkpKFDu+3W5HcXFx+L7D4Yi7BYiI5GOiQSSDxWKBz+dTO4yMlY7rx58PkbqYaFDOCgQCsFqtsNlsMJvNMJvN8Hg8gz7HarVCr9eHB1663e7wh5jVah3yQ9PtdofPUVdXhwkTJsBqtYa319TUhM9lNBqjDvAMxRO6KT3WwOfzwWKxwGw2Q6/Xw2azRZy7rq4ORqMRbrcbHo8HRqMReXl5sFgsUY8XilOv1w+4PvFcP7/fHz5nrPNEU1dXB4vFAlEUw+NZLBZL+Ges9M8j9DvExIaoH4koywGQDAZDxGNer1fS6XSS1+sNP+Z0OiUAksPhCD9WUVEhVVdXRzyn7/bq6moJgNTc3BwzBpfLJQmCIAGQKisrperqaslgMITjCh0npKGhQQIgNTQ0hB9rbm6WdDpdxGMOhyPq6xvKYNfEZDJFxByKN3T+iooKCYBkMpmk6upqyev1SpWVlQOumyRJksFgCF+75uZmCYAEQBIEIXzMwa5f6HWZTCbJ4XDEPM9QBEGQBEGIeEypn4cgCBGx63Q6SafTJRQfUbZjokFZL9qHqsFgiPhQ7ft43w8+nU4XkWhIkpRUohHaD8CA40mSJJlMpogPqNbW1gHPraioiBqzUomGwWCISLwkqff1A5BaW1slSfos+ej/YR9KCkJCz+t7vFCi0PdaDZVoOJ3OmOeJR7REo+85kv15GAyGAdchdMzQ9SIiSWLXCeUcURTh8/miDooMNZ2HBgsKgoCampqILorq6uqkzhuqqli0aNGAbS6XC16vN3y/sbERAMLlnaIohpv6UyF0Tex2e7iLoW83RSiekGgVNn0HdO7YsWPA9tDxEulaWLhw4YDzKjW3htyfh8/ng8lkitivuroakiSlvQKJSMtY3ko5J9YHXeiDLfRh5nK5YDQaYbPZ4HQ64XK5ZFdtRPsQ0ul00Ol0cLvdeOaZZwZ8+IXiEQRB1rkHE7omLpdLkeOF4vd4PAOul9aqXpL5eYSuFxMKoqGxRYNyVrTJoEIfHKFySEEQ0NLSApPJBFEUBx0UKFfo2KIowuVyDWg1CSUaqSqjDR1fqdaCiooKmEwm2O12eDweBAIBOBwOVFdXpyxZUlK8Pw/OXEo0NCYalHNC36j7V5gAnyUfer0eQO8HiU6nQ0NDQ/jbft/KBKWYzWYUFxcP2i0T+nDu25yvpNDx3W531O3RrtVQXC4XTCZTeIp0h8MBh8MhK850GernEfodGqwFiAkI0WeYaFDOEQQBBoMhXPbYV2NjI3Q6HSorKwEg4oOxoqIiPHaj/35ypsoOxdG3GT50vFALRqhLp66uLuq55E7VHRprYLPZBnQtJduCY7FYwq0B1dXVMbtM+sd/+vRpAMq04Pj9/oSOk+jPo38SZrPZIiYII8p1TDQoJ7lcLuh0uojWiVDz/saNG8MfMps2bYpIKgKBAARBCLcAhFo+nE5neMDmYEIfVv0/VEMfSm63G3V1dairqwvPX+Hz+cLHDH27NhqN8Hg8EEUx/DxRFGXNqaHT6SKOb7FYUFNTA7PZjObm5nAiEu8HdugDOHScurq6iHkzQhK5fkDvtVOq+0juzyOUhJrNZlgslvB8G3q9nmM3iPpSu+yFKFX6zr2AT0sy+5Ydtra2hktGKysrpcrKygHlnSaTSRIEQaqurpaqq6ulioqKAaWLBoNB0ul04bkhouk7b4MgCAPKNp1Op6TT6cLnkqTectD+5bVOpzN8HIPBEJ7Lobq6OqJENPSao91iXROHwzFonF6vN1z+KwiC1NDQILW2tg44niR9NsdEtPMLghBxzv7Xz+VyhctqQyW3/c/T95rE+1orKyvD82Ao9fNwuVzha2IwGCLm2SCiXnmSJEmpTWWIKNf4fD4888wzWLlyJfx+f0RLhMvlgl6vT7pMmIgyC8tbiUhRoYqN1tbWcJloX4IgJDW4lIgykyYTjUAgALvdDgBxj1IPTTYkCAICgQDMZjMqKipSGSYRRREa07J8+XKsXLkyPAhUFEV4PB40NzdnTPUJEcmnuUTD4/HA6XTC7XaHR/4PJfQNyuv1ht/U9Ho9/H5/3McgImWYTCY4HA7Y7faIwZ0GgwEOh4N/k0Q5RrNjNPLy8lBZWRkuJ4wlNC1zQ0ND+LG6ujpYrVZo9OUR5YTQ2IxMmKSLiFIj48tbA4EAPB7PgDUg+ta5E5E6dDodkwyiHJfxiUZosaP+b2ahLpS+rRxERESUXpobo5Go0MCzwSbIGWoq4FOnTuHFF1/E5MmTMWrUqKTjyM/PR35+ftL7ExFR6nV1daGrqyvp/S9cuIAPP/wQd9xxByZOnKhgZJGOHDmCU6dOyT7OxIkTMXXqVAUiSl7KEo22tjb4/X6IoghBEDBt2rSUnKe5uRkABp3yd6ipmV999VV85zvfUTgqIiLKZr/5zW/w7W9/OyXHPnLkCKZfdRUuKnCs0aNHY+/evQOSjaGqO5Ws5FQ80XjttdewYcMGbNu2DQAgSRLy8vIA9HZn1NTU4MYbb1TsfKEpjAeblnio/uFQArRx40bMnDkz6Tjy8/Px9a9/HfX19UkfAwDa29uxePFibN++HUVFRbKOVV5eLjserR2H1yc2Xp+h8RrFlu3X5w9/+EPCLRrvHT+LTb4Pcc2kMZgz8mP8vx/8AJMnT5Ydz2BOnTqFiwAqAFwq4zgfA3CfP49Tp05FJBpDVXcqXcmpaKJRX18Pu92Oe++9d8DCQn6/H16vFw888AC+973v4b777lPknKFEYrCWi6ESjcLCQgC9SVCsRZ/iUVhYKPsYbW1tAIBrr70W48aNUz0erR2H1yc2Xp+h8RrFlu3X5/rrr09on5fe/xANu5pxz80z8K9lM/DXv/wZAGR1tcfrcgBXyNh/sA94k8kEk8kUbgToz2q1wmQyRVxzm80Gq9WqfqLR2NgYHpwZTVlZGaqrq/Hggw8qds5QdUn/sRih+0ajUbFzERFRbpAkCa7GY3j67cO463OTcd+XBAwbFv2DOZuEKjn7d6f0reRMNNlQtOqkpKQkrucpOYBGp9PBYDAMqC4JTXG8bNkyxc5FRETZT5Ik/Pqvh/D024fxfz4/Fcu/rE6SMRy9rQHJ3oYncc5UVHIqmmgcPHgQK1euxOHDh6NuP3ToEB5//PHwAM7BxBrAKYoi9Hp9xFoJGzduDC+bHeJwOOBwOLhcMxERxS0YlPCL1w7iT+8ex/KvCPj6dVMH7WJIh24Zt54kzie3kjOahLtOXnvtNdx0001Rtz3xxBOwWCwoLS1FXl4edDodiouLw6s3AkBFRQWeeeaZQY/v8/nCs4Fu2rQJZrMZJpMp/KJDMw32TUYMBgO8Xi9sNhsEQYAoirDZbJzqmIiI4tbVHcRPt36At8XTuN88Ezd
2024-01-22 16:03:16 +01:00
"text/plain": [
"<Figure size 640x480 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
2024-01-23 16:00:16 +01:00
"rad_length_frac = lost[\"rad_length_frac\"]\n",
"# @ z = 9400.mm or 770.mm\n",
"state = 1\n",
"\n",
"if state == 1:\n",
" slopex = lost[\"ideal_state_770_tx\"]\n",
" slopey = lost[\"ideal_state_770_ty\"]\n",
" x = lost[\"ideal_state_770_x\"]\n",
" y = lost[\"ideal_state_770_y\"]\n",
" qop = lost[\"ideal_state_770_qop\"]\n",
"elif state == 2:\n",
" slopex = lost[\"ideal_state_9410_tx\"]\n",
" slopey = lost[\"ideal_state_9410_ty\"]\n",
" x = lost[\"ideal_state_9410_x\"]\n",
" y = lost[\"ideal_state_9410_y\"]\n",
" qop = lost[\"ideal_state_9410_qop\"]\n",
"\n",
2024-01-26 11:34:42 +01:00
"data = ak.zip(\n",
" {\n",
" \"rad_length_frac\": rad_length_frac,\n",
" \"x\": x,\n",
" \"y\": y,\n",
" \"tx\": slopex,\n",
" \"ty\": slopey,\n",
" \"qop\": qop,\n",
" }\n",
")\n",
2024-01-23 16:00:16 +01:00
"lin_reg, features, xx0_test, xx0_predicted = fit_linear_regression_model(\n",
" data,\n",
" \"rad_length_frac\",\n",
" [\"x\", \"y\", \"tx\", \"ty\", \"qop\"],\n",
" 5,\n",
" include_bias=True,\n",
")\n",
"\n",
2024-01-22 16:03:16 +01:00
"nbins = 100\n",
"vmax = 50\n",
"\n",
"a0 = plt.hist2d(\n",
" xx0_test,\n",
" xx0_predicted,\n",
