Projektpraktikum/B_photon_eta_phi.ipynb

210 lines
122 KiB
Plaintext
Raw Normal View History

2023-10-05 10:49:35 +02:00
{
"cells": [
{
"cell_type": "code",
2023-10-10 16:17:10 +02:00
"execution_count": 1,
2023-10-05 10:49:35 +02:00
"metadata": {},
"outputs": [],
"source": [
"import uproot\n",
"import numpy as np\n",
"import sys\n",
"import os\n",
"import matplotlib\n",
"import matplotlib.pyplot as plt\n",
2023-10-05 11:50:01 +02:00
"import matplotlib.ticker as tck\n",
2023-10-05 10:49:35 +02:00
"from mpl_toolkits import mplot3d\n",
"import itertools\n",
"import awkward as ak\n",
"from scipy.optimize import curve_fit\n",
"from mpl_toolkits.axes_grid1 import ImageGrid\n",
"%matplotlib inline"
]
},
{
"cell_type": "code",
2023-10-10 16:17:10 +02:00
"execution_count": 2,
2023-10-05 10:49:35 +02:00
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"10522"
]
},
2023-10-10 16:17:10 +02:00
"execution_count": 2,
2023-10-05 10:49:35 +02:00
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"file = uproot.open(\"tracking_losses_ntuple_Bd2KstEE.root:PrDebugTrackingLosses.PrDebugTrackingTool/Tuple;1\")\n",
"\n",
"#selektiere nur elektronen von B->K*ee und nur solche mit einem momentum von ueber 5 GeV \n",
"allcolumns = file.arrays()\n",
"found = allcolumns[(allcolumns.isElectron) & (~allcolumns.lost) & (allcolumns.fromSignal) & (allcolumns.p > 5e3)] #B: 9056\n",
"lost = allcolumns[(allcolumns.isElectron) & (allcolumns.lost) & (allcolumns.fromSignal) & (allcolumns.p > 5e3)] #B: 1466\n",
"\n",
"ak.num(found, axis=0) + ak.num(lost, axis=0)\n",
"#ak.count(found, axis=None)"
]
},
{
"cell_type": "code",
2023-10-10 16:17:10 +02:00
"execution_count": 3,
2023-10-05 10:49:35 +02:00
"metadata": {},
"outputs": [],
"source": [
"#plot minimal energy of photon abhängigkeit von eta und phi\n",
"#materialpeak (beampipe)\n",
"\n",
2023-10-05 11:50:01 +02:00
"#looked at minimal photon energy ak.min(...) and sum of photon energies ak.sum(...)\n",
2023-10-05 10:49:35 +02:00
"energy_found = ak.to_numpy(ak.min(found[\"brem_photons_pe\"],axis=-1))\n",
"energy_lost = ak.to_numpy(ak.min(lost[\"brem_photons_pe\"],axis=-1))\n",
"\n",
"eta_found = ak.to_numpy(found[\"eta\"])\n",
"eta_lost = ak.to_numpy(lost[\"eta\"])\n",
