Projektpraktikum/electron_lost_found.ipynb

1055 lines
1.8 MiB
Plaintext
Raw Normal View History

{
"cells": [
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [],
"source": [
"import uproot\n",
"import numpy as np\n",
"import sys\n",
"import os\n",
"import matplotlib\n",
"import matplotlib.pyplot as plt\n",
"from mpl_toolkits import mplot3d\n",
"import itertools\n",
"import awkward as ak\n",
2023-09-14 16:33:27 +02:00
"import seaborn as sns\n",
"from scipy.optimize import curve_fit\n",
"%matplotlib inline"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"#file = uproot.open(\"tracking_losses_ntuple_Bd2KstEE.root:PrDebugTrackingLosses.PrDebugTrackingTool/Tuple;1\")\n",
"file = uproot.open(\"tracking_losses_ntuple_Dst0ToD0EE.root:PrDebugTrackingLosses.PrDebugTrackingTool/Tuple;1\")\n",
"\n",
2023-09-14 16:33:27 +02:00
"#look at particles only from Signal\n",
"allcolumns = file.arrays()\n",
2023-09-20 16:34:15 +02:00
"tracked = allcolumns[(allcolumns.isElectron) & (~allcolumns.lost) & (allcolumns.fromSignal) & (allcolumns.p > 5e3)]\n",
"lost = allcolumns[(allcolumns.isElectron) & (allcolumns.lost) & (allcolumns.fromSignal) & (allcolumns.p > 5e3)] \n",
2023-09-14 16:33:27 +02:00
"\n",
"#ak.num(tracked, axis=0)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
2023-09-15 12:33:25 +02:00
"outputs": [],
2023-09-14 16:33:27 +02:00
"source": [
"#lost\n",
"l_eph = lost[\"brem_photons_pe\"]\n",
"ak.nan_to_num(l_eph)\n",
"l_pT = lost[\"pt\"]\n",
"l_sci_x = lost[\"scifi_hit_pos_x\"]\n",
"ak.nan_to_num(l_sci_x)\n",
"\n",
"#found\n",
"f_eph = tracked[\"brem_photons_pe\"]\n",
"ak.nan_to_num(f_eph)\n",
"f_pT = tracked[\"pt\"]\n",
"f_sci_x = tracked[\"scifi_hit_pos_x\"]\n",
2023-09-15 12:33:25 +02:00
"ak.nan_to_num(f_sci_x)\n",
"\n",
"l_sci_x, l_pT = ak.broadcast_arrays(l_sci_x, l_pT)\n",
"f_sci_x, f_pT = ak.broadcast_arrays(f_sci_x, f_pT)\n",
"\n",
"l_sci_x = ak.to_numpy(ak.flatten(l_sci_x))\n",
"l_pT = ak.to_numpy(ak.flatten(l_pT))\n",
"f_sci_x = ak.to_numpy(ak.flatten(f_sci_x))\n",
"f_pT = ak.to_numpy(ak.flatten(f_pT))"
2023-09-14 16:33:27 +02:00
]
},
{
"cell_type": "code",
"execution_count": 40,
2023-09-14 16:33:27 +02:00
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABiwAAAIhCAYAAADdMJK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXwURf7/8fcQkhBCEgiQA4gBFUGJoIgG0DUcckRBBTxxEVwW/SoeCK7nKsFV8FivlRV1lwVRUNavgOKBgAiuX0A5REUBdX+gQQmwbAiHECDU7w+YoSfpzswkM5lJ5vV8PPJIT011dXVPT6crXZ8qlzHGCAAAAAAAAAAAIIzqhbsCAAAAAAAAAAAAPLAAAAAAAAAAAABhxwMLAAAAAAAAAAAQdjywAAAAAAAAAAAAYccDCwAAAAAAAAAAEHY8sAAAAAAAAAAAAGHHAwsAAAAAAAAAABB2PLAAAAAAAAAAAABhxwMLAAAAAAAAAAAQdnXigcX06dPlcrm0ZcuWkJT/wgsvaPr06UEvd8SIEWrdunXQy3V7//33VVBQELLyayOXy+V1TL799lsVFBTYnjuh/nyqY+nSpXK5XFq6dGnQynQ6z93b+t///d+gbSuUnI7N888/r1NPPVVxcXFyuVzavXu3359xJJ8L4bRlyxa5XC6f18fKvmfVUVm5PXr0UE5OTlC317p1a40YMaLK6//6668qKCgI6vcW8GX58uUqKCjQ7t27w10VADVg9uzZ6tChgxISEuRyubRu3bpwV8lWQUGBXC5X0MoLdXswVPcytVmPHj3Uo0cPz+vK7nNC/flUV/k2YnVV1g53uVy69dZbg7atULM7Nh999JG6dOmixMREuVwuzZs3z+/PONLPhXDyp60RqvZEZeW6r9f/+c9/gra9YLSvQ/V/OsDJL7/8ooKCgoi9t6pr6sQDi1CrrRfC999/XxMmTAh3NSLKihUr9Pvf/97z+ttvv9WECRNsb5gefPBBzZ07twZr57/OnTtrxYoV6ty5c9DKrK3neXl2x2bdunW6/fbb1bNnTy1ZskQrVqxQUlKS359xJJ8LtUFl37NILNfJ3Llz9eCDD1Z5/V9//VUTJkzggQVq1PLlyzVhwgQeWABRYOfOnRo2bJhOOeUULViwQCtWrNBpp50W7mrVCTV9z1EbvPDCC3rhhRc8ryu7z7nkkku0YsUKZWZm1mAN/Ve+jVhddakdXv7YGGN01VVXKTY2Vu+8845WrFihvLw8vz/jSD8XIl2o2hM13U4JRvu6rvz/ArXHL7/8ogkTJvDAoobUD3cFEBmMMTp48KASEhLCXZWQ6tq1q995TznllBDWpHqSk5MD2pdoYndsvvnmG0nSqFGjdN5553nS/f2Ma+JcOHz4sFwul+rXj6zL8q+//qqGDRuGuxoR4eyzz/aZJ5ifY10/9tHydwcAasp3332nw4cP67e//a3y8vLCXZ2oVtf/hkvSGWec4Xfe5s2bq3nz5iGsTfXQrnJW/tj88ssv+u9//6tBgwapd+/eXu/58xnXxLkQqfeY0XBd8Jc/7etgfo6R2tYOJs4v1DmmDpg2bZqRZDZv3uyVPnXqVNOxY0cTHx9vmjRpYi6//HLz7bffeuX597//ba6++mqTmZlp4uLiTFpamunVq5f54osvjDHGZGdnG0leP9nZ2ZXW5+jRo+avf/2r6dSpk2nQoIFp3LixGTJkiPn3v//tlW/48OEVyvJ3XWOM+eCDD0yvXr1McnKySUhIMO3btzcTJ070lF2+3tZjJMmMHj3aTJkyxbRv397ExsaaKVOmGGOM+de//mV69eplGjVqZBISEky3bt3Mu+++a3vMlyxZYv7nf/7HNG3a1KSmpppBgwaZn3/+udLj465fYmKiWb9+venVq5dp2LChadasmRk9erTZv3+/V94DBw6Ye++917Ru3drExsaaFi1amFtuucUUFxd75fvoo49MXl6eSU1NNQ0aNDBZWVlm8ODBXuVJMuPHj/fah/I/06ZNc/x8/K1Ldna2ueSSS8wHH3xgzj77bNOgQQPTrl07M3XqVK98+/fvN+PGjTOtW7f2nKfnnHOOmTVrVqXH7+OPPzaSzMcff1zhmH7//fcmPz/fJCYmmlatWpmxY8eagwcPVlpeZee5e1uzZs0y999/v8nMzDRJSUmmd+/eZuPGjRXKWrRokenVq5dJSkoyCQkJpnv37mbx4sWVbt8YY8rKysyf/vQnc9ppp5kGDRqYlJQUc+aZZ5pnn33WK9+GDRvMNddcY9LS0kxcXJzJysoyw4YN8+xj+WOTl5dXYd+GDx/uOWa+vs9O+dzfoRkzZpj27dubhIQE07FjRzN//nyf5bnrOGPGDDN27FjTokUL43K5zIYNG4wx/h/DefPmmTPPPNPExcWZNm3amGeffdaMHz/elL+0T5482fzmN78xzZs3Nw0bNjQ5OTnm8ccfN4cOHfLKl5eXZzp06GCWLVtmunXrZhISEszVV19tjDHm559/NldeeaVp1KiRSU5ONldddZVZsWKF13fGjq/vmTH+XasDLde9L59//rm54IILTEJCgmnTpo2ZNGmSKSsr8yqrpKTE8z10f6/vuOMOs2/fPq982dnZnnPHGN+fo9XmzZtt6+suz/25rVmzxgwZMsQ0btzYZGRkGGOMWbVqlbn66qtNdna2adCggcnOzjbXXHON2bJli+0x8ee6XNn18tChQ6Z58+bmt7/9bYX9KC4uNg0aNDB33nlnwMevsr87L7zwgunYsaNJTEw0jRo1Mu3atTP33Xef1/rbtm0zN954o2nZsqWJjY01rVu3NgUFBebw4cMV6lme+5o8f/58c9ZZZ5kGDRqY9u3be76v06ZNM+3btzcNGzY05557rlm1alWFMt5++23TtWtXk5CQYBo1amQuuugis3z5cq887s/xyy+/NFdccYVJTk42TZo0MXfeeac5fPiw2bhxo+nXr59p1KiRyc7ONo8//niF7QR6PCu7BrnrU/7HfX20/k0sf7ys57r73Proo4/M73//e5OammqSkpLMsGHDzL59+8y2bdvMlVdeaVJSUkxGRoYZN25chesLgNCyu/fPy8vzvO/PNczpvsju3iKQ+6B3333XdOrUycTFxZnWrVubJ5980rZMJ/7cFzm1B/29p6rs/tLfew67+6cff/zRXHfddaZ58+YmLi7OtG/f3vz5z3/2uhdx3yM8+eST5qmnnjKtW7c2iYmJpmvXrmbFihU+j4+7fgsXLjQjRowwTZo0MQ0bNjQDBgywbUMGo43s3m/3OebrPqc67fVA2jj+3E/YKf/3sDptXX/b4f58d7777jtz7bXXep0/kydP9rk/xhjzz3/+05x33nme/xW0adPG3HDDDV55iouLzdixY02bNm1MXFycad68ucnPz/e6l7UeG7v7Cvc1w+kzLs8uXyD37XYqu8f09xiuX7/e9OnTxyQkJJhmzZqZW265xbz77rsV2twLFy40l156qWnZsqWJj483p5xyirnxxhvNzp07vcqr7N7+0KFD5g9/+INJT083CQkJ5vzzzzefffZZhfuv8nx9z4zx7385gZbr3pf169eba665xiQnJ5u0tDRzww03mN27d3uVVZ3/hVX2OZbnz/8v7NpoO3bsMDfffLM5/fTTTWJiomnevLnp2bOn+eSTT2yPiT/XZV/Xy8suu8ycdNJJtufyeeedZ84+++yAj19lf3f8+b9YaWmp+dOf/mTatWtn4uLiTLNmzcyIESPMjh07bI+3lfuavGHDBtO3b1/TsGFDk5GRYSZNmmSMMWbFihXm/PPPNw0bNjRt27Y106dPr1DG119/bS699FLTuHFjEx8fbzp16lQhn/tznDlzprn77rtNRkaGSUxMNAMGDDBFRUVmz549ZtSoUaZp06amadOmZsSIEWbv3r1eZQR6PCu7BrnrU/7HfX20/k0sf7ys57r73HriiSfMY4895mnj5+XlmU2bNplDhw6Ze+65x2RmZprk5GRz+eWXm+3bt/v8XOqiOvvAYuLEiUaSufbaa817771nZsyYYU4++WSTkpJivvvuO0++du3amVN
2023-09-14 16:33:27 +02:00
"text/plain": [