" density=False,\n",
" bins=nbins,\n",
" cmap=plt.cm.jet,\n",
" cmin=1,\n",
2024-01-23 16:00:16 +01:00
" vmax=vmax * stretch_factor,\n",
" range=[[-0.1, 1.0], [-0.1, 1.0]],\n",
2024-01-22 16:03:16 +01:00
")\n",
2024-01-23 16:00:16 +01:00
"plt.plot([-0.1, 1.0], [-0.1, 1.0], marker=\"\", alpha=0.8)\n",
2024-01-22 16:03:16 +01:00
"plt.xlabel(f\"True $x/X_0$\")\n",
"plt.ylabel(f\"Predicted $x/X_0$\")\n",
2024-01-23 16:00:16 +01:00
"plt.title(f\"lost rad_length_frac\")\n",
2024-01-22 16:03:16 +01:00
"# ax1.set(xlim=(0,4000), ylim=(-1000,1000))\n",
"\n",
"plt.colorbar(a0[3])\n",
"plt.show()"
]
},
2024-01-23 16:00:16 +01:00
{
"cell_type": "code",
2024-01-26 11:34:42 +01:00
"execution_count": 25,
"metadata": {},
"outputs": [],
"source": [
"df = pd.DataFrame({\n",
" \"phi\": phi_found,\n",
" \"eta\": eta_found,\n",
" \"rad_length_frac\": rad_length_found\n",
"})"
]
},
{
"cell_type": "code",
"execution_count": 27,
2024-01-23 16:00:16 +01:00
"metadata": {},
"outputs": [
2024-01-26 11:34:42 +01:00
{
"ename": "RuntimeError",
"evalue": "latex was not able to process the following string:\nb'sale price $'\n\nHere is the full command invocation and its output:\n\nlatex -interaction=nonstopmode --halt-on-error --output-directory=tmpg0jlxahb 82002a6a534310632a0ec6d082310260.tex\n\nThis is pdfTeX, Version 3.14159265-2.6-1.40.21 (TeX Live 2020) (preloaded format=latex)\n restricted \\write18 enabled.\nentering extended mode\n(./82002a6a534310632a0ec6d082310260.tex\nLaTeX2e <2020-02-02> patch level 5\nL3 programming layer <2020-09-24>\n(/cvmfs/sft.cern.ch/lcg/external/texlive/2020/texmf-dist/tex/latex/base/article\n.cls\nDocument Class: article 2019/12/20 v1.4l Standard LaTeX document class\n\n(/cvmfs/sft.cern.ch/lcg/external/texlive/2020/texmf-dist/tex/latex/base/size10.\nclo))\n(/cvmfs/sft.cern.ch/lcg/external/texlive/2020/texmf-dist/tex/latex/psnfss/mathp\ntmx.sty)\n(/cvmfs/sft.cern.ch/lcg/external/texlive/2020/texmf-dist/tex/latex/type1cm/type\n1cm.sty)\n(/cvmfs/sft.cern.ch/lcg/external/texlive/2020/texmf-dist/tex/latex/cm-super/typ\ne1ec.sty\n(/cvmfs/sft.cern.ch/lcg/external/texlive/2020/texmf-dist/tex/latex/base/t1cmr.f\nd))\n(/cvmfs/sft.cern.ch/lcg/external/texlive/2020/texmf-dist/tex/latex/base/inputen\nc.sty)\n(/cvmfs/sft.cern.ch/lcg/external/texlive/2020/texmf-dist/tex/latex/geometry/geo\nmetry.sty\n(/cvmfs/sft.cern.ch/lcg/external/texlive/2020/texmf-dist/tex/latex/graphics/key\nval.sty)\n(/cvmfs/sft.cern.ch/lcg/external/texlive/2020/texmf-dist/tex/generic/iftex/ifvt\nex.sty\n(/cvmfs/sft.cern.ch/lcg/external/texlive/2020/texmf-dist/tex/generic/iftex/ifte\nx.sty)))\n(/cvmfs/sft.cern.ch/lcg/external/texlive/2020/texmf-dist/tex/latex/underscore/u\nnderscore.sty)\n(/cvmfs/sft.cern.ch/lcg/external/texlive/2020/texmf-dist/tex/latex/base/textcom\np.sty)\n(/cvmfs/sft.cern.ch/lcg/external/texlive/2020/texmf-dist/tex/latex/l3backend/l3\nbackend-dvips.def)\nNo file 82002a6a534310632a0ec6d082310260.aux.\n\n(/cvmfs/sft.cern.ch/lcg/external/texlive/2020/texmf-dist/tex/latex/psnfss/ot1pt\nm.fd)\n*geometry* driver: auto-detecting\n*geometry* detected driver: dvips\n\n(/cvmfs/sft.cern.ch/lcg/external/texlive/2020/texmf-dist/tex/latex/psnfss/ot1zt\nmcm.fd)\n(/cvmfs/sft.cern.ch/lcg/external/texlive/2020/texmf-dist/tex/latex/psnfss/omlzt\nmcm.fd)\n(/cvmfs/sft.cern.ch/lcg/external/texlive/2020/texmf-dist/tex/latex/psnfss/omszt\nmcm.fd)\n(/cvmfs/sft.cern.ch/lcg/external/texlive/2020/texmf-dist/tex/latex/psnfss/omxzt\nmcm.fd)\n! Extra }, or forgotten $.\n<recently read> }\n \nl.30 {\\rmfamily sale price $}\n %\nNo pages of output.\nTranscript written on tmpg0jlxahb/82002a6a534310632a0ec6d082310260.log.\n\n\n",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mRuntimeError\u001b[0m Traceback (most recent call last)",
"File \u001b[0;32m/work/cetin/LHCb/reco_tuner/env/tuner_env/envs/tuner/lib/python3.10/site-packages/IPython/core/formatters.py:340\u001b[0m, in \u001b[0;36mBaseFormatter.__call__\u001b[0;34m(self, obj)\u001b[0m\n\u001b[1;32m 338\u001b[0m \u001b[38;5;28;01mpass\u001b[39;00m\n\u001b[1;32m 339\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 340\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mprinter\u001b[49m\u001b[43m(\u001b[49m\u001b[43mobj\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 341\u001b[0m \u001b[38;5;66;03m# Finally look for special method names\u001b[39;00m\n\u001b[1;32m 342\u001b[0m method \u001b[38;5;241m=\u001b[39m get_real_method(obj, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mprint_method)\n",