"\n",
"phi_found = ak.to_numpy(found[\"phi\"])\n",
"phi_lost = ak.to_numpy(lost[\"phi\"])\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
2023-10-10 16:17:10 +02:00
"execution_count": 4,
2023-10-05 10:49:35 +02:00
"metadata": {},
"outputs": [
{
"data": {
2023-10-27 19:35:49 +02:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAABYsAAAImCAYAAAASU9WkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACZgElEQVR4nO39f5Aj6XnYeT7oHk6ruRNsdJGO4PgPOhoVcogUJfESzVgOxzFtksDFeXW3e2YD3drTD+viPKjdKMmcm4mr2j7feWYcYZdQ56GHFrEW0LozbVkh9QAtrbXhvbAAk57ZbY4ipgGNRIrUSVeoE8Mrzu5RVei5Nmu62dV5f1Rn5pvAm4lEZgLITHw/ERWdQGa+eDMTqHr6xZPPmzNN0xQAAAAAAAAAwEo7tewOAAAAAAAAAACWj8FiAAAAAAAAAACDxQAAAAAAAAAABosBAAAAAAAAAMJgMQAAAAAAAABAGCwGAAAAAAAAAAiDxQAAAAAAAAAAYbAYAAAAAAAAACAMFgNIkMFgIK1Wa9ndyITRaCStVkuGw+GyuwIAAABMRfwKAMnAYDGwIgaDgWxvb0u1WpX19XXZ3d1ddpdsw+FQqtWqFItFaTaby+5O6rVaLblw4YJsbGzIaDRadncAAACWwop/i8WiFIvFZXcHPohfASA5GCwGVsBgMJDPfe5zUq/Xpd1uS6VSkb29vWV3y1YoFKTdbsfe7nA4TE2wGWdfa7Wa1Gq1WNpSpel8AgAAGIYhV69elcFgMNfXiTtGSkvMRfwKANnEYDGwAnZ2dmRtbc1+XK/XVyKDt1qtysHBwbK7EUjcff3gBz8YW1uWNJ1PAAAAkZMB43mLO0ZKS8xF/AoA2cRgMbAC5p1NkUTVajU1x52GvqahjwAAAIsWd4yUlpgrDf1MQx8BIIkYLAYyrNVqSbValeFwaNcFrlar0uv17G1Go5FsbGzI9va2lMtlKZfLrvWdTkfOnz8vuVzODrZ6vZ5Uq1XJ5XJSrVbtdlqtlhSLRel0OtLr9aRYLLq2UVmva/3MWkN5MBhItVqVcrks6+vrsr297eqz1deNjY2JQHF3d9c+5mKxGGhSvV6vJ7lcznU8g8FA1tfXJZfLSbFYdL2GdX6sCTo6nY59blutlpw/f142Njam9nX8nFnn2GqnWCzK+fPnpVqtam+xOzg4sLebdi383gN+fZy2/6zvDS9+13zW1/Bryzpm3fUaZ71/19fXJ85Lr9ezPzvlctm1rtVqSS6XS1TtcAAAVs20GGZ8G+tvvhU7zhLHWRYZwxK/Lj9+FUleDEv8CmAqE0DmFQoFs1AoTDzf7/fNfD5v9vt9+7lms2mKiFmv1+3narWaKSKu7fb29kwRMSuViv24UqmYImKWSiVza2vL7Pf79r5qe3t7e2Y+nze73a79XL1eN0XENAxj6vH0+32zVCrZj9vttikiZq1Ws5/b2toyRcTc29tz7Ws9b+l2u6aIuPrixdpX3dbaf2try7Vts9m0n2u322ahULD7uLW1ZRqGYR+rV1/HWedSPcftdts+7+o1ts5nqVQy6/W657UI+h7w6mOQ/Wd5b3iZds1neY1pbU27XhbDMOxrbH0erOtgtWVdh/Fj3NvbC/ReBwAA0elizKAxUKVSccV5zWYzUIyks4wYlvh1efGr9VpJimGJXwEEwWAxsAK8BosNw3AFHOrzamBlBVpqQHV4eOgaLDZNJ2AZDyys4MdSqVS0rxt0sNgwDFdfTNM08/m8KSLm4eGhq8/jwWGpVDLz+fzEcYwHyzrjA+Tqa4+f30ql4nptK+jSvc4s/8mw2mk2mxPHJSJmu9323W78Wsz6HhjvY9D9g743vAS55kFfI0hbftdLfS21HSuoHz9H4/8RstofvzYAAGA+dDFm0Bgmn89PxANhB4uXEcMSvy4vfrXaTEoMS/wKICjKUAArajgcymAw0E76Yd2qFHYSvHw+P/GcNbHEcDi0b48Kw+r3zs6OXVZDvUXr9u3bvvu3223p9/sT2weZJblQKIhhGNLpdLT9sm7ZG41GMhqNpFAo2Outc/LJT35y6usEobYt4lyzbrfrev7ixYuux/l83u5n1PdAmP393hvTXifoNZ/2/gvS1rTr9dZbb008p97eqarVajIcDl23Nt64cUOuXLnidcgAAGCOZolhCoWC7O7uum6939raCv2ai45hiV/dFhW/qq+VlBiW+BVAUI8tuwMAlsOvnpoVoFlBWZysNseDxaCsfrfb7VD75/N5yefz0ul05MaNGzMHv1aNr06nI5VKRVqtlly5ckVarZY0m02p1+vy2muvedYy0wWBcbAC3lmuWdT3wKLeQ1GveZS2vK6X9b7p9XoT/9kYf7y9vS2tVkvq9bqUSiUZjUaytrY2t/cCAADwN0sM0263pVgsyvb2tjSbTWm329qBxqCvuYwYlvg1vv1nkbQYlvgVQFBkFgMrTpeNYAUBa2trsb+eFXwF+Tbeb/+wQdxwOJRisSjD4VDa7fbMmSG1Wk1EnIwDK8AulUr2JCPNZtPeblGsaxVmED7qe2De76Go13webVUqFSmVSrKzsyO9Xk9Go5HU63XZ2tqauAaFQkFKpZL0ej0ZDof2xJMAAGC5gsQwhUJB9vf3pVQq2XFkkMmRxy0zhiV+jX//IJIWwxK/AgiKwWJgRVnfHo/P+CziBE/r6+uxv64ViKi30YXZX3crnYj+eFTlclnW1tZC3T5oqVQq0uv1pNPpyMWLFyWfz8vGxoaMRiPZ3d2duHVuEazB92KxGHifqO+BRb2Hol7zebXVbrelVCrJYDCwMy/q9bp2W2um6mazKd1ud+H/GQMAAI5ZYpjhcCj5fF663a6d1WmVK5jFsmNY4td49p9FEmNY4lcAQTBYDKyAg4ODiUxeq36ZWqvMcvv2bcnn83ZA8MEPflBE3N9kq/XNZmEFoq1WS7vvtPZKpZKInAQv47eR6bI81PasY1Vvn7LWz5LpbP0HoVqt2kFUpVKx+xXmPxDjfZ1Vp9NxXbO/+Iu/EBH/45rlPaDrY5j9w5j1mi+qrWq1amf2bG1t+d6SWiqV7JqH3L4HAMByzRLDqANplUrFzs4d3y/pMSzxa/j9w0piDEv8CiAIBouBFdZut+2sAot1O9L169ftoMAKIra3t6XX69n1zUROvsW2JqsLEqzm83k7I6JYLNq3NllB63A4dE0gMm3/arUqu7u7Ui6XZW9vzw6krIyAZrNpT6pn3VLW6XSk1WpJq9WyX3cwGEin0wkU8JZKJcnn83YAZalUKnYAOs5qV9e+rq/TqBNvjEYjaTabcv369an7jUYj13UK+h7w6mPQ/cOWHREJfs3DvP+82vK7XiInQXmv17P3b7Va0ul0fOvgWe+1q1evBjpuAAAwP0FjmNdee801qGhNAmfFgEHjuGXHsMSvi41fRZIXwxK/AgjMBJBZ/X7frNVqpoiYImLWajWz2+26tjk8PDQrlYpZKpXMWq1m1mo1s9/vT7RVr9fNfD5v5vN5c2tryzRN0ywUCubW1pbZ7/fNfr9vGoZhiohZKBTMbrdrHh4eul6/Xq/b7TWbTbNQKJgiYhqGYe7t7dnt7e3tTT22er1u718oFMxmszmxjWEYZj6fN2u1mut18/m8/VqmaZq1Ws11XEHU6/WJ89Tv97X9aLfbofrq9boiYm5tbZmGYZiVSsWsVCqu69put818Pm+f236/P3Et1GMN+h7w6uO0/Wd9b/gdu9d5nPU1/NoKcr2s96vVtvpTKBTMw8PDiX0ODw9N/uwCALA447FwvV53/Y0OEgOVSiU7btza2jIrlcrE3/mgcZxpLjeGJX41A+8fV/xqHX8SYljiVwBB5UzTNOMegAYAzMfu7q5sb29Lt9u1MwiweIPBQG7cuCHXrl2Tg4MDV8ZLu92W9fX1iZqCvV5P2u22K6sGAAAg64hfk4H4FUBQjy27AwAApIk1G/nh4aHk8/mJGm6FQkE7yUiz2ZRr164tqJcAAADACeJXALNIdM1iq3bp7u5upML5AADExapb+Oyzz7pqvA2HQ7uetzUxilWT2/rXbxIRAFgVxPgAsFjEr0BydDo
2023-10-05 10:49:35 +02:00
"text/plain": [
"<Figure size 1800x600 with 3 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(18,6))\n",