2023-09-15 12:33:25 +02:00
"<Figure size 2000x600 with 4 Axes>"
2023-09-14 16:33:27 +02:00
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig, ((ax0, ax1)) = plt.subplots(nrows=1, ncols=2, figsize=(20,6))\n",
"\n",
"a0=ax0.hist2d(l_sci_x, l_pT, bins=200, cmap=plt.cm.jet, cmin=0, range=[[-3000,3000],[0,2000]])\n",
2023-09-14 16:33:27 +02:00
"ax0.set_xlabel(\"scifi x\")\n",
"ax0.set_ylabel(r\"$p_T$\")\n",
"ax0.set_title(\"lost electron positions in the scifi in regard to their transverse momentum\")\n",
"plt.colorbar(a0[3],ax=ax0)\n",
2023-09-14 16:33:27 +02:00
"\n",
"a1=ax1.hist2d(f_sci_x, f_pT, bins=200, cmap=plt.cm.jet, cmin=0, range=[[-3000,3000],[0,2000]])\n",
2023-09-14 16:33:27 +02:00
"ax1.set_xlabel(\"scifi x\")\n",
"ax1.set_ylabel(r\"$p_T$\")\n",
"ax1.set_title(\"found electron positions in the scifi in regard to their transverse momentum\")\n",
"plt.colorbar(a1[3],ax=ax1)\n",
2023-09-14 16:33:27 +02:00
"\n",
2023-09-15 12:33:25 +02:00
"\"\"\"\n",
2023-09-18 12:12:50 +02:00
"B:\n",
2023-09-20 10:52:44 +02:00
"we can see that the lost electrons cover a wider spread in the x direction of the scifi tracker, most widely scattered electrons have low pt\n",
"\n",
"D:\n",
"heatmaps look fairly similar. lost e are more densely located between x \\in [1000,2000]. found e between x \\in [200,1500].\n",
"we can see a near empty space around the x origin in both. lost seem to have less pt.\n",
2023-09-18 12:12:50 +02:00
"\n",
2023-09-15 12:33:25 +02:00
"\"\"\"\n",
2023-09-14 16:33:27 +02:00
"plt.show()"
]
},
{
"cell_type": "code",
2023-09-18 12:12:50 +02:00
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 43,
2023-09-15 12:33:25 +02:00
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[1.63e+03], [5.54e+03], [8.37e+03], ..., [3.25e+03], [1.15e+03], [682]]\n",
"[1.31e+04, 8.74e+03, 8.91e+03, 5.32e+03, ..., 5.4e+03, 1.66e+04, 2.5e+04]\n",
"5537.449\n",
"8742.293591347812\n"
2023-09-15 12:33:25 +02:00
]
}
],
"source": [
"energy_found = tracked[\"energy\"]\n",
"energy_found = energy_found[tracked[\"brem_photons_pe_length\"]!=0]\n",
"#ak.nan_to_num(energy_found)\n",
"\n",
"e_ph_found = tracked[\"brem_photons_pe\"]\n",
"e_ph_found = e_ph_found[tracked[\"brem_photons_pe_length\"]!=0]\n",
"#ak.nan_to_num(e_ph_found, nan=[0])\n",
"e_ph_found = ak.sum(e_ph_found, axis=-1, keepdims=True)\n",
"print(e_ph_found)\n",
"print(energy_found)\n",
"\n",
"energy_lost = lost[\"energy\"]\n",
"energy_lost = energy_lost[lost[\"brem_photons_pe_length\"]!=0]\n",
"#ak.nan_to_num(energy_lost)\n",
"\n",
"e_ph_lost = lost[\"brem_photons_pe\"]\n",
"e_ph_lost = e_ph_lost[lost[\"brem_photons_pe_length\"]!=0]\n",
"#ak.nan_to_num(e_ph_lost)\n",
"e_ph_lost = ak.sum(e_ph_lost, axis=-1,keepdims=True)\n",
"\n",
"#e_ph_found, energy_found = ak.broadcast_arrays(e_ph_found, energy_found)\n",
"#e_ph_lost, energy_lost = ak.broadcast_arrays(e_ph_lost, energy_lost)\n",
"\n",
"e_ph_found = ak.to_numpy(ak.flatten(e_ph_found))\n",
"energy_found = ak.to_numpy(energy_found)\n",
"\n",
"e_ph_lost = ak.to_numpy(ak.flatten(e_ph_lost))\n",
"energy_lost = ak.to_numpy(energy_lost)\n",
"\n",
"print(e_ph_found[1])\n",
"print(energy_found[1])"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [],
2023-09-15 12:33:25 +02:00
"source": [
"q_e_found = e_ph_found/energy_found\n",
"q_e_lost = e_ph_lost/energy_lost"
]
},
2023-09-14 16:33:27 +02:00
{
"cell_type": "code",
"execution_count": 41,
2023-09-14 16:33:27 +02:00
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHMCAYAAAAplYnpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA72klEQVR4nO3deXhU5f3//9dAVpYEiSQEiOwEElYTgaAiiIKkBf2Ur9pqARVRKoIQAQ3aCm29wB2wLIJgpLjQGjYFFapM2FVIUIEICGgCJoZFEpaSQHJ+f/Bj6pAQZiaTWU6ej+ua6+q55yzvc0g7r577vs+xGIZhCAAAwCRqebsAAAAAdyLcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAPCKNWvWyGKxXPGzcOFCtxyntLRUkZGReu211zx+bADeEeDtAgDUTJmZmZKklStXKjIystz3cXFxbjnOhg0bdPToUf3ud7/z+LEBeAfhBoBXZGZmKiwsTIMGDZLFYqm243zwwQdKTExU8+bNPX5sAN5BtxQAr9ixY4e6dOlSreHCMAwtX75cQ4YM8fixAXgP4QaAxx0/flw5OTnq1KmTLly4UO5jGIZbjrNlyxbl5eXZhRtPHRuA9xBuAHjcpTEvc+bMUWBgYLnPnj17rroPwzAUFhamY8eOXXGdDz74QJ06dVLbtm2dPvbRo0f1m9/8RnXr1lW7du20bt26qpwyAA9izA0Aj9uxY4ckadmyZYqJiSn3vSMDevfv369GjRrp2muvveI6y5Yt00MPPeTSsUePHq3GjRvr6NGj+s9//qN77rlH33//vSIiIq5aGwDvItwA8LjMzEyFhIRo8ODBql279hXXe+ONN/Tvf/9bgYGB+uKLL9SkSRP961//UlxcnDIzM9W1a1c9+uijWrp0qZo0aaJVq1apTZs2kqQvv/xSOTk55cbbOHLs06dPa8WKFTpw4IDq1KmjwYMHq0uXLlq5cmW5sATA99AtBcDjMjMz1bFjx0qDjSTt2rVLX331lcaNG6eff/5ZPXr00LPPPitJysrK0vbt2/Xggw/qxIkTuv7667VgwQLbtunp6WrXrp06duzo9LH379+vevXq2d3Z6dSpk3bv3u3K6QLwMMINAI8qLCzUwYMH1aVLl6uuu2vXLj377LMaMGCAAgMDdf/992vfvn2SLoabqVOnqmfPnqpVq5Zat25tNxg4PT293F0bR499+vRphYWF2bWFhYXp9OnTjp4mAC+iWwqAR2VmZsowDNWtW1fbtm0r933Tpk1td0x2795t97TggoIC2xibrKwsLVmyxPbd7t27lZycLEnauXOnDhw4UGGXlCPHrlevnoqKiuy+KyoqUr169Vw8awCexJ0bAB51abbSrFmzlJSUVO6zdu1aSReDzNGjR+2eILx8+XINHDhQubm5CggIsPvum2++UefOnSVdvGvTvHlzJSQkuHTstm3b6vTp0zp8+LBt2127dik+Pr4arggAd7MYPNQBgA/67LPPNGDAAM2bN0/Dhw/X4sWL9be//U1ff/21MjIyNHv2bH366aeSpLNnz6pBgwYqLCxUaGio4uLiNHDgQL3yyisuH//uu+9WeHi4Xn/9dX322WcaOnSo9u/fX+nsLAC+gW4pAD5p165deuihh/T+++8rJSVFCQkJWrduncLDw5WVlWW7SyNd7JJq3bq1QkNDJcmh5+RczZw5czR8+HBFRESoadOmWrp0KcEG8BPcuQHgk0aOHKnExEQ9+uij3i4FgJ9hzA0An7Rr1y61b9/e22UA8EPcuQHgk8LDw7Vv3z5FRUV5uxQAfoZwAwAATIVuKQAAYCqEGwAAYCo1bip4WVmZfvrpJ9WvX18Wi8Xb5QAAAAcYhqFTp06pSZMmqlWr8nszNS7c/PTTT3YvwwMAAP4jNzdXzZo1q3SdGhdu6tevL+nixbn8xXgAAMA3FRUVKSYmxvY7XpkaF24udUWFhYURbgAA8DOODClhQDEAADAVwg0AADAVwg0AADCVGjfmxlGlpaU6f/68t8swncDAQNWuXdvbZQAATIxwcxnDMJSfn6+TJ096uxTTatCggRo3bsxzhgAA1YJwc5lLwSYyMlJ16tThB9iNDMPQ2bNnVVBQIEmKjo72ckUAADMi3PxKaWmpLdhERER4uxxTCg0NlSQVFBQoMjKSLioAgNsxoPhXLo2xqVOnjpcrMbdL15cxTQCA6kC4qQBdUdWL6wsAqE6EGwAAYCqEG5Po06ePxo0b5+0yAADwOgYUO2rLFM8er5eHj/f/s1qt6tu3r3755Rc1aNDAKzUAAFAV3LkBAACmQrgxoV9++UXDhg3TNddcozp16mjgwIHav3+/7fsff/xRgwYN0jXXXKO6desqPj5ea9as0Q8//KC+fftKkq655hpZLBY98MADXjoLAABcQ7eUCT3wwAPav3+/Vq1apbCwMD311FNKTk7Wnj17FBgYqNGjR6ukpEQbNmxQ3bp1tWfPHtWrV08xMTFKT0/XkCFDtHfvXoWFhdmeSwMA8HMVDa/w0hCI6ka4MZlLoWbz5s3q1auXJOmdd95RTEyMVqxYobvvvls5OTkaMmSIOnXqJElq1aqVbfuGDRtKkiIjIxlzAwDwS3RLmUx2drYCAgLUo0cPW1tERIRiY2OVnZ0tSRo7dqz+/ve/68Ybb9Rzzz2nb775xlvlAgDgdoQbkzEM44rtlx6e9/DDD+vgwYMaOnSovv32WyUmJur111/3ZJkAAFQbwo3JxMXF6cKFC/riiy9sbcePH9e+ffvUoUMHW1tMTIxGjRqlZcuW6cknn9SCBQskSUFBQZIuvmcLAAB/RLgxmbZt2+