"File \u001b[0;32m/work/cetin/LHCb/reco_tuner/env/tuner_env/envs/tuner/lib/python3.10/site-packages/IPython/core/pylabtools.py:152\u001b[0m, in \u001b[0;36mprint_figure\u001b[0;34m(fig, fmt, bbox_inches, base64, **kwargs)\u001b[0m\n\u001b[1;32m 149\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mmatplotlib\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mbackend_bases\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m FigureCanvasBase\n\u001b[1;32m 150\u001b[0m FigureCanvasBase(fig)\n\u001b[0;32m--> 152\u001b[0m \u001b[43mfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcanvas\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mprint_figure\u001b[49m\u001b[43m(\u001b[49m\u001b[43mbytes_io\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkw\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 153\u001b[0m data \u001b[38;5;241m=\u001b[39m bytes_io\u001b[38;5;241m.\u001b[39mgetvalue()\n\u001b[1;32m 154\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m fmt \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124msvg\u001b[39m\u001b[38;5;124m'\u001b[39m:\n",
"File \u001b[0;32m/work/cetin/LHCb/reco_tuner/env/tuner_env/envs/tuner/lib/python3.10/site-packages/matplotlib/backend_bases.py:2158\u001b[0m, in \u001b[0;36mFigureCanvasBase.print_figure\u001b[0;34m(self, filename, dpi, facecolor, edgecolor, orientation, format, bbox_inches, pad_inches, bbox_extra_artists, backend, **kwargs)\u001b[0m\n\u001b[1;32m 2155\u001b[0m \u001b[38;5;66;03m# we do this instead of `self.figure.draw_without_rendering`\u001b[39;00m\n\u001b[1;32m 2156\u001b[0m \u001b[38;5;66;03m# so that we can inject the orientation\u001b[39;00m\n\u001b[1;32m 2157\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mgetattr\u001b[39m(renderer, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m_draw_disabled\u001b[39m\u001b[38;5;124m\"\u001b[39m, nullcontext)():\n\u001b[0;32m-> 2158\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfigure\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdraw\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrenderer\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2159\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m bbox_inches:\n\u001b[1;32m 2160\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m bbox_inches \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtight\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n",
"File \u001b[0;32m/work/cetin/LHCb/reco_tuner/env/tuner_env/envs/tuner/lib/python3.10/site-packages/matplotlib/artist.py:95\u001b[0m, in \u001b[0;36m_finalize_rasterization.<locals>.draw_wrapper\u001b[0;34m(artist, renderer, *args, **kwargs)\u001b[0m\n\u001b[1;32m 93\u001b[0m \u001b[38;5;129m@wraps\u001b[39m(draw)\n\u001b[1;32m 94\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mdraw_wrapper\u001b[39m(artist, renderer, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[0;32m---> 95\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43mdraw\u001b[49m\u001b[43m(\u001b[49m\u001b[43martist\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrenderer\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 96\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m renderer\u001b[38;5;241m.\u001b[39m_rasterizing:\n\u001b[1;32m 97\u001b[0m renderer\u001b[38;5;241m.\u001b[39mstop_rasterizing()\n",
"File \u001b[0;32m/work/cetin/LHCb/reco_tuner/env/tuner_env/envs/tuner/lib/python3.10/site-packages/matplotlib/artist.py:72\u001b[0m, in \u001b[0;36mallow_rasterization.<locals>.draw_wrapper\u001b[0;34m(artist, renderer)\u001b[0m\n\u001b[1;32m 69\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m artist\u001b[38;5;241m.\u001b[39mget_agg_filter() \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 70\u001b[0m renderer\u001b[38;5;241m.\u001b[39mstart_filter()\n\u001b[0;32m---> 72\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mdraw\u001b[49m\u001b[43m(\u001b[49m\u001b[43martist\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrenderer\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 73\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[1;32m 74\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m artist\u001b[38;5;241m.\u001b[39mget_agg_filter() \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n",
"File \u001b[0;32m/work/cetin/LHCb/reco_tuner/env/tuner_env/envs/tuner/lib/python3.10/site-packages/matplotlib/figure.py:3154\u001b[0m, in \u001b[0;36mFigure.draw\u001b[0;34m(self, renderer)\u001b[0m\n\u001b[1;32m 3151\u001b[0m \u001b[38;5;66;03m# ValueError can occur when resizing a window.\u001b[39;00m\n\u001b[1;32m 3153\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mpatch\u001b[38;5;241m.\u001b[39mdraw(renderer)\n\u001b[0;32m-> 3154\u001b[0m \u001b[43mmimage\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_draw_list_compositing_images\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 3155\u001b[0m \u001b[43m \u001b[49m\u001b[43mrenderer\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43martists\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msuppressComposite\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 3157\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m sfig \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msubfigs:\n\u001b[1;32m 3158\u001b[0m sfig\u001b[38;5;241m.\u001b[39mdraw(renderer)\n",