"\n",
2023-10-05 11:50:01 +02:00
"a0=ax[0].hist2d(energy_found, eta_found, bins=200, cmap=plt.cm.jet, cmin=1, range=[[0,3e3],[1,6]], vmax=20)\n",
"ax[0].set_xlabel(\"minimal or sum of photon energy [MeV]\")\n",
"ax[0].set_ylabel(r\"$\\eta$\")\n",
2023-10-05 10:49:35 +02:00
"ax[0].set_title(\"found eta wrt photon energy\")\n",
"\n",
2023-10-05 11:50:01 +02:00
"a1=ax[1].hist2d(energy_lost, eta_lost, bins=200, cmap=plt.cm.jet, cmin=1, range=[[0,3e3],[1,6]], vmax=20)\n",
"ax[1].set_xlabel(\"minimal or sum of photon energy [MeV]\")\n",
"ax[1].set_ylabel(r\"$\\eta$\")\n",
2023-10-05 10:49:35 +02:00
"ax[1].set_title(\"lost eta wrt photon energy\")\n",
"\n",
"\"\"\"\n",
2023-10-05 11:50:01 +02:00
"lost: perhaps slightly more hits at larger eta but not really significant\n",
2023-10-05 10:49:35 +02:00
"\"\"\"\n",
2023-10-05 11:50:01 +02:00
"\n",
2023-10-05 10:49:35 +02:00
"fig.colorbar(a0[3],ax=ax[1])\n",
"plt.show()"
]
},
{
"cell_type": "code",
2023-10-10 16:17:10 +02:00
"execution_count": 5,
2023-10-05 10:49:35 +02:00
"metadata": {},
2023-10-05 11:50:01 +02:00
"outputs": [
{
"data": {
2023-10-27 19:35:49 +02:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAABakAAAInCAYAAACSp9XsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADC3UlEQVR4nOz9f5AbaZrYdz4ge0WVxOsF2eML9dydpEF51yfSq+sFasN22N4+awHNWXGkfhRQrYi5XqloNSAFpPuj1Soct++OpON6Sqjr890fC0sAdVUrtX2xXQAdEiukswRsnHvsuLBuCGxLa3K18hRGWtndkqKHxLTpreU0i7g/iol8M5GZyEwk8gfw/UQwmEBmvvki8eupF08+b2o8Ho8FAAAAAAAAAIAInIu6AwAAAAAAAACA1cUgNQAAAAAAAAAgMgxSAwAAAAAAAAAiwyA1AAAAAAAAACAyDFIDAAAAAAAAACLDIDUAAAAAAAAAIDIMUgMAAAAAAAAAIsMgNQAAAAAAAAAgMgxSAwAAAAAAAAAiwyA1ACTIcDhciWMCAAAgGUajkbRarZWOGTkHADA/BqkBJN5gMJBWqxVYe3ENMvf29mQwGIR+3OFwKHt7e6EfN0xxfc4BAMDqGAwGUqvVJJfLSS6Xi7o7rrRaLfnGN74hlUpFRqOR47bD4VAuXboUaNweB17OAQDAHoPUABxpwXKpVJL19fVYDVYOh0MplUqSy+Wk2WwG0maUgXatVrNd1+l05Ac/+IEUi8VAjuVFPp8XEVm6Pyg0/GEBAADiIJvNyltvvbXwpIThcBhYzFMul6VcLrvadjQayWg0kuPj40COPY+ozoEXQfYRAJKAQWoAtgaDgfzcz/2c1Ot1abfbUiwWYxFUajKZjLTb7UDbjCrQ3tvbk7feesv2OLu7u1Kv1+c+jl87OzvSbDZjEyjzhwUAAFhG2Wx24ccolUry+PHjwNp77bXXXG2XzWZlPB5HGtNqojoHXgTdRwCIOwapAdja3d2Vy5cvT27X6/XAMpbjLIpA+/j42PaPklqtJpVKZe5jzKtSqThme4eJPywAAAC8K5VKkZSPi5MknIMk9BEAgsYgNQBbBEbh2Nvbcxz8PTw8XEimr1flclkODw8jzw5OQtCehD4CAIBkGY1Gk6SBQqEghUJBer2e7TaVSkXW19cnJds6nc4kPqlUKo7xijZfRy6Xk16vN1m+dOmSlEoly3jw8ePHk+1SqZSUSiXD+k6nI6VSaep+K71eT1KplKGdwWAg6+vrkkqlJJfLGfpeKpUklUpN5hfpdDqT89NqteTSpUtSqVQiPwdau07P46w+ztpf7Xen05Fer+fYHzuDwUBKpZIUCgVZX183/L3i9RhObWmP2er5MqtUKpPXtfm89Ho9uXTpkqRSKSkUCoZ1rVZLUqlUrEpXArAwBgCTZrM5LhaLYxEZi8i4WCyOi8XiuNvtTrZ58uTJuFwuj3d2dsb5fH6cz+cN69vt9jidTo9FZNzv98fj8Xjc7XYn7RaLxUk7zWZznM1mx+12e9ztdsfZbNawjUo7rvavXq+PRWSczWYdH5N6nG63O1lOp9PjYrE4fvLkyWRbrU11O6v+tNvtybnxS3s8dtrt9szHFqZsNjtuNpszt+t2u4bXz3g8Hvf7/XEmk5k8X9rrYjweT14Xx8fH4/H47HFrr6lmszlOp9Pjcrk8brfbkzby+fy4WCwa2lEt4jnX2p312nfq46z9vb4nnPT7/XGxWBzn8/lxJpMZ7+zs+D6OU1va47Z6zlTa+zaTyUydl263O/nMyOfzhnXNZnMsIuN6ve7p8QMAkERWsW2/3x+n0+mZ34/FYtHwHd1sNg3rd3Z2DDGXnXK5PInl8vn8eGdnZxL7isg4k8lMttXiqHw+P67X6+N+vz/ZXzv28fGxYTs3tL6qcZIWY5rjkGazOblPjcW0mCubzU7OaVTnYDx2/zza9dHN/sfHx5M+av2264+dfr9veJ7a7fbkfHo9xqy2Zj1fmmw2O3mOj4+PJ89NJpOZtKU9D+bHeHx8HKu/qQBYY5AagK1MJmMIvjRugystSFG30wIKbRDMS4BzfHw8TqfThkDV7SB1HAJtKzs7O44BshaoWen3++OdnZ2pwcBisThOp9MzA+9utzsul8uWg4npdNoygN3Z2XE9UMofFtH9YaEdK05/XPCHBQAA7ljFttls1jLm1H5g1mKOdDo9FWf5GaTW9hORqQSFfD4/FpFxu9123M4qTvYSO5v/btCk0+mpv1GKxaLhMWl9soqjozwHbp9Huz663V+L1cwxldvzb04oGY/Hk2QCLdHD7THctOX0fKnHUtvRYlbzOTLH+Vr7bhJtAESLQWoAtuwGqb0GV+YsUnOw6TbA0bI4zdwMUo/H0QfaZrOyqMdjd5nLWv/H47NgTctkdUt73lTlctnynGqZt27wh0V0f1hobcbljwv+sAAAwD1zbKvFVFbfsdqP3do6Laaw+1HbTxylJhyMx9M/VmvbWcUK5u90r7GzVZyqxSDaY3jy5MlUm9p50WI9VVTnwMvzaNVHL/tr/bOKbWfF8moMr/7Tzrt2Ltwcw21bTs+Xej7MV+FZ7aPFmOpzls1mDVdRAognalID8GQ4HMpgMLCc5E+rG+Z3csV0Oj11nzbx3HA4nNQqm1cmkzHc1vrd7XYN929sbEz1T6tzF4Td3d2ZExGORiPD5JVWtLpvWm26fD7vqYb1zZs3ReSsFpymXq9LPp+f2vby5cuuz0Emk5FsNmtoVzMcDiftjEYjGY1GhudFey38zM/8jOvHMasvKj/P+byvfT/7O70nnGjH2t3dndR+VOsDPnjwwPVx3Lbl9Jx997vfnbpPrS+pKpfLMhwODbUVP/74Y9na2nJ6yAAALC2neS602EWLV9rttqTTaanVarK+vr6QOTK0WCbIuNiOFiNp8WSr1ZrEBFrcdHh4aFtr2SrGCYKfc+DleVzE/m5px2m324Z/T548kfF4bPk3QlBt2T1fWnxprsEuIlOxtfb3lTa5vfb31KJeCwCCwyA1AE/CCo7MtDbNg41BCDPQ1mgTrcx6PI8fP54ZUGnBXTqd9nV+isWiiJwNBGp6vZ7lZCWZTMbTxIn8YRHc/l7E7Y8L/rAAAGB+VjGY9v2oJTVkMhn5/ve/L/l8XobDoeRyucnEiUFRj7VoWuKFFjc2m81JMoX2uJrNZuiTjM9zDtw8j4vcfxY1QSMubRWLRcnn87K7uyu9Xk9Go5HU63XZ2dmZeg4ymYzk83np9XoyHA6l1Wp5mjASQHQYpAbgy6KDIzMtsHGTRepVmIG2Znd3d5LBPC+t3/MEf