rOO+/UyJEjtWnTJn399df64x//qKZNm+rOO++UJI0bN06ffvqpDh06pMzMTH3++ee24NO8eXNZLBZ99NFHOnr0qE6fPu3N0wEAwGkMKHaUH40of+utt/TEE0/ot7/9rUpKStS7d2+tWbNGgYGBki7elRk9erQOHz6ssLAw3XHHHXrttdckSU2bNtXUqVP19NNP68EHH9SwYcOUlpbmxbMBAMA5FuNKgzRMqqioSOHh4SosLFRYWJjdd+fOndOhQ4fUsmVLhYSEeKlC8+M6A4AX+PlU8Mp+vy9HtxQAADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVr4abuXPnqnPnzgoLC1NYWJiSkpL08ccfX3F9q9Uqi8VS7vPdd995sGoAAODLvPqcm2bNmmn69Olq06aNJOntt9/WnXfeqaysLMXHx19xu0tvrL6kUaNG1V4rAADwD14NN4MGDbJbfv755zV37lxt27at0nDDG6sBAMCV+MyYm9LSUr3//vs6c+aMkpKSKl23W7duio6OVr9+/bR+/fpK1y0uLlZRUZHdBwAAmJfXw823336revXqKTg4WKNGjdLy5csVFxdX4brR0dGaP3++0tPTtWzZMsXGxqpfv37asGHDFfc/bdo0hYeH2z4xMTHVdSpeZRiGHnnkETVs2FAWi0U7d+70Wi19+vTRuHHjvHZ8AEDN5vV3S8XGxmrnzp06efKk0tPTNXz4cGVkZFQYcGJjYxUbG2tbTkpKUm5url5++WX17t27wv2npqYqJSXFtlxUVORSwJkyxelNqsTZ433yySdKS0uT1WpVq1atdO2111ZLXQAA+Dqvh5ugoCDbgOLExER99dVXmjlzpt544w2Htu/Zs6eWLFlyxe+Dg4MVHBzsllp92YEDBxQdHa1evXp5uxQAALzK691SlzMMQ8XFxQ6vn5WVpejo6GqsyPc98MADGjNmjHJycmSxWNSiRQsVFxdr7NixioyMVEhIiG666SZ99dVXtm3S0tLKDcpesWKFLBaLbXnKlCnq2rWr/vnPf6pFixYKDw/X73//e506dcq2zpkzZzRs2DDVq1dP0dHReuWVV6r9fAEAqIxXw83kyZO1ceNG/fDDD/r222/1zDPPyGq16v7775d0sUtp2LBhtvVnzJihFStWaP/+/dq9e7dSU1OVnp6uxx9/3Fun4BN
2023-09-14 16:33:27 +02:00
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
2023-09-15 12:33:25 +02:00
}
],
"source": [
2023-09-18 12:12:50 +02:00
"plt.hist(q_e_lost, bins=100, density=True, alpha=0.5, histtype='bar', color=\"darkorange\", label=\"lost\")\n",
"plt.hist(q_e_found, bins=100, density=True, alpha=0.5, histtype='bar', color=\"blue\", label=\"found\")\n",
2023-09-15 12:33:25 +02:00
"plt.xlabel(r\"$E_\\gamma/E_0$\")\n",
2023-09-18 12:12:50 +02:00
"plt.ylabel(\"counts (normed)\")\n",
"plt.title(r'$E_{ph}/E_0$')\n",
2023-09-15 12:33:25 +02:00
"plt.legend()\n",
"\n",
"\"\"\"\n",
2023-09-18 12:12:50 +02:00
"B:\n",
"we can clearly see that lost electrons are responsible for higher energy photons\n",
2023-09-20 10:52:44 +02:00
"D:\n",
"still able to see a trend that most electrons that give up all of their energy to photons are lost e. but nowhere near as extreme as for the B decay\n",
2023-09-15 12:33:25 +02:00
"\"\"\"\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 45,
2023-09-15 12:33:25 +02:00
"metadata": {},
"outputs": [
2023-09-14 16:33:27 +02:00
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABhwAAAImCAYAAACoxiA1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACfKElEQVR4nOzdeXxU1fnH8e8kgUkISRQqgUhYVAQXBAREgQoooAi0rlRwAayVnyAq2IpKlWCVKLaIBZW6IS4oWJW6IqgsLlhZRCu2KC1q1CJWkR0kyfn9ATO5Q+ZmtjuZO7mf9+s1L2fu3Dn33Jsh3ifnPOfxGWOMAAAAAAAAAAAAEpCR6g4AAAAAAAAAAID0x4ADAAAAAAAAAABIGAMOAAAAAAAAAAAgYQw4AAAAAAAAAACAhDHgAAAAAAAAAAAAEsaAAwAAAAAAAAAASBgDDgAAAAAAAAAAIGEMOAAAAAAAAAAAgIQx4AAAAAAAAAAAABLGgANqzbx583TccccpJydHPp9Pa9euTXWXwiopKZHP53OsvUcffVQ+n0+ff/65Y21affLJJyopKUla+0hPPp9PJSUlSWl7165dKikp0dKlSx1ve8SIEWrYsKGjbU6ZMkULFixwtE0AAIBUSHZscd999+nRRx91vN0RI0aoVatWjrcb8MorryTt3hfpaenSpfL5fEmJWaTkxuGtWrXSoEGDHGvvm2++UUlJiWv/BgOg7mHAAbXiu+++0yWXXKIjjzxSCxcu1IoVK3T00Uenult1wieffKLJkycz4IAQK1as0OWXX56Utnft2qXJkycn7ebdaQw4AAAARCdZAw7J9sorr2jy5Mmp7gZc5MQTT9SKFSt04oknJqX9dIrDv/nmG02ePJkBBwC1JivVHYA3fPrpp9q3b58uvvhi9erVK9Xd8bRdu3apQYMGqe5GSuzevVvZ2dmOZrC41cknn5zqLsClvPw7AAAAwBijPXv2KCcnJ9VdSQmv3Avm5+cTE8GWV/4dAKlChgOSbsSIEerZs6ck6Ve/+pV8Pp969+4dfP+FF17QKaecogYNGigvL0/9+vXTihUrqrURLgU33PJHPp9PV111lR5//HEdc8wxatCggTp06KCXXnqp2udffvlldezYUX6/X61bt9Yf//jHmM7t9ddf1+mnn678/Hw1aNBAPXr00BtvvOHoZ//1r39p6NChKiwslN/vV4sWLXTppZdq7969evTRR3XBBRdIkvr06SOfzyefzxecldS7d28df/zxWr58ubp3764GDRrosssukyR9+eWXuvjii9WkSRP5/X4dc8wx+tOf/qTKysrgsT///HP5fD798Y9/1LRp09S6dWs1bNhQp5xyit57772oznPTpk0aNWqUmjdvrvr166t169aaPHmyysvL4z7OqlWr9Itf/EKNGjVSdna2OnXqpPnz54fsE0g3X7RokS677DIddthhatCggfbu3StjjKZMmaKWLVsqOztbXbp00eLFi9W7d+/gd3PHjh065JBDNGrUqGrH//zzz5WZmam77rqrxnOfPHmyunXrpkaNGik/P18nnniiHn74YRljQvbbu3evrrvuOjVt2lQNGjTQqaeeqtWrV6tVq1YaMWJEcL/vvvtOo0eP1rHHHquGDRuqSZMmOu200/TWW29VO/bBSyoFrseSJUt05ZVX6mc/+5kaN26sc889V998803IZ99880317t1bjRs3Vk5Ojlq0aKHzzjtPu3bt0ueff67DDjsseH6B75y1nwcLpDM/8cQTGj9+vJo2baqcnBz16tVLH3zwQdjPbNiwQWeddZYaNmyo4uJiXXfdddq7d2/IPj/88INGjx6tww8/XPXr19cRRxyhiRMnhuzn8/m0c+dOzZkzJ9hX6++fjz/+WL/85S916KGHKjs7Wx07dtScOXPC9v+pp57SxIkTVVRUpPz8fPXt21fr16+3PW+rzz77TMOGDQv593bvvfcmdJxofocEfkeuWbNG559/vg499FAdeeSRkqL73n3++efKyspSaWlpteMvX75cPp9PzzzzTFTXAAAAJM8jjzyiDh06KDs7W40aNdI555yjf/7znyH7/Oc//9GFF16ooqIi+f1+FRYW6vTTTw/Oem7VqpXWrVunZcuWBe+bIi2DZIzRfffdp44dOyonJ0eHHnqozj//fP3nP/+J2OdYPrtw4UKdfvrpKigoUIMGDXTMMccE709GjBgRvK8K9Nu67FQgPpw1a5aOOeYY+f3+4P3e22+/rdNPP115eXlq0KCBunfvrpdffjnk2LHcR9uJJX6J9jjz5s3TKaecotzcXDVs2FBnnHFGtXvrwHKl//jHP9S/f3/l5eXp9NNPlyT9+OOP+vWvf61GjRqpYcOGGjhwoP7zn/+ExBFvvfVW8P70YI899ph8Pp9Wrlxpe96xxC9fffWVzj//fOXl5emQQw7RRRddpJUrV4bEt4FreeGFF6pVq1bKyclRq1atNHToUH3xxRch7YVbUilwPaKJNe6//3516NBBDRs2VF5entq1a6ebbrop+LOqKQ4PJ3Bf/sEHH+jcc89Vfn6+CgoKdPHFF+u7774L+5mFCxfqxBNPVE5Ojtq1a6dHHnmk2j6R4pmlS5eqa9eukqSRI0cG+2qNFaP5m0yg/+vWrdPQoUNVUFCgwsJCXXbZZdq6davteVvFEr9Ec5xof4fU9HeRaL53jz/+uHw+X7VrIkm33nqr6tWrF/XvAsAzDJBkGzZsMPfee6+RZKZMmWJWrFhh1q1bZ4wx5sknnzSSTP/+/c2CBQvMvHnzTOfOnU39+vXNW2+9FWxj+PDhpmXLltXanjRpkjn4ayzJtGrVypx00klm/vz55pVXXjG9e/c2WVlZ5t///ndwv9dff91kZmaanj17mueee84888wzpmvXrqZFixbV2gzn8ccfNz6fz5x99tnmueeeMy+++KIZNGiQyczMNK+//npwv9mzZxtJZuPGjTF/du3ataZhw4amVatWZtasWeaNN94wTzzxhBkyZIjZtm2b2bx5s5kyZYqRZO69916zYsUKs2LFCrN582ZjjDG9evUyjRo1MsXFxWbGjBlmyZIlZtmyZWbz5s3m8MMPN4cddpiZNWuWWbhwobnqqquMJHPllVcGj79x48bg9TzzzDPNggULzIIFC0z79u3NoYcean788ccar9F///tfU1xcbFq2bGn+8pe/mNdff9384Q9/MH6/34wYMSKu47z55pumfv365uc//7mZN2+eWbhwoRkxYoSRZGbPnl3tuh9++OHmiiuuMK+++qr561//asrLy82NN95oJJkrrrjCLFy40Dz44IOmRYsWplmzZqZXr17BNsaNG2dyc3Ornefvfvc7k52dbf73v//VeP4jRowwDz/8sFm8eLFZvHix+cMf/mBycnLM5MmTQ/YbOnSoycjIMDfccINZtGiRmT59uikuLjYFBQVm+PDhwf3+9a9/mSuvvNI8/fTTZunSpeall14yv/71r01GRoZZsmRJSJuSzKRJk6pdjyOOOMKMHTvWvPbaa+ahhx4yhx56qOnTp0/IzyI7O9v069fPLFiwwCxdutQ8+eST5pJLLjFbtmwxe/bsMQsXLjSSzK9//evgd27Dhg2212HJkiVGkikuLja//OUvzYsvvmieeOIJc9RRR5n8/PyQf5fDhw839evXN8ccc4z54x//aF5//XVzyy23GJ/PF3Lddu/ebU444QSTm5tr/vjHP5pFixaZm2++2WRlZZmzzjoruN+KFStMTk6OOeuss4J9Dfz++de//mXy8vLMkUceaR577DHz8ssvm6FDhxpJ5s4776zW/1atWpmLLrrIvPzyy+app54yLVq0MG3atDHl5eU1fg/WrVtnCgoKTPv27c1jjz1mFi1aZK677jqTkZFhSkpK4jpOtL9DAr8jW7ZsaSZMmGAWL15sFixYYIyJ/nt3zjnnmBYtWlQ7zwsuuMAUFRWZffv21Xj+AADAOeFii0A8MHToUPPyyy+bxx57zBxxxBGmoKDAfPrpp8H92rZta4466ijz+OOPm2XLlplnn33WXHfddcH7yDVr1pgjjjjCdOr