"File \u001b[0;32m/work/cetin/LHCb/reco_tuner/env/tuner_env/envs/tuner/lib/python3.10/site-packages/matplotlib/image.py:132\u001b[0m, in \u001b[0;36m_draw_list_compositing_images\u001b[0;34m(renderer, parent, artists, suppress_composite)\u001b[0m\n\u001b[1;32m 130\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m not_composite \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m has_images:\n\u001b[1;32m 131\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m a \u001b[38;5;129;01min\u001b[39;00m artists:\n\u001b[0;32m--> 132\u001b[0m \u001b[43ma\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdraw\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrenderer\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 133\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 134\u001b[0m \u001b[38;5;66;03m# Composite any adjacent images together\u001b[39;00m\n\u001b[1;32m 135\u001b[0m image_group \u001b[38;5;241m=\u001b[39m []\n",
"File \u001b[0;32m/work/cetin/LHCb/reco_tuner/env/tuner_env/envs/tuner/lib/python3.10/site-packages/matplotlib/artist.py:72\u001b[0m, in \u001b[0;36mallow_rasterization.<locals>.draw_wrapper\u001b[0;34m(artist, renderer)\u001b[0m\n\u001b[1;32m 69\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m artist\u001b[38;5;241m.\u001b[39mget_agg_filter() \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 70\u001b[0m renderer\u001b[38;5;241m.\u001b[39mstart_filter()\n\u001b[0;32m---> 72\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mdraw\u001b[49m\u001b[43m(\u001b[49m\u001b[43martist\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrenderer\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 73\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[1;32m 74\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m artist\u001b[38;5;241m.\u001b[39mget_agg_filter() \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n",
"File \u001b[0;32m/work/cetin/LHCb/reco_tuner/env/tuner_env/envs/tuner/lib/python3.10/site-packages/matplotlib/axes/_base.py:3034\u001b[0m, in \u001b[0;36m_AxesBase.draw\u001b[0;34m(self, renderer)\u001b[0m\n\u001b[1;32m 3031\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m spine \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mspines\u001b[38;5;241m.\u001b[39mvalues():\n\u001b[1;32m 3032\u001b[0m artists\u001b[38;5;241m.\u001b[39mremove(spine)\n\u001b[0;32m-> 3034\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_update_title_position\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrenderer\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 3036\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39maxison:\n\u001b[1;32m 3037\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m _axis \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_axis_map\u001b[38;5;241m.\u001b[39mvalues():\n",
"File \u001b[0;32m/work/cetin/LHCb/reco_tuner/env/tuner_env/envs/tuner/lib/python3.10/site-packages/matplotlib/axes/_base.py:2978\u001b[0m, in \u001b[0;36m_AxesBase._update_title_position\u001b[0;34m(self, renderer)\u001b[0m\n\u001b[1;32m 2976\u001b[0m top \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mmax\u001b[39m(top, bb\u001b[38;5;241m.\u001b[39mymax)\n\u001b[1;32m 2977\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m title\u001b[38;5;241m.\u001b[39mget_text():\n\u001b[0;32m-> 2978\u001b[0m \u001b[43max\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43myaxis\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_tightbbox\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrenderer\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;66;03m# update offsetText\u001b[39;00m\n\u001b[1;32m 2979\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m ax\u001b[38;5;241m.\u001b[39myaxis\u001b[38;5;241m.\u001b[39moffsetText\u001b[38;5;241m.\u001b[39mget_text():\n\u001b[1;32m 2980\u001b[0m bb \u001b[38;5;241m=\u001b[39m ax\u001b[38;5;241m.\u001b[39myaxis\u001b[38;5;241m.\u001b[39moffsetText\u001b[38;5;241m.\u001b[39mget_tightbbox(renderer)\n",