/l83jCIOhwOLc+Hm0FzFX9YBL+/G3H744I/LAAA8E/7Qdfqx14trlhfXxeRs+/rdDot3W5X2u22iIhl4sE8tHg8l8sF2q6dYrEovV5POp2ObGxsSDqdlkqlIqPRSPb29qauhAuDn3Pg5XlcxP5uabGZ1dWQdscPo612uz35m6XVakm9Xp8kNZhpSQ/NZlO63W7of2sA8IdBagCehBUcmWkBTr/fD7ztsANt7Ty5Gey9fPnyzMzlWq0m2Wx2rss5C4WCDIdDGY1G0uv1bDNt3ZQfMeMPi2D29yKOf1zwhwUAAP5oJdTUcmmaBw8eSDqdnnxXqt+txWJxkihg3s/LlXFmnU7HcMwf/OAHIrKYZBIRfZC9VCpNYgTtSsBareZ7ED7sc+DlebTqo5/9/dD+DqjValN/X3jNyg+yrVKpJO12W3Z2dmRnZ8eyhJ563EwmI3t7e1yNByQIg9QAbD1+/Hgq0PISHL322msiYgyK1TrEXmgDma1Wy3LfJAXatVrNdRZ1JpNxzGDV6nRXKhXDc6Lu4+bcaAHkgwcPbOsmi5ydE6/Zx/xh4X9/v+L4xwV/WAAA4J9Wa1qNm7Qrk+7evTv5vjw8PJyKAzOZzCR+034QbzabkzlfZlHnzBiNRtJsNuXu3bsz9xuNRobYSouLvMbY+Xxe0un0JD7QFIvFSXxldWz1f1WU58Dt82jXR7f7z/N3TDqdlp2dHRE5S+golUqyt7cnhUJBjo+PJ7Ghm2O
2023-10-05 11:50:01 +02:00
"text/plain": [
"<Figure size 1800x600 with 3 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(18,6))\n",
"\n",
"a0=ax[0].hist2d(energy_found, phi_found/np.pi, bins=200, cmap=plt.cm.jet, cmin=1, range=[[0,2e3],[-1.1,1.1]],vmax=10)\n",
"#ax[0].set_yticks(np.arange(-1,1.1,0.25), minor=True)\n",
"ax[0].yaxis.set_major_formatter(tck.FormatStrFormatter('%g $\\pi$'))\n",
"ax[0].set_xlabel(\"minimal or sum of photon energy [MeV]\")\n",
"ax[0].set_ylabel(r\"$\\phi$\")\n",
"ax[0].set_title(r\"found phi $\\angle(x,y)$ wrt photon energy\")\n",
"\n",
"a1=ax[1].hist2d(energy_lost, phi_lost/np.pi, bins=200, cmap=plt.cm.jet, cmin=1, range=[[0,2e3],[-1.1,1.1]], vmax=10)\n",
"#ax[1].set_yticks(np.arange(-1,1.1,0.5), minor=True)\n",
"ax[1].yaxis.set_major_formatter(tck.FormatStrFormatter('%g $\\pi$'))\n",
"ax[1].set_xlabel(\"minimal or sum of photon energy [MeV]\")\n",
"ax[1].set_ylabel(r\"$\\phi$\")\n",
"ax[1].set_title(\"lost phi wrt photon energy\")\n",
"\n",
"\"\"\"\n",
"Cannot really make out any patterns that might explain lost and found differences.\n",
"See no materialpeak\n",
"\"\"\"\n",
"\n",
"fig.colorbar(a0[3],ax=ax[1])\n",
"#plt.style.use(\"ggplot\")\n",
"plt.show()"
]
2023-10-05 10:49:35 +02:00
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "env1",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
2023-10-27 19:35:49 +02:00
"version": "3.10.12"
2023-10-05 10:49:35 +02:00
}
},
"nbformat": 4,
"nbformat_minor": 2
}