2023-09-14 16:33:27 +02:00
"text/plain": [
2023-09-15 12:33:25 +02:00
"<Figure size 2000x600 with 4 Axes>"
2023-09-14 16:33:27 +02:00
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
2023-09-15 12:33:25 +02:00
"fig, ((ax0, ax1)) = plt.subplots(nrows=1, ncols=2, figsize=(20,6))\n",
"\n",
"a0 = ax0.hist2d(e_ph_found/(1e3), energy_found/(1e3), density=False, bins=200, cmap=plt.cm.jet, cmin=0, range=[[0,50],[0,50]])\n",
"ax0.set_xlabel(r\"$E_\\gamma$ [GeV]\")\n",
"ax0.set_ylabel(r\"$E_e$ [GeV]\")\n",
2023-09-15 12:33:25 +02:00
"ax0.set_title(\"found electron energy against photon energy\")\n",
"plt.colorbar(a0[3],ax=ax0)\n",
2023-09-15 12:33:25 +02:00
"\n",
"a1 = ax1.hist2d(e_ph_lost/(1e3), energy_lost/(1e3), density=False, bins=200, cmap=plt.cm.jet, cmin=0, range= [[0,50],[0,50]])\n",
"ax1.set_xlabel(r\"$E_\\gamma$ [GeV]\")\n",
"ax1.set_ylabel(r\"$E_e$ [GeV]\")\n",
2023-09-15 12:33:25 +02:00
"ax1.set_title(\"lost electron energy against photon energy\")\n",
"plt.colorbar(a1[3],ax=ax1)\n",
2023-09-15 12:33:25 +02:00
"\n",
"\"\"\"\n",
2023-09-18 12:12:50 +02:00
"B:\n",
"concentrated at the E_ph/E_0~1 line especially at lower energies.\n",
"lost E_ph to E_0: fewer entries at lower q_e\n",
2023-09-20 10:52:44 +02:00
"D:\n",
"both energies are much smaller than in the B decay. otherwise similar pattern.\n",
2023-09-15 12:33:25 +02:00
"\"\"\"\n",
2023-09-14 16:33:27 +02:00
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {},
"outputs": [],
2023-09-18 12:12:50 +02:00
"source": [
"brem_vtx_x_found = tracked[\"brem_vtx_x\"]\n",
"brem_vtx_x_found = brem_vtx_x_found[tracked[\"brem_vtx_x_length\"]!=0]\n",
"brem_vtx_x_found = ak.to_numpy(ak.flatten(brem_vtx_x_found))\n",
"\n",
"brem_vtx_z_found = tracked[\"brem_vtx_z\"]\n",
"brem_vtx_z_found = brem_vtx_z_found[tracked[\"brem_vtx_z_length\"]!=0]\n",
"#print(ak.to_numpy(brem_vtx_z_found))\n",
2023-09-18 12:12:50 +02:00
"brem_vtx_z_found = ak.to_numpy(ak.flatten(brem_vtx_z_found))\n",
"\n",
"brem_vtx_x_lost = lost[\"brem_vtx_x\"]\n",
"brem_vtx_x_lost = brem_vtx_x_lost[lost[\"brem_vtx_x_length\"]!=0]\n",
"brem_vtx_x_lost = ak.to_numpy(ak.flatten(brem_vtx_x_lost))\n",
"\n",
"brem_vtx_z_lost = lost[\"brem_vtx_z\"]\n",
"brem_vtx_z_lost = brem_vtx_z_lost[lost[\"brem_vtx_z_length\"]!=0]\n",
"brem_vtx_z_lost = ak.to_numpy(ak.flatten(brem_vtx_z_lost))\n",
"\n",
"#vtx_x_fit= ak.to_numpy(vtx_x_found)\n",
"#vtx_z_fit = ak.to_numpy(vtx_z_found)"
2023-09-18 12:12:50 +02:00
]
},
{
"cell_type": "code",
2023-09-19 09:58:54 +02:00
"execution_count": null,
2023-09-18 12:12:50 +02:00
"metadata": {},
"outputs": [],
"source": [
"\n"
]
2023-09-18 12:12:50 +02:00
},
{
"cell_type": "code",
"execution_count": 47,
2023-09-18 12:12:50 +02:00
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABkAAAAIlCAYAAACNejRdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAADxwElEQVR4nOzdf3wU1b3/8feSXwaarAQkITUobZGr8qOKFaHeC5RfUpEqtmCxXFCqWCw0AqLIrYBXQGOLtFCtVa+xosVvH7d4tbUUbBVL8QdE04q1qC0qVGKsxg1gyC/m+0d2djP7ezezu7Ob1/PxyGPZmbMzZ2aX5Jw95/M5LsMwDAEAAAAAAAAAAGSRHumuAAAAAAAAAAAAgN0YAAEAAAAAAAAAAFmHARAAAAAAAAAAAJB1GAABAAAAAAAAAABZhwEQAAAAAAAAAACQdRgAAQAAAAAAAAAAWYcBEAAAAAAAAAAAkHUYAAEAAAAAAAAAAFmHARAAAAAAAAAAAJB1GAABAAAAAAAAAABZhwEQACk3d+5cVVdXp7saAAAAAJCx6FcBABAdAyAAAAAAAAAAACDrMAACIOM8/vjjOvvss1VYWCiXy6Xa2tp0VymkVatWyeVyxVzuX//6Vwpqlfl2796tVatW6ZNPPrFsr66ulsvl0jvvvJOWegEAAACZIplt53Dt9XDoD8Un0v2lTwQAwRgAAZASU6dO1cknn6yTTz5Zjz32mBYsWOB7fscdd8R8nA8//FCzZ8/W5z//eW3btk0vvPCCzjjjjCTWHE6ze/durV69OqjBf/HFF+uFF15Q//7901MxAAAAIMns6lclU7j2OuwR6f7SJwKAYLnprgCA7uHXv/61799z587V2LFjNXfu3LiP8+abb6q1tVXf+ta3NGbMGBtrmJk+/fRT9ezZM93VSIlo13rKKafolFNOSWGNAAAAgNSyq1+VLegPWdEnAoBgRIAASNiuXbs0adIkud1u9e7dWxdffLHeeuutpJ1v7ty5uvDCCyVJM2fOlMvl0tixY311GT9+vIqKitSzZ0+NHj1av/nNb0Ie4/TTTw/aHpiuynz++uuv65vf/KbcbrdKS0t19dVXy+PxBL3+N7/5jb74xS+qoKBAAwcO1A9+8IO4r+/gwYOaPn26iouL5Xa79a1vfUsffvhhUJ1eeeUVff3rX1fv3r31+c9/3rf/rbfe0qxZs9SvXz8VFBTozDPP1E9+8pOQ1/mXv/xF3/jGN+R2u1VSUqLFixerra1N+/fv10UXXaSioiKdfvrpqqqqilrvJ554Qi6XS7///e+D9t17772+8yVSz8BrXbVqlW688UZJ0sCBA+VyueRyufTcc8+FDff+29/+pm9+85sqLS1VQUGBBgwYoP/8z/9Uc3NzXHX68MMPde2116qiokIFBQU65ZRT9OUvf1nPPPNM1HsEAAAAhJPqflWkekTrU0VrE0dqr0eTiv5Q5+PY1SdySn9ICp0Cy67+kESfCEBmIgIEQEJWrVql//7v/9bcuXNVWVmppqYmrV69WuPHj9df//pXfeYznwn72urq6oTO+f3vf1/nn3++rr/+eq1du1bjxo1TcXGxdu7cqYkTJ2rYsGF68MEHVVBQoHvuuUeXXHKJfvGLX2jmzJkJXqV0+eWXa+bMmZo3b55ee+01LV++XJL0P//zP74yv//97/W1r31No0aN0pYtW9Te3q6qqip98MEHcZ3rsssu04wZM3Tdddfp9ddf1/e//3399a9/1UsvvaS8vDxfuenTp+uKK67Qddddp2PHjkmS/vrXv2r06NEaMGCAfvjDH6qsrEy/+93vtGjRIv3rX//SypUrLeeaMWOGvvWtb2n+/PnasWOHqqqq1NraqmeeeUYLFizQ0qVL9dhjj+mmm27SF77wBU2fPj1svadOnap+/frpoYce0vjx4y37qqurde6552rYsGEJ1TPwWkeMGKGPP/5YGzdu1K9+9StfaPdZZ50VMs/tn//8Z1144YXq27evbrvtNg0aNEiHDx/Wk08+qZaWFhUUFMRcp9mzZ+uVV17RmjVrdMYZZ+iTTz7RK6+8oo8++ijGdxgAAACwSke/KpRY+1TR2sTf/va3w7bXo0llf0iyr0/klP5QKHb2hyT6RAAylAEAcXrqqacMSUZVVZVl+5tvvmlIMjZv3hz0mosuusjo1atXyJ81a9bEfO5nn33WkGT88pe/9G274IILjH79+hlHjhzxbWtrazOGDBlinHrqqcaJEyd82+fMmWOcdtppQcdduXKl0flXovk88BoXLFhgnHTSSZZjjhw50igvLzeampp82xobG42SkhIjll+z5rluuOEGy/ZHH33Ucj/NcrfeemvQMSZPnmyceuqphsfjsWz/7ne/a5x00knGxx9/bDnGD3/4Q0u5L37xi4Yk41e/+pVvW2trq3HKKacY06dPj3oNixcvNgoLC41PPvnEt+2vf/2rIcnYuHFjwvUMda133XWXIck4cOCAZftDDz0UtP0rX/mKcfLJJxv19fVh6x5rnT7zmc8YlZWVkW8EAAAAEKN09qsC286x9qliaROHa6+Hk8r+UOfj2NknckJ/yDCC31c7+0OGQZ8IQGYiBRaAuN166636/Oc/r+9973tqa2vz/QwcOFCFhYX6xz/+EfSa3/72tzp69GjIn1tuuSXhuhw7dkwvvfSSvv71r1tmR+Xk5Gj27Nk6dOiQ9u/fn/Dxp02bZnk+bNgwHT9+XPX19b7z79mzR9OnT9dJJ53kK1dUVKRLLrkkrnNdeeWVluczZsxQbm6unn32Wcv2yy+/3PL8+PHj+v3vf6/LLrtMPXv2tLwnX/3qV3X8+HG9+OKLltdMnTrV8vzMM8+Uy+XSlClTfNtyc3P1hS98Qe+++27Uul999dVqamrS448/7tv20EMPqaCgQLNmzUq4noHXGo9PP/1UO3fu1IwZM8LmwY2nTueff76qq6t1++2368UXX1Rra2vCdQMAAACc0q+Kp0+VzDZxKvtDkr19ou7QH5LoEwHITAyAAIhLXV2dXn31Vf39739XQUGB8vLyLD9NTU06+eSTU1afhoYGGYbhC/3trLy8XJK6FI7bp08fy/OCggJJUlNTk+/8J06cUFlZWdBrQ22LJLB8bm6u+vTpE1T/wGv96KOP1NbWpo0bNwa9H1/96lclSf/6178srykpKbE8z8/PV8+ePS2DOOb248ePR6372WefrS996Ut66KGHJEnt7e3avHmzvva1r/nOlUg9Q72vsWpoaFB7e7tOPfXUsGXiqdPjjz+uOXPm6IEHHtCoUaNUUlKi//zP/1RdXV3CdQQAAED35KR+VTx9qmS2iVPZH5Ls7RN1h/6QRJ8IQGZiDRAAcTl48KAk6e677/YtSB6o80J0yda7d2/16NFDhw8fDtr3/vvvS5L69u3r23bSSSdZFnszhWoQx3p+l8sVssEXbyOwrq5On/3sZ33P29ra9NFHHwUNwnRerN2sgzk76/rrrw957IEDB8ZVl0RcddVVWrBggd544w394x//0OHDh3XVVVd1qZ6B1xqPkpIS5eTk6NChQ2HLxFOnvn37asOGDdqwYYPee+89Pfnkk7r55ptVX1+vbdu2JVxPAAAAdD9O6lfF06dKZpuY/pCz+0MSfSIAmYkBEABxMWevuFwunXfeeWmujdSrVy+NHDlSv/rVr/SDH/xAhYWFkqQTJ05o8+bNOvXUU3XGGWf4yp9++umqr6/XBx98oNLSUklSS0uLfve73yV8/vPPP1+/+tWvdNddd/lmCx05ckRPPfVUXMd69NFHNWLECN/z//f//p/a2to0duzYiK/r2bOnxo0bp1dffVXDhg1Tfn5+3Ndhh29+85tavHixqqur9Y9//EOf/exnNWnSJNvrGRiFE05hYaHGjBmjX/7yl1qzZo1lIKyrdRowYIC++93v6ve//73+9Kc/xX8RAAAA6Nac1K+Kt09lCtcmjrW9Hoj+UGyc0B+S6BMByBwMgACIy+c//3mNGzdO//Vf/6WjR49q5MiRMgxDhw8f1rPPPqs5c+ZEbaDabd26dZo4caLGjRunpUuXKj8/X/f