"File \u001b[0;32m/work/cetin/LHCb/reco_tuner/env/tuner_env/envs/tuner/lib/python3.10/site-packages/matplotlib/axis.py:1352\u001b[0m, in \u001b[0;36mAxis.get_tightbbox\u001b[0;34m(self, renderer, for_layout_only)\u001b[0m\n\u001b[1;32m 1350\u001b[0m \u001b[38;5;66;03m# take care of label\u001b[39;00m\n\u001b[1;32m 1351\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mlabel\u001b[38;5;241m.\u001b[39mget_visible():\n\u001b[0;32m-> 1352\u001b[0m bb \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mlabel\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_window_extent\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrenderer\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1353\u001b[0m \u001b[38;5;66;03m# for constrained/tight_layout, we want to ignore the label's\u001b[39;00m\n\u001b[1;32m 1354\u001b[0m \u001b[38;5;66;03m# width/height because the adjustments they make can't be improved.\u001b[39;00m\n\u001b[1;32m 1355\u001b[0m \u001b[38;5;66;03m# this code collapses the relevant direction\u001b[39;00m\n\u001b[1;32m 1356\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m for_layout_only:\n",
"File \u001b[0;32m/work/cetin/LHCb/reco_tuner/env/tuner_env/envs/tuner/lib/python3.10/site-packages/matplotlib/text.py:956\u001b[0m, in \u001b[0;36mText.get_window_extent\u001b[0;34m(self, renderer, dpi)\u001b[0m\n\u001b[1;32m 951\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mRuntimeError\u001b[39;00m(\n\u001b[1;32m 952\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCannot get window extent of text w/o renderer. You likely \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 953\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mwant to call \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mfigure.draw_without_rendering()\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m first.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 955\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m cbook\u001b[38;5;241m.\u001b[39m_setattr_cm(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfigure, dpi\u001b[38;5;241m=\u001b[39mdpi):\n\u001b[0;32m--> 956\u001b[0m bbox, info, descent \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_get_layout\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_renderer\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 957\u001b[0m x, y \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mget_unitless_position()\n\u001b[1;32m 958\u001b[0m x, y \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mget_transform()\u001b[38;5;241m.\u001b[39mtransform((x, y))\n",
"File \u001b[0;32m/work/cetin/LHCb/reco_tuner/env/tuner_env/envs/tuner/lib/python3.10/site-packages/matplotlib/text.py:381\u001b[0m, in \u001b[0;36mText._get_layout\u001b[0;34m(self, renderer)\u001b[0m\n\u001b[1;32m 379\u001b[0m clean_line, ismath \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_preprocess_math(line)\n\u001b[1;32m 380\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m clean_line:\n\u001b[0;32m--> 381\u001b[0m w, h, d \u001b[38;5;241m=\u001b[39m \u001b[43m_get_text_metrics_with_cache\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 382\u001b[0m \u001b[43m \u001b[49m\u001b[43mrenderer\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mclean_line\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_fontproperties\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 383\u001b[0m \u001b[43m \u001b[49m\u001b[43mismath\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mismath\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdpi\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfigure\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdpi\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 384\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 385\u001b[0m w \u001b[38;5;241m=\u001b[39m h \u001b[38;5;241m=\u001b[39m d \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m0\u001b[39m\n",
"File \u001b[0;32m/work/cetin/LHCb/reco_tuner/env/tuner_env/envs/tuner/lib/python3.10/site-packages/matplotlib/text.py:69\u001b[0m, in \u001b[0;36m_get_text_metrics_with_cache\u001b[0;34m(renderer, text, fontprop, ismath, dpi)\u001b[0m\n\u001b[1;32m 66\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"Call ``renderer.get_text_width_height_descent``, caching the results.\"\"\"\u001b[39;00m\n\u001b[1;32m 67\u001b[0m \u001b[38;5;66;03m# Cached based on a copy of fontprop so that later in-place mutations of\u001b[39;00m\n\u001b[1;32m 68\u001b[0m \u001b[38;5;66;03m# the passed-in argument do not mess up the cache.\u001b[39;00m\n\u001b[0;32m---> 69\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_get_text_metrics_with_cache_impl\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 70\u001b[0m \u001b[43m \u001b[49m\u001b[43mweakref\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mref\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrenderer\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtext\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfontprop\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcopy\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mismath\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdpi\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m/work/cetin/LHCb/reco_tuner/env/tuner_env/envs/tuner/lib/python3.10/site-packages/matplotlib/text.py:77\u001b[0m, in \u001b[0;36m_get_text_metrics_with_cache_impl\u001b[0;34m(renderer_ref, text, fontprop, ismath, dpi)\u001b[0m\n\u001b[1;32m 73\u001b[0m \u001b[38;5;129m@functools\u001b[39m\u001b[38;5;241m.\u001b[39mlru_cache(\u001b[38;5;241m4096\u001b[39m)\n\u001b[1;32m 74\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_get_text_metrics_with_cache_impl\u001b[39m(\n\u001b[1;32m 75\u001b[0m renderer_ref, text, fontprop, ismath, dpi):\n\u001b[1;32m 76\u001b[0m \u001b[38;5;66;03m# dpi is unused, but participates in cache invalidation (via the renderer).\u001b[39;00m\n\u001b[0;32m---> 77\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mrenderer_ref\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_text_width_height_descent\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtext\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfontprop\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mismath\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m/work/cetin/LHCb/reco_tuner/env/tuner_env/envs/tuner/lib/python3.10/site-packages/matplotlib/backends/backend_agg.py:213\u001b[0m, in \u001b[0;36mRendererAgg.get_text_width_height_descent\u001b[0;34m(self, s, prop, ismath)\u001b[0m\n\u001b[1;32m 211\u001b[0m _api\u001b[38;5;241m.\u001b[39mcheck_in_list([\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mTeX\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mTrue\u001b[39;00m, \u001b[38;5;28;01mFalse\u001b[39;00m], ismath\u001b[38;5;241m=\u001b[39mismath)\n\u001b[1;32m 212\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m ismath \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mTeX\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[0;32m--> 213\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_text_width_height_descent\u001b[49m\u001b[43m(\u001b[49m\u001b[43ms\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mprop\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mismath\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 215\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m ismath:\n\u001b[1;32m 216\u001b[0m ox, oy, width, height, descent, font_image \u001b[38;5;241m=\u001b[39m \\\n\u001b[1;32m 217\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmathtext_parser\u001b[38;5;241m.\u001b[39mparse(s, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdpi, prop)\n",
"File \u001b[0;32m/work/cetin/LHCb/reco_tuner/env/tuner_env/envs/tuner/lib/python3.10/site-packages/matplotlib/backend_bases.py:652\u001b[0m, in \u001b[0;36mRendererBase.get_text_width_height_descent\u001b[0;34m(self, s, prop, ismath)\u001b[0m\n\u001b[1;32m 648\u001b[0m fontsize \u001b[38;5;241m=\u001b[39m prop\u001b[38;5;241m.\u001b[39mget_size_in_points()\n\u001b[1;32m 650\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m ismath \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mTeX\u001b[39m\u001b[38;5;124m'\u001b[39m:\n\u001b[1;32m 651\u001b[0m \u001b[38;5;66;03m# todo: handle properties\u001b[39;00m\n\u001b[0;32m--> 652\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_texmanager\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_text_width_height_descent\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 653\u001b[0m \u001b[43m \u001b[49m\u001b[43ms\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfontsize\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrenderer\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 655\u001b[0m dpi \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mpoints_to_pixels(\u001b[38;5;241m72\u001b[39m)\n\u001b[1;32m 656\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m ismath:\n",
"File \u001b[0;32m/work/cetin/LHCb/reco_tuner/env/tuner_env/envs/tuner/lib/python3.10/site-packages/matplotlib/texmanager.py:363\u001b[0m, in \u001b[0;36mTexManager.get_text_width_height_descent\u001b[0;34m(cls, tex, fontsize, renderer)\u001b[0m\n\u001b[1;32m 361\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m tex\u001b[38;5;241m.\u001b[39mstrip() \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m'\u001b[39m:\n\u001b[1;32m 362\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;241m0\u001b[39m, \u001b[38;5;241m0\u001b[39m, \u001b[38;5;241m0\u001b[39m\n\u001b[0;32m--> 363\u001b[0m dvifile \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmake_dvi\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtex\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfontsize\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 364\u001b[0m dpi_fraction \u001b[38;5;241m=\u001b[39m renderer\u001b[38;5;241m.\u001b[39mpoints_to_pixels(\u001b[38;5;241m1.\u001b[39m) \u001b[38;5;28;01mif\u001b[39;00m renderer \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;241m1\u001b[39m\n\u001b[1;32m 365\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m dviread\u001b[38;5;241m.\u001b[39mDvi(dvifile, \u001b[38;5;241m72\u001b[39m \u001b[38;5;241m*\u001b[39m dpi_fraction) \u001b[38;5;28;01mas\u001b[39;00m dvi:\n",
"File \u001b[0;32m/work/cetin/LHCb/reco_tuner/env/tuner_env/envs/tuner/lib/python3.10/site-packages/matplotlib/texmanager.py:295\u001b[0m, in \u001b[0;36mTexManager.make_dvi\u001b[0;34m(cls, tex, fontsize)\u001b[0m\n\u001b[1;32m 293\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m TemporaryDirectory(\u001b[38;5;28mdir\u001b[39m\u001b[38;5;241m=\u001b[39mcwd) \u001b[38;5;28;01mas\u001b[39;00m tmpdir:\n\u001b[1;32m 294\u001b[0m tmppath \u001b[38;5;241m=\u001b[39m Path(tmpdir)\n\u001b[0;32m--> 295\u001b[0m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_run_checked_subprocess\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 296\u001b[0m \u001b[43m \u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mlatex\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m-interaction=nonstopmode\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m--halt-on-error\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 297\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43mf\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m--output-directory=\u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[43mtmppath\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mname\u001b[49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 298\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43mf\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[43mtexfile\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mname\u001b[49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtex\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcwd\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcwd\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 299\u001b[0m (tmppath \u001b[38;5;241m/\u001b[39m Path(dvifile)\u001b[38;5;241m.\u001b[39mname)\u001b[38;5;241m.\u001b[39mreplace(dvifile)\n\u001b[1;32m 300\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m dvifile\n",
"File \u001b[0;32m/work/cetin/LHCb/reco_tuner/env/tuner_env/envs/tuner/lib/python3.10/site-packages/matplotlib/texmanager.py:258\u001b[0m, in \u001b[0;36mTexManager._run_checked_subprocess\u001b[0;34m(cls, command, tex, cwd)\u001b[0m\n\u001b[1;32m 254\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mRuntimeError\u001b[39;00m(\n\u001b[1;32m 255\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mFailed to process string with tex because \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mcommand[\u001b[38;5;241m0\u001b[39m]\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m \u001b[39m\u001b[38;5;124m'\u001b[39m\n\u001b[1;32m 256\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mcould not be found\u001b[39m\u001b[38;5;124m'\u001b[39m) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mexc\u001b[39;00m\n\u001b[1;32m 257\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m subprocess\u001b[38;5;241m.\u001b[39mCalledProcessError \u001b[38;5;28;01mas\u001b[39;00m exc:\n\u001b[0;32m--> 258\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mRuntimeError\u001b[39;00m(\n\u001b[1;32m 259\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{prog}\u001b[39;00m\u001b[38;5;124m was not able to process the following string:\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m'\u001b[39m\n\u001b[1;32m 260\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{tex!r}\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m'\u001b[39m\n\u001b[1;32m 261\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mHere is the full command invocation and its output:\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m'\u001b[39m\n\u001b[1;32m 262\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{format_command}\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m'\u001b[39m\n\u001b[1;32m 263\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{exc}\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;241m.\u001b[39mformat(\n\u001b[1;32m 264\u001b[0m prog\u001b[38;5;241m=\u001b[39mcommand[\u001b[38;5;241m0\u001b[39m],\n\u001b[1;32m 265\u001b[0m format_command\u001b[38;5;241m=\u001b[39mcbook\u001b[38;5;241m.\u001b[39m_pformat_subprocess(command),\n\u001b[1;32m 266\u001b[0m tex\u001b[38;5;241m=\u001b[39mtex\u001b[38;5;241m.\u001b[39mencode(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124municode_escape\u001b[39m\u001b[38;5;124m'\u001b[39m),\n\u001b[1;32m 267\u001b[0m exc\u001b[38;5;241m=\u001b[39mexc\u001b[38;5;241m.\u001b[39moutput\u001b[38;5;241m.\u001b[39mdecode(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mutf-8\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mbackslashreplace\u001b[39m\u001b[38;5;124m'\u001b[39m))\n\u001b[1;32m 268\u001b[0m ) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 269\u001b[0m _log\u001b[38;5;241m.\u001b[39mdebug(report)\n\u001b[1;32m 270\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m report\n",
"\u001b[0;31mRuntimeError\u001b[0m: latex was not able to process the following string:\nb'sale price $'\n\nHere is the full command invocation and its output:\n\nlatex -interaction=nonstopmode --halt-on-error --output-directory=tmpg0jlxahb 82002a6a534310632a0ec6d082310260.tex\n\nThis is pdfTeX, Version 3.14159265-2.6-1.40.21 (TeX Live 2020) (preloaded format=latex)\n restricted \\write18 enabled.\nentering extended mode\n(./82002a6a534310632a0ec6d082310260.tex\nLaTeX2e <2020-02-02> patch level 5\nL3 programming layer <2020-09-24>\n(/cvmfs/sft.cern.ch/lcg/external/texlive/2020/texmf-dist/tex/latex/base/article\n.cls\nDocument Class: article 2019/12/20 v1.4l Standard LaTeX document class\n\n(/cvmfs/sft.cern.ch/lcg/external/texlive/2020/texmf-dist/tex/latex/base/size10.\nclo))\n(/cvmfs/sft.cern.ch/lcg/external/texlive/2020/texmf-dist/tex/latex/psnfss/mathp\ntmx.sty)\n(/cvmfs/sft.cern.ch/lcg/external/texlive/2020/texmf-dist/tex/latex/type1cm/type\n1cm.sty)\n(/cvmfs/sft.cern.ch/lcg/external/texlive/2020/texmf-dist/tex/latex/cm-super/typ\ne1ec.sty\n(/cvmfs/sft.cern.ch/lcg/external/texlive/2020/texmf-dist/tex/latex/base/t1cmr.f\nd))\n(/cvmfs/sft.cern.ch/lcg/external/texlive/2020/texmf-dist/tex/latex/base/inputen\nc.sty)\n(/cvmfs/sft.cern.ch/lcg/external/texlive/2020/texmf-dist/tex/latex/geometry/geo\nmetry.sty\n(/cvmfs/sft.cern.ch/lcg/external/texlive/2020/texmf-dist/tex/latex/graphics/key\nval.sty)\n(/cvmfs/sft.cern.ch/lcg/external/texlive/2020/texmf-dist/tex/generic/iftex/ifvt\nex.sty\n(/cvmfs/sft.cern.ch/lcg/external/texlive/2020/texmf-dist/tex/generic/iftex/ifte\nx.sty)))\n(/cvmfs/sft.cern.ch/lcg/external/texlive/2020/texmf-dist/tex/latex/underscore/u\nnderscore.sty)\n(/cvmfs/sft.cern.ch/lcg/external/texlive/2020/texmf-dist/tex/latex/base/textcom\np.sty)\n(/cvmfs/sft.cern.ch/lcg/external/texlive/2020/texmf-dist/tex/latex/l3backend/l3\nbackend-dvips.def)\nNo file 82002a6a534310632a0ec6d082310260.aux.\n\n(/cvmfs/sft.cern.ch/lcg/external/texlive/2020/texmf-dist/tex/latex/psnfss/ot1pt\nm.fd)\n*geometry* driver: auto-detecting\n*geometry* detected driver: dvips\n\n(/cvmfs/sft.cern.ch/lcg/external/texlive/2020/texmf-dist/tex/latex/psnfss/ot1zt\nmcm.fd)\n(/cvmfs/sft.cern.ch/lcg/external/texlive/2020/texmf-dist/tex/latex/psnfss/omlzt\nmcm.fd)\n(/cvmfs/sft.cern.ch/lcg/external/texlive/2020/texmf-dist/tex/latex/psnfss/omszt\nmcm.fd)\n(/cvmfs/sft.cern.ch/lcg/external/texlive/2020/texmf-dist/tex/latex/psnfss/omxzt\nmcm.fd)\n! Extra }, or forgotten $.\n<recently read> }\n \nl.30 {\\rmfamily sale price $}\n %\nNo pages of output.\nTranscript written on tmpg0jlxahb/82002a6a534310632a0ec6d082310260.log.\n\n\n"
]
},
2024-01-23 16:00:16 +01:00
{
"data": {
"text/plain": [
2024-01-26 11:34:42 +01:00
"<Figure size 900x600 with 2 Axes>"
2024-01-23 16:00:16 +01:00
]
},
"metadata": {},
2024-01-26 11:34:42 +01:00
"output_type": "display_data"
2024-01-23 16:00:16 +01:00
}
],
"source": [
2024-01-26 11:34:42 +01:00
"fig, ax = plt.subplots(figsize=(9, 6))\n",
"\n",
"contour = sns.kdeplot(\n",
" data=df,\n",
" x=\"phi\",\n",
" y=\"eta\",\n",
" cmap=\"Greens\",\n",
" fill=True,\n",
" cbar=True,\n",
" # cbar_kws={\"label\": \"density of two variables (KDE weights)\", \"format\": \"{x:.1e}\"},\n",
")\n",
"\n",
"ax.set_title(f\"Radiation Length Fraction $x/X_0$\", size=14)\n",
"ax.set_xlabel(f\"$\\phi$ [°]\", size=10)\n",
"ax.set_ylabel(f\"$\\eta$\", size=10)\n",
"\n",
"plt.show()"
2024-01-23 16:00:16 +01:00
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
2024-01-22 16:03:16 +01:00
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "tuner",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 2
}