2023-09-18 12:12:50 +02:00
"text/plain": [
"<Figure size 2000x600 with 4 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig, ((ax0, ax1)) = plt.subplots(nrows=1, ncols=2, figsize=(20,6))\n",
"\n",
"a0 = ax0.hist2d(brem_vtx_z_found, brem_vtx_x_found, density=False, bins=300, cmap=plt.cm.jet, cmin=1)\n",
2023-09-19 09:58:54 +02:00
"ax0.set_xlabel(\"z [mm]\")\n",
"ax0.set_ylabel(\"x [mm]\")\n",
2023-09-18 12:12:50 +02:00
"ax0.set_title(r\"$e^\\pm$ found brem vertices\")\n",
"\n",
"plt.colorbar(a0[3],ax=ax0)\n",
"\n",
"a1 = ax1.hist2d(brem_vtx_z_lost, brem_vtx_x_lost, density=False, bins=300, cmap=plt.cm.jet, cmin=1)\n",
2023-09-19 09:58:54 +02:00
"ax1.set_xlabel(\"z [mm]\")\n",
"ax1.set_ylabel(\"x [mm]\")\n",
2023-09-18 12:12:50 +02:00
"ax1.set_title(r\"$e^\\pm$ lost brem vertices\")\n",
"#ax1.set(xlim=(0,4000), ylim=(-1000,1000))\n",
2023-09-18 12:12:50 +02:00
"\n",
"plt.colorbar(a1[3], ax=ax1)\n",
"\n",
"\"\"\"\n",
"z: VeLo - RICH1 - TT - Magnet - T1,T2,T3 - RICH2 - M1\n",
2023-09-18 12:12:50 +02:00
"B:\n",
"vertices of lost e photons are more densely concentrated around the beampipe, especially in the z range of the magnet\n",
"found: vertices are densely located @ or around the detectors, while there are no clusters in the z range of the magnet\n",
2023-09-20 10:52:44 +02:00
"D:\n",
"lost brem vertices: we can very clearly see the concentration of vertices @ the beampipe\n",
"both: less statistics in general, can still make out the tracking stations but not as well as in the B decay\n",
2023-09-18 12:12:50 +02:00
"\"\"\"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {},
"outputs": [],
"source": [
"#plot singular tracks by fitting brem vertices\n",
"vtx_z_found = tracked[\"brem_vtx_z\"]\n",
"vtx_z_found = vtx_z_found[tracked[\"brem_vtx_z_length\"]>3]\n",
"\n",
"vtx_x_found = tracked[\"brem_vtx_x\"]\n",
"vtx_x_found = vtx_x_found[tracked[\"brem_vtx_x_length\"]>3]\n",
"\n",
"vtx_z_lost = lost[\"brem_vtx_z\"]\n",
"vtx_z_lost = vtx_z_lost[lost[\"brem_vtx_z_length\"]>3]\n",
"\n",
"vtx_x_lost = lost[\"brem_vtx_x\"]\n",
"vtx_x_lost = vtx_x_lost[lost[\"brem_vtx_x_length\"]>3]\n",
"\n",
"def cubic_fit(x, a, b, c, d):\n",
" return (a + b*x + c*x**2 + d*x**3)\n",
"\n",
"def quint_fit(x, a, b, c, d, e, f):\n",
" return (a + b*x + c*x**2 + d*x**3 + e*x**4 + f*x**5)\n"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABoQAAAIhCAYAAABnv9iQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddXhT1/8H8HfaJmnq7u7e4j7ci46xAUO3wcaYwcaYAhuDAfsigwEzZAwb7u5WnAJ1d3eJ5/z+4Ecg1NtA2vJ5Pc+eZ9yce+8n9ybpOfdzhMMYYyCEEEIIIYQQQgghhBBCCCGtlpamAyCEEEIIIYQQQgghhBBCCCEvFiWECCGEEEIIIYQQQgghhBBCWjlKCBFCCCGEEEIIIYQQQgghhLRylBAihBBCCCGEEEIIIYQQQghp5SghRAghhBBCCCGEEEIIIYQQ0spRQogQQgghhBBCCCGEEEIIIaSVo4QQIYQQQgghhBBCCCGEEEJIK0cJIUIIIYQQQgghhBBCCCGEkFaOEkKEEEIIIYQQQgghhBBCCCGtHCWECGmFdu3aBX9/fwgEAnA4HNy/f1/TIVVrwYIF4HA4dZbbvn07Vq1a9eIDqoWLiwtCQ0M1GgMAFBYW4q233oKVlRU4HA5GjhxZY9nmEnNLsXjxYhw4cKDK9gsXLoDD4eDChQsvPaa63Lt3Dz179oSxsTE4HI7Gvyd1aUnxbt68GRwOB8nJyZoOBUDzi4cQQgh5Fbzov7/r1q3D5s2b612+pvrqy5KcnAwOh4NffvlFYzE8Ud96ZXOKuSXIzMzEggULqn2GUN/2uya0lGcgT7SkeKdMmQIXFxdNh6HU3OIhpCXS0XQAhBD1ysvLw8SJEzFo0CCsW7cOfD4fXl5emg6rSbZv345Hjx7h008/1XQoGvfjjz9i//792LhxI9zd3WFmZqbpkFqNxYsXY8yYMVWSbG3btsX169fh5+enmcBqMW3aNFRUVGDnzp0wNTVt9hXjlhTv0KFDcf36ddja2mo6FEIIIYS0UuvWrYOFhQWmTJlSr/I11VdfRS2pXtmSZGZmYuHChXBxcUFISIjKa++++y4GDRqkmcBq0dKegbS0eL/77jt88sknmg6DEKJGlBAipJWJjY2FVCrF22+/jZ49e2o6nJdOLpdDJpOBz+drOpQX4tGjR3B3d8eECRNe6HmkUik4HA50dFr/nwmhUAiBQFDj60ZGRujcufNLjKj+Hj16hPfeew+DBw+utZxQKISurq7Ge/TVN97mwNLSEpaWlpoOgxBCCCGkUZpL/e9FeVn1ysrKSujp6b3QczQHT9rRtXFwcICDg8NLiqj+GvIMpDncz5b2zMbd3V3TIRBC1IymjCOkFZkyZQq6d+8OAHjzzTfB4XDQq1cv5euHDh1Cly5doKenB0NDQ/Tv3x/Xr1+vcozqeldVNzycw+Fg1qxZ2Lp1K3x9faGnp4fg4GAcOXKkyv5Hjx5FSEgI+Hw+XF1d6z1kv1evXjh69ChSUlLA4XCU/wFPh/8vW7YMixYtgqurK/h8Ps6fPw+RSIQ5c+YgJCQExsbGMDMzQ5cuXXDw4MEq51AoFFizZg1CQkIgEAhgYmKCzp0749ChQ7XGtm7dOujo6GD+/PnKbevXr0dwcDAMDAxgaGgIHx8ffP3113W+z8LCQsycORP29vbg8Xhwc3PDN998A7FYrPJez5w5g6ioKOV1qM80Zvv370dQUBB0dXXh5uaGX3/9VeX1J1Oibd26FXPmzIG9vT34fD7i4+MBAGfOnEHfvn1hZGQEPT09dOvWDWfPnlU5xpPPx4MHD/DGG28or/ns2bMhk8kQExODQYMGwdDQEC4uLli2bFmdcbdp0wY9evSosl0ul8Pe3h6jR49WbpNIJFi0aBF8fHzA5/NhaWmJqVOnIi8vT2XfJ9Po7du3D23atIGuri4WLlwIDoeDiooKbNmyRXltn3x3apoy7saNGxg2bBjMzc2hq6sLd3f3KqPY4uLiMH78eFhZWYHP58PX1xe//fabShmFQoFFixbB29tb+fkLCgrC6tWra7w2T6YvkclkWL9+vcr34slrp06dwrRp02BpaQk9PT2IxWIoFAosW7ZMeZ2srKwwadIkpKenqxy/V69eCAgIwPXr19G1a1cIBAK4uLhg06ZNAB5/n9u2bQs9PT0EBgbixIkTNcZaV7wAkJ2djRkzZsDBwQE8Hg+urq5YuHChSqO0Q4cOGDp0qMpxAwMDweFwcOvWLeW2ffv2gcPh4OHDhzXGU59rXt0UMYwxLF68GM7OztDV1UX79u1x+vRp9OrVS+W39slnZseOHfjmm29gZ2cHIyMj9OvXDzExMSqxnD59GiNGjICDgwN0dXXh4eGBGTNmID8/v9ZrCjyeKiU0NFT5+bKzs8PQoUOr3E9CCCGEqNfGjRsRHBwMXV1dmJmZYdSoUYiKilIpk5iYiLfeegt2dnbg8/mwtrZG3759lVNDubi4ICIiAhcvXlTWjWob5VJbfbW2+l98fDymTp0KT09P6Onpwd7eHsOGDau2rlRcXIw5c+bAzc1NWVccMmQIoqOja4xLKpVi8uTJMDAwULYDKysr8fnnn8PV1VV5jdq3b48dO3bUeW0fPXqEESNGwNTUFLq6uggJCcGWLVuUr9dVr6yJQqHATz/9BCcnJ2U9rqY2zd27dzFmzBiYmpoqH4YzxrBu3Tplm9HU1BRjxoxBYmKiyjHUXY/Oy8sDj8fDd999V+W16OhocDgclfZdferVtbWjO3ToAACYOnWq8touWLBA5fo8b/v27ejSpQsMDAxgYGCAkJAQ/P333ypl6tOmzMvLw/Tp0+Ho6Khs03Xr1g1nzpyp8frU9gxkypQpMDAwwMOHDzFgwAAYGhqib9++AOpufz/x5JnHpk2blG2H9u3bIywsDIwxLF++HK6urjAwMECfPn2UbejGxAsAt2/fxvDhw2FmZgZdXV20adMG//33n/L10tJS6OjoYPny5cpt+fn50NLSgrGxscp9/vjjj2FpaQnGWI3x1OeaV/eMqLi4GO+88w7MzMxgYGCAoUOHIjExUeXzAjz9zERERGDcuHEwNjaGtbU1pk2bhpKSEpVj/vbbb3jttddgZWUFfX19BAYGYtmyZZBKpbVeUwDYvXs3OnXqBGNjY+jp6cHNzQ3Tpk2rcz9CXlmMENJqxMfHs99++40BYIsXL2bXr19nERERjDHGtm3bxgCwAQMGsAMHDrBdu3axdu3aMR6Pxy5fvqw8xuTJk5mzs3OVY8+fP589/5MBgLm4uLCOHTuy//77jx07doz16tWL6ejosISEBGW5M2fOMG1tbda9e3e2b98+tnv3btahQwfm5ORU5ZjPi4iIYN26dWM2Njbs+vXryv8YYywpKYkBYPb29qx3795sz5497NSpUywpKYkVFxezKVOmsK1bt7Jz586xEydOsM8//5xpaWmxLVu2qJxj4sSJjMPhsHfffZcdPHiQHT9+nP30009s9erVyjLOzs5s6NChjDHGFAoFmzNnDuNyuWzTpk3KMjt27GAA2EcffcROnTrFzpw5wzZs2MA+/vjjWt+jUChkQUFBTF9fn/3yyy/s1KlT7LvvvmM6OjpsyJAhjDHGRCIRu379OmvTpg1zc3NTXoeSkpIaj+vs7Mzs7e2Zk5MT27hxIzt27BibMGECA8CWL1+uLHf+/HnldRwzZgw7dOgQO3LkCCsoKGBbt25lHA6HjRw5ku3bt48dPnyYhYaGMm1tbXbmzBnlMZ58Pry9vdmPP/7ITp8+zebOncsAsFmzZjEfHx/266+/stOnT7OpU6cyAGzv3r21XpfVq1czACw2NlZl+7FjxxgAdujQIcYYY3K5nA0aNIjp6+uzhQsXstOnT7O//vqL2dvbMz8/P1ZZWalyTWxtbZmbmxvbuHEjO3/+PLt58ya7fv06EwgEbMiQIcpr++S78+T6nD9/XnmcEydOMC6Xy4KCgtjmzZvZuXPn2MaNG9lbb72lLBMREcGMjY1ZYGAg++eff9ipU6fYnDlzmJaWFluwYIGy3JIlS5i2tjabP38+O3v2LDtx4gRbtWqVSpn
"text/plain": [
"<Figure size 2000x600 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig, ((ax0, ax1)) = plt.subplots(nrows=1, ncols=2, figsize=(20,6))\n",
"n_end=100\n",
"\n",
"for i in range(0,n_end):\n",
" popt, pcov = curve_fit(cubic_fit,ak.to_numpy(vtx_z_found[i,:]),ak.to_numpy(vtx_x_found[i,:]))\n",
" z_coord = np.linspace(vtx_z_found[i,0],12000,1000)\n",
" fit = cubic_fit(z_coord, popt[0], popt[1], popt[2], popt[3])\n",
" ax0.plot(z_coord, fit, \"-\", label=\"fit\"+str(i), lw=0.5)\n",
" ax0.errorbar(ak.to_numpy(vtx_z_found[i,:]),ak.to_numpy(vtx_x_found[i,:]),fmt=\".\",ms=2)\n",
"\n",
"#ax0.legend()\n",
"ax0.set_xlabel(\"z [mm]\")\n",
"ax0.set_ylabel(\"x [mm]\")\n",
"ax0.set_title(\"found tracks of brem vertices from few signals\")\n",
"ax0.set(xlim=(0,12000), ylim=(-4000,4000))\n",
"ax0.grid()\n",
"\n",
"for i in range(0,n_end):\n",
" popt, pcov = curve_fit(cubic_fit,ak.to_numpy(vtx_z_lost[i,:]),ak.to_numpy(vtx_x_lost[i,:]))\n",
" z_coord = np.linspace(vtx_z_lost[i,0],12000,1000)\n",
" fit = cubic_fit(z_coord, popt[0], popt[1], popt[2], popt[3])\n",
" ax1.plot(z_coord, fit, \"-\", label=\"fit\"+str(i), lw=0.5)\n",
" ax1.errorbar(ak.to_numpy(vtx_z_lost[i,:]),ak.to_numpy(vtx_x_lost[i,:]),fmt=\".\",ms=2)\n",
"\n",
"#ax1.legend()\n",
"ax1.set_xlabel(\"z [mm]\")\n",
"ax1.set_ylabel(\"x [mm]\")\n",
"ax1.set_title(\"lost tracks of brem vertices from few signals\")\n",
"ax1.set(xlim=(0,12000), ylim=(-4000,4000))\n",
"ax1.grid()\n",
"\n",
"\"\"\"\n",
2023-09-20 10:52:44 +02:00
"B:\n",
"we can see that of the lost brem vertices, many trajectory fits seem illogical and not plausible\n",
2023-09-20 10:52:44 +02:00
"found: most seem like reasonable tracks\n",
"D:\n",
"both: many tracks arent good fits and are unusable\n",
"\"\"\"\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {},
"outputs": [],
2023-09-19 09:58:54 +02:00
"source": [
"endvtx_x_found = tracked[\"all_endvtx_x\"]\n",
"endvtx_x_found = endvtx_x_found[tracked[\"all_endvtx_x_length\"]!=0]\n",
"endvtx_x_found = ak.to_numpy(ak.flatten(endvtx_x_found))\n",
"\n",
"endvtx_z_found = tracked[\"all_endvtx_z\"]\n",
"endvtx_z_found = endvtx_z_found[tracked[\"all_endvtx_z_length\"]!=0]\n",
"#print(ak.to_numpy(brem_vtx_z_found))\n",
"endvtx_z_found = ak.to_numpy(ak.flatten(endvtx_z_found))\n",
"\n",
"endvtx_x_lost = lost[\"all_endvtx_x\"]\n",
"endvtx_x_lost = endvtx_x_lost[lost[\"all_endvtx_x_length\"]!=0]\n",
"endvtx_x_lost = ak.to_numpy(ak.flatten(endvtx_x_lost))\n",
"\n",
"endvtx_z_lost = lost[\"all_endvtx_z\"]\n",
"endvtx_z_lost = endvtx_z_lost[lost[\"all_endvtx_z_length\"]!=0]\n",
"endvtx_z_lost = ak.to_numpy(ak.flatten(endvtx_z_lost))"
]
},
{
"cell_type": "code",
"execution_count": 50,
2023-09-19 09:58:54 +02:00
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABkAAAAIlCAYAAACNejRdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAADFMklEQVR4nOz9f3wU5b3//z+X/CJgEglIQiQiVfSoQavQIui7gPySitbiES0eDrQUbVEsJ1BOkVOJPQKKirZQqW05YEXFT79HWqkWAat4LGgxlha0/mpR0RJjNSZAY34x3z/I7s5kJ7uzuzO7O8njfrvtLZuZa6+5ZnaTXFfmer2ugGEYhgAAAAAAAAAAALqQHuluAAAAAAAAAAAAgNu4AQIAAAAAAAAAALocboAAAAAAAAAAAIAuhxsgAAAAAAAAAACgy+EGCAAAAAAAAAAA6HK4AQIAAAAAAAAAALocboAAAAAAAAAAAIAuhxsgAAAAAAAAAACgy+EGCAAAAAAAAAAA6HK4AQIAAAAAAAAAALocboAAyBizZs3Shg0b0t0MAAAAAPAtxlUAAIRxAwQAAAAAAAAAAHQ53AAB0GU89thjOuecc5Sfn69AIKC9e/emu0m2qqqqFAgE0t2MkExrjyTt2rVLVVVV+vTTTyP2bdiwQYFAQO+8807K2wUAAAB0ZV72taP18dPNT2MixkMAEB9ugABIqylTpujEE0/UiSeeqEceeURz584NfX/HHXc4ruejjz7SjBkzdNppp2nr1q3avXu3zjjjDA9bDi/t2rVLt912m+3g6LLLLtPu3bs1YMCA1DcMAAAAyEBujau8FK2Pj0idXS/GQwAQn+x0NwBA9/ab3/wm9HzWrFkaM2aMZs2aFXc9b775plpaWvRv//ZvGj16tIstRCr985//VK9evaKWOemkk3TSSSelqEUAAABA5nNrXIX0izUmYjwEAPEhAgSA61544QVNnDhRRUVF6tOnjy677DK99dZbnh1v1qxZuvjiiyVJ11xzjQKBgMaMGRNqy7hx41RQUKBevXpp1KhRevLJJ23rOPXUUyO2dwyFDn7/6quv6mtf+5qKiopUUlKib3zjG6qvr494/ZNPPqnPf/7zysvL0+DBg3X33XfHdW5vvfWWpk+frv79+ysvL09nnXWWfvzjH9u20UmbEm3Pr371KwUCAT3zzDMR+9auXatAIKA///nPCbX7lVde0b/+67+qT58+Ou2001RVVaXvfve7kqTBgwcrEAgoEAjoueeek2Qf8v3666/ra1/7mkpKSpSXl6dTTjlF//7v/66mpqa4r+dHH32k66+/XuXl5crLy9NJJ52kiy66SDt27HB0rQAAAAA3pHpcFa0dscZUsfrQsfr4nXF7PCSlZkzkpN3mtsczJuosBZaTMRHjIQDdEREgAFxVVVWl//7v/9asWbM0f/58NTY26rbbbtO4ceP02muv6YQTTuj0tRs2bEjomN///vf1xS9+UTfeeKOWL1+usWPHqrCwUDt37tSECRN07rnnat26dcrLy9P999+vyy+/XI8++qiuueaaBM9Suuqqq3TNNddo9uzZ2rdvnxYvXixJ+p//+Z9QmWeeeUZf+cpXNHLkSG3atEltbW1auXKlPvzwQ0fHeO211zRq1Cidcsopuueee1RaWqqnn35aN998s/7xj39o6dKlcbUpmfZMmTJF/fv31/r16zVu3DjLvg0bNuiCCy7Queeem1C7p06dqmuvvVbf+ta3dPToUQ0bNkyffPKJVq9erccffzwU2n322Wfbtu1Pf/qTLr74YvXr108/+MEPNGTIEB06dEhPPPGEmpublZeXF1e7ZsyYoVdeeUXLli3TGWecoU8//VSvvPKKPv7445jXCQAAAHBDOsZVdpyOqWL1ob/5zW/G1ceX3B8PSakZE8Xbbim+MZHd2h9OxkSMhwB0WwYAuGTLli2GJGPlypWW7W+++aYhydi4cWPEay699FKjd+/eto9ly5Y5Pvazzz5rSDJ++ctfhrZdeOGFRv/+/Y3Dhw+HtrW2thoVFRXGwIEDjWPHjoW2z5w50xg0aFBEvUuXLjXMvyqD33c8x7lz5xo9e/a01DlixAijrKzMaGxsDG1raGgwiouLDSe/fidNmmQMHDjQqK+vt2y/6aabjJ49exqffPJJXG1Ktj2VlZVGfn6+8emnn4a2vfbaa4YkY/Xq1Qm3+9Zbb4041l133WVIMg4cOBCxb/369ZZ9l1xyiXHiiScatbW1UdvvtF0nnHCCMX/+/Kh1AQAAAF5J57iqY1/b6ZjKSR86Wh/fjtvjIcNIzZjIabvNbY9nTNTxPTIMZ2MixkMAuitSYAFwza233qrTTjtN3/nOd9Ta2hp6DB48WPn5+frb3/4W8Zrf/va3OnLkiO3jlltuSbgtR48e1UsvvaR//dd/tcyOysrK0owZM/T+++/rjTfeSLj+K664wvL9ueeeq88++0y1tbWh4+/Zs0dTp05Vz549Q+UKCgp0+eWXx6z/s88+0zPPPKOvfvWr6tWrl+V6fvnLX9Znn32mF1980XGbkm2PJH3jG99QY2OjHnvssdC29evXKy8vT9OnT0+43VdddZWj49v55z//qZ07d2ratGlR8+DG064vfvGL2rBhg26//Xa9+OKLamlpSbh9AAAAQLwyZVwVz5jK7T602+Oh4Pl4PSZKpN2S92MixkMAujNugABwRU1Njf74xz/qr3/9q/Ly8pSTk2N5NDY26sQTT0xZe+rq6mQYRihU2KysrEySkgrh7du3r+X7YJqlxsbG0PGPHTum0tLSiNfabevo448/Vmtrq1avXh1xLb/85S9Lkv7xj384blOy7ZGkc845R1/4whe0fv16SVJbW5s2btyor3zlKyouLk643XbvkVN1dXVqa2vTwIEDo5aLp12PPfaYZs6cqZ///OcaOXKkiouL9e///u+qqalJuJ0AAACAE5k0ropnTOV2H9rt8VDwfLweEyXSbsn7MRHjIQDdGWuAAHDFwYMHJUn33ntvaEHyjk477bSUtadPnz7q0aOHDh06FLHv73//uySpX79+oW09e/aMWDBbsu+cOj1+IBCw7SQ66Tj26dMnNLPqxhtvtC0zePDglLUn6Otf/7rmzp2rv/zlL/rb3/6mQ4cO6etf/3pS7TYvMh+v4uJiZWVl6f33349aLp529evXT/fdd5/uu+8+vffee3riiSf0ve99T7W1tdq6dWvCbQUAAABiyaRxVTxjKrf70G6Ph4J1ej0mSrTdXo+JGA8B6M64AQLAFcEIgEAgoOHDh6e5NVLv3r01YsQIPf7447r77ruVn58vSTp27Jg2btyogQMH6owzzgiVP/XUU1VbW6sPP/xQJSUlkqTm5mY9/fTTCR//i1/8oh5//HHdddddoRDrw4cPa8uWLTFf36tXL40dO1Z//OMfde655yo3NzehdrjVnqCvfe1rqqys1IYNG/S3v/1NJ598siZOnOh6uzvO1upMfn6+Ro8erV/+8pdatmyZ5aaWWaLtOuWUU3TTTTfpmWee0e9///v4TgIAAACIUyaNq+IdUwV11od22seX3B8PBc/H6zGRm+12c0zEeAhAd8YNEACuOO200zR27Fj913/9l44cOaIRI0bIMAwdOnRIzz77rGbOnKkxY8aktE0rVqzQhAkTNHbsWC1cuFC5ubm6//77tX//fj366KOWWTbXXHONbr31Vl177bX67ne/q88++0w/+tGP1NbWlvDx//u//1uXXnqpJkyYoAULFqitrU133nmnevfurU8++STm63/4wx/q4osv1v/7f/9P3/72t3Xqqafq8OHDevvtt7Vlyxb97ne/S2l7JOnEE0/UV7/6VW3YsEGffvqpFi5cqB49rNkU3Wj30KFDQ3XNnDlTOTk5OvPMM1VQUBBRdtWqVbr44os1YsQIfe9739Ppp5+uDz/8UE888YQeeOCB0GuctKu+vl5jx47V9OnT9S//8i8qKCjQnj17tHXrVk2dOtXRNQIAAAASlWnjKidjKqd96Hj6+MFybo6HpNSMidxqd2fXy46TMRHjIQDdVnrXYAfQldTX1xu
2023-09-19 09:58:54 +02:00
"text/plain": [
"<Figure size 2000x600 with 4 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig, ((ax0, ax1)) = plt.subplots(nrows=1, ncols=2, figsize=(20,6))\n",
"\n",
"a0 = ax0.hist2d(endvtx_z_found, endvtx_x_found, density=False, bins=500, cmap=plt.cm.jet, cmin=1)\n",
2023-09-19 09:58:54 +02:00
"ax0.set_xlabel(\"z [mm]\")\n",
"ax0.set_ylabel(\"x [mm]\")\n",
"ax0.set_title(r\"$e^\\pm$ found end vertices\")\n",
"ax0.set(xlim=(0,12000), ylim=(-4000,4000))\n",
2023-09-19 09:58:54 +02:00
"\n",
"plt.colorbar(a0[3],ax=ax0)\n",
"\n",
"a1 = ax1.hist2d(endvtx_z_lost, endvtx_x_lost, density=False, bins=500, cmap=plt.cm.jet, cmin=1)\n",
2023-09-19 09:58:54 +02:00
"ax1.set_xlabel(\"z [mm]\")\n",
"ax1.set_ylabel(\"x [mm]\")\n",
"ax1.set_title(r\"$e^\\pm$ lost end vertices\")\n",
"ax1.set(xlim=(0,12000), ylim=(-4000,4000))\n",
2023-09-19 09:58:54 +02:00
"\n",
"plt.colorbar(a1[3], ax=ax1)\n",
"\n",
"\"\"\"\n",
"z: VeLo - RICH1 - TT - Magnet - T1,T2,T3 - RICH2 - M1\n",
"B:\n",
"vertices of lost e photons are more densely concentrated around the beampipe, especially in the z range of the magnet\n",
"found: vertices are densely located @ or around the detectors, while there are no clusters in the z range of the magnet\n",
2023-09-20 10:52:44 +02:00
"D:\n",
"lost: densely located @ the beampipe.\n",
"both: almost cant make out the velo or ut\n",
2023-09-19 09:58:54 +02:00
"\"\"\"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 51,
2023-09-19 09:58:54 +02:00
"metadata": {},
"outputs": [],
"source": [
"# try to plot trajectories using all tracker hits (Velo, UT, SciFi)\n",
"\n",
"velo_x_found = tracked[\"velo_hit_pos_x\"]\n",
"velo_z_found = tracked[\"velo_hit_pos_z\"]\n",
"ut_x_found = tracked[\"ut_hit_pos_x\"]\n",
"ut_z_found = tracked[\"ut_hit_pos_z\"]\n",
"scifi_x_found = tracked[\"scifi_hit_pos_x\"]\n",
"scifi_z_found = tracked[\"scifi_hit_pos_z\"]\n",
"\n",
"tracker_x_found = ak.concatenate([velo_x_found,ut_x_found,scifi_x_found], axis=1)\n",
"tracker_z_found = ak.concatenate([velo_z_found,ut_z_found,scifi_z_found], axis=1)\n",
"\n",
"velo_x_lost = lost[\"velo_hit_pos_x\"]\n",
"velo_z_lost = lost[\"velo_hit_pos_z\"]\n",
"ut_x_lost = lost[\"ut_hit_pos_x\"]\n",
"ut_z_lost = lost[\"ut_hit_pos_z\"]\n",
"scifi_x_lost = lost[\"scifi_hit_pos_x\"]\n",
"scifi_z_lost = lost[\"scifi_hit_pos_z\"]\n",
"\n",
"tracker_x_lost = ak.concatenate([velo_x_lost,ut_x_lost,scifi_x_lost], axis=1)\n",
"tracker_z_lost = ak.concatenate([velo_z_lost,ut_z_lost,scifi_z_lost], axis=1)\n",
"\n",
"\n",
2023-09-20 16:34:15 +02:00
"#tracker_x_found = tracker_x_found[tracked[\"energy\"]>1e4]\n",
"#tracker_z_found = tracker_z_found[tracked[\"energy\"]>1e4]\n",
"\n",
2023-09-20 16:34:15 +02:00
"#tracker_x_lost = tracker_x_lost[lost[\"energy\"]>1e4]\n",
"#tracker_z_lost = tracker_z_lost[lost[\"energy\"]>1e4]"
2023-09-19 09:58:54 +02:00
]
},
{
"cell_type": "code",
2023-09-20 10:52:44 +02:00
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 52,
2023-09-19 09:58:54 +02:00
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABoQAAAIhCAYAAABnv9iQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hURdvA4d+m9wpplBAgPaEjICBdEBALTTqK6GtBUVBUkCZVpCjVhgWlgzTpHaR3SK+EkN57stmd74+YhSVtg0CAb+7rei/fnD1nzuzZc5aZfWaeUQghBJIkSZIkSZIkSZIkSZIkSZIkSdJTS6+mKyBJkiRJkiRJkiRJkiRJkiRJkiQ9XDIgJEmSJEmSJEmSJEmSJEmSJEmS9JSTASFJkiRJkiRJkiRJkiRJkiRJkqSnnAwISZIkSZIkSZIkSZIkSZIkSZIkPeVkQEiSJEmSJEmSJEmSJEmSJEmSJOkpJwNCkiRJkiRJkiRJkiRJkiRJkiRJTzkZEJIkSZIkSZIkSZIkSZIkSZIkSXrKyYCQJEmSJEmSJEmSJEmSJEmSJEnSU04GhCRJkiRJkiRJkiRJkiRJkiRJkp5yMiAkSU+wDRs24Ovri6mpKQqFgitXrtR0lco1ffp0FApFlfutXbuWJUuWPPwKVaJBgwb07dv3oZUfHR1Nnz59sLOzQ6FQMH78+Id2roclOjoahULBr7/+Wu1jAwMDmT59OtHR0Q+8XjVxnruV3ucpKSlV7tugQQNGjx6t+TsuLo7p06c/8Gd46dKlNG7cGCMjIxQKBRkZGQ+0/AftSapv586d6dy5c01XQ+Nxq48kSZIkPSl+/fVXFArFQ2s3rlixolrt5jlz5rBt27aHUhddlLb1v/nmm4d2jkOHDtGqVSvMzc1RKBQ1+n7v13+5b3bv3s306dMfeJ1q6jx369y5M35+flXuV16f8tSpU0yfPv2B9gGKior43//+h7OzM/r6+jRr1uyBlf0wPGn1VSgUj/weq8zjVh9JelwZ1HQFJEm6P8nJyYwYMYJevXqxYsUKjI2N8fDwqOlq/Sdr167lxo0bT2SQRFcfffQRZ8+eZfXq1Tg5OeHs7FzTVXqkAgMDmTFjBp07d6ZBgwZP/Hnu119//YWVlZXm77i4OGbMmEGDBg0eWKP/ypUrfPDBB7z55puMGjUKAwMDLC0tH0jZD8OTVt8VK1bUdBUkSZIkSXoCrFixglq1amkNBqrMnDlzGDBgAC+//PJDrVdNEUIwaNAgPDw82LFjB+bm5nh6etZ0tR6p3bt3s3z58of+w/WjOs/9cHZ25vTp0zRq1Eiz7dSpU8yYMYPRo0djY2PzQM6zcuVKvv/+e5YuXUrLli2xsLB4IOU+LE9afU+fPk3dunVruhqSJFWTDAhJ0hMqNDQUpVLJ8OHD6dSpU01X55FTqVQUFxdjbGxc01Wplhs3bvDMM89U2cFTKpUoFAoMDOTX9OMkLy8PMzOz/1xO8+bNH0BtKhcQEADA2LFjeeaZZyrd90G9r/+iOvV9HPj4+NR0FSRJkiRJ+n8uPz8fExMTnbIxPC7i4uJIS0vjlVdeoVu3bpXu+zi0UaWy8vPzMTU1/U9lGBsb07Zt2wdUo4rduHEDU1NT3n///Ur3E0JQUFDwn9/Xf6VrfR8Xj+IzlCTpwZMp4yTpCTR69Gg6dOgAwODBg1EoFFqpgnbs2EG7du0wMzPD0tKSHj16cPr06TJllDdzorz0bgqFgvfff581a9bg7e2NmZkZTZs2ZdeuXWWO//vvv2nWrBnGxsa4ubnpnGqgc+fO/P3339y8eROFQqH5H9yZTv71118za9Ys3NzcMDY25siRIxQUFDBhwgSaNWuGtbU1dnZ2tGvXju3bt5c5h1qtZunSpTRr1gxTU1NsbGxo27YtO3bsqLRuK1aswMDAgGnTpmm2rVy5kqZNm2JhYYGlpSVeXl588cUXFZZx9OhRFAoF4eHh7NmzR/P+oqOjNa+tWbOGCRMmUKdOHYyNjQkPDwdg9erVNG3aFBMTE+zs7HjllVcICgrSKn/06NFYWFgQHBxMz549MTc3x9nZmXnz5gFw5swZOnTogLm5OR4eHvz22286fS5xcXEMGjQIS0tLrK2tGTx4MAkJCeXue+HCBfr164ednR0mJiY0b96cjRs3al7/9ddfGThwIABdunTRXIO70wQcPHiQbt26YWVlhZmZGe3bt+fQoUNlzhUcHMyQIUNwdHTE2NiY+vXrM3LkSAoLC3U6T3Wu6fXr13n++eextLSsstMKkJiYyJAhQ7C2tsbR0ZE33niDzMxMrX3uThl39OhRWrduDcDrr7+uqW/pSL7IyEhee+01XFxcMDY2xtHRkW7dulWaXq5z584MHz4cgDZt2qBQKDTnK03jcPz4cZ599lnMzMx44403AIiJiWH48OE4ODhgbGyMt7c3CxcuRK1Wa8oufR4XLFjA/PnzadCgAaampnTu3FkTqP7ss89wcXHB2tqaV155haSkpEqvWWX1harvi4CAABQKBZs2bdJsu3jxIgqFAl9fX61z9evXj5YtW1ZaH12ueXkp2mJjYxkwYACWlpbY2NgwbNgwzp8/X+b+K723wsPD6d27NxYWFtSrV48JEyZQWFioVeaMGTNo06YNdnZ2WFlZ0aJFC37++WeEEJW+B6j+95QkSZIkSXfo0l6sqs3QoEEDAgICOHbsmKaNV9nsdYVCQW5uLr/99ptm/9L2RmmKsv379/PGG29Qu3ZtzMzMKCwsJDw8nNdffx13d3fMzMyoU6cOL774ItevXy9zjoyMDCZMmEDDhg0xNjbGwcGB3r17ExwcXGG9lEolo0aNwsLCQtMHzMvLY+LEibi5uWmuUatWrVi3bl2F5UyfPl0zm2DSpEla16O0H3rp0iUGDBiAra2tZvZIQUEBn3/+OW5ubhgZGVGnTh3ee++9MqnFStN/79q1i+bNm2Nqaoq3t7emzr/++ive3t6Ym5vzzDPPcOHChQrrerczZ87Qvn17TExMcHFx4fPPP0epVJa774YNG2jXrh3m5uZYWFjQs2dPLl++rHl99OjRLF++HECr31uaek4IwYoVKzR9VltbWwYMGEBkZGSZc+3du5du3bphbW2NmZkZ3t7ezJ07V6fzVPeabt26lebNm2NiYsKMGTOqvGbnz5+nY8eOmJmZ0bBhQ+bNm1dun6K0jTx9+nQ++eQTANzc3DT1PXr0KACHDx+mc+fO2NvbY2pqSv369enfvz95eXkV1kGhUPDTTz+Rn59fpk9Y+hvHqlWr8Pb2xtjYWNNHPnnyJN26dcPS0hIzMzOeffZZ/v77b62yS5/Hw4cPM3bsWOzt7bGysmLkyJHk5uaSkJDAoEGDsLGxwdnZmYkTJ1Z4z+hSX13ui+XLl6Onp6fV91q4cCEKhYL33ntPs02tVmNra8uECRMqrY8u17y8FG0nT56kXbt2mJiYUKdOHb788kt++umnMikWS++tvXv30qJFC0xNTfHy8mL16tVa5SUnJ/Puu+/i4+ODhYUFDg4OdO3alRMnTlRaf7i/7ylJ+n9BSJL0xAkPDxfLly8XgJgzZ444ffq0CAgIEEII8eeffwpAPP/882Lbtm1iw4YNomXLlsLIyEicOHFCU8aoUaOEq6trmbKnTZsm7v1qAESDBg3EM888IzZu3Ch2794tOnfuLAwMDERERIRmv4MHDwp9fX3RoUMHsXXrVrFp0ybRunVrUb9+/TJl3isgIEC0b99eODk5idOnT2v+J4QQUVFRAhB16tQRXbp0EZs3bxb79+8XUVFRIiMjQ4wePVqsWbNGHD58WOzdu1dMnDhR6Onpid9++03rHCNGjBAKhUK8+eabYvv27WLPnj1i9uzZ4ttvv9Xs4+rqKvr06SOEEEKtVosJEyYIQ0ND8csvv2j2WbdunQDEuHHjxP79+8XBgwfFqlWrxAcffFDh+8vMzBSnT58WTk5Oon379pr3V1BQII4cOaJ5fwMGDBA7duwQu3btEqmpqWLOnDkCEEOGDBF///23+P3330XDhg2FtbW1CA0N1fo8jYyMhLe3t/j222/FgQMHxOu
2023-09-19 09:58:54 +02:00
"text/plain": [
"<Figure size 2000x600 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig, ((ax0, ax1)) = plt.subplots(nrows=1, ncols=2, figsize=(20,6))\n",
"\n",
"nstart=0\n",
"nend=130\n",
"\n",
"for i in range(nstart,nend):\n",
2023-09-19 09:58:54 +02:00
" popt, pcov = curve_fit(cubic_fit,ak.to_numpy(tracker_z_found[i,:]),ak.to_numpy(tracker_x_found[i,:]))\n",
" z_coord = np.linspace(tracker_z_found[i,0],14000,1000)\n",
2023-09-19 09:58:54 +02:00
" fit = cubic_fit(z_coord, popt[0], popt[1], popt[2], popt[3])\n",
" ax0.plot(z_coord, fit, \"-\", lw=0.5)\n",
" ax0.errorbar(ak.to_numpy(tracker_z_found[i,:]),ak.to_numpy(tracker_x_found[i,:]),fmt=\".\",ms=3)\n",
2023-09-19 09:58:54 +02:00
"\n",
2023-09-20 16:34:15 +02:00
"ax0.legend([r\"$E>5$GeV\"])\n",
"ax0.vlines(3000, -4000,4000, lw=1, ls=\":\", color=\"red\")\n",
"ax0.vlines(7500, -4000,4000, lw=1, ls=\":\", color=\"red\")\n",
"ax0.set_xticks(np.arange(0,14000,1000) , minor=True)\n",
"ax0.set_yticks(np.arange(-4000,4000,500), minor=True)\n",
2023-09-19 09:58:54 +02:00
"ax0.set_xlabel(\"z [mm]\")\n",
"ax0.set_ylabel(\"x [mm]\")\n",
"ax0.set_title(\"found tracks from detector hits from few signals\")\n",
"ax0.set(xlim=(0,14000), ylim=(-4000,4000))\n",
2023-09-19 09:58:54 +02:00
"ax0.grid()\n",
"\n",
"for i in range(nstart,nend):\n",
2023-09-19 09:58:54 +02:00
" popt, pcov = curve_fit(cubic_fit,ak.to_numpy(tracker_z_lost[i,:]),ak.to_numpy(tracker_x_lost[i,:]))\n",
" z_coord = np.linspace(tracker_z_lost[i,0],14000,1000)\n",
2023-09-19 09:58:54 +02:00
" fit = cubic_fit(z_coord, popt[0], popt[1], popt[2], popt[3])\n",
" ax1.plot(z_coord, fit, \"-\", lw=0.5)\n",
" ax1.errorbar(ak.to_numpy(tracker_z_lost[i,:]),ak.to_numpy(tracker_x_lost[i,:]),fmt=\".\",ms=3)\n",
2023-09-19 09:58:54 +02:00
"\n",
"ax1.vlines(3000, -4000,4000, lw=1, ls=\":\", color=\"red\")\n",
"ax1.vlines(7500, -4000,4000, lw=1, ls=\":\", color=\"red\")\n",
"ax1.set_xticks(np.arange(0,14000,1000) , minor=True)\n",
"ax1.set_yticks(np.arange(-4000,4000,500), minor=True)\n",
2023-09-19 09:58:54 +02:00
"ax1.set_xlabel(\"z [mm]\")\n",
"ax1.set_ylabel(\"x [mm]\")\n",
"ax1.set_title(\"lost tracks from detector hits from few signals\")\n",
"ax1.set(xlim=(0,14000), ylim=(-4000,4000))\n",
2023-09-19 09:58:54 +02:00
"ax1.grid()\n",
"\n",
"\n",
"\"\"\"\n",
"electrons and photons will be stopped by the ECAL which serves to measure the particles energy\n",
"\n",
2023-09-20 10:52:44 +02:00
"B:\n",
"the trajectories between the velo and tt should be linear, which cannot be plotted accurately using a single fit.\n",
"lost tracks diverge more severely.\n",
"\n",
"most higher energy particles maintain a trajectory closer to the beamdirection ie a larger pseudorapidity,\n",
"and show less bending in their trajectory, especially upstream.\n",
"found: higher energy: very compact trajectory, less bending wrt lower energy particles \n",
2023-09-20 10:52:44 +02:00
"\n",
"D:\n",
"E<10GeV: almost all diverge from the x origin (almost no hit for x<1500)\n",
"E>10GeV: much more densely clustered. however still a noticeable empty space around the x origin\n",
"\"\"\"\n",
"\n",
"\n",
"\n",
2023-09-19 09:58:54 +02:00
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 56,
"metadata": {},
"outputs": [],
"source": [
"c = 299792458 #m/s\n",
"energy_found = tracked[\"energy\"]\n",
"p_found = tracked[\"p\"]\n",
"pt_found = tracked[\"pt\"]\n",
"eta_found = tracked[\"eta\"]\n",
"\n",
"energy_lost = lost[\"energy\"]\n",
"p_lost = lost[\"p\"]\n",
"pt_lost = lost[\"pt\"]\n",
"eta_lost = lost[\"eta\"]\n",
"\n",
"p_found = ak.to_numpy(p_found)\n",
"pt_found = ak.to_numpy(pt_found)\n",
"eta_found = ak.to_numpy(eta_found)\n",
"\n",
"p_lost = ak.to_numpy(p_lost)\n",
"pt_lost = ak.to_numpy(pt_lost)\n",
"eta_lost = ak.to_numpy(eta_lost)\n",
"#print(np.sqrt(energy_found[0]**2 - p_found[0]**2))"
]
},
{
"cell_type": "code",
"execution_count": 57,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABjEAAAIhCAYAAAAPYJjtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACt5ElEQVR4nOzdeXgUVdr38V+TQBKWBIKQRXZFhACCoAgugAgIg8uo446gPgwOiIPIg+JGcCGCjIOKgL7DEJEBl0EUhUFwIY6CIyC4oDLjM6gIRFwwAYSEhPP+gWm7SXe6q1PdXd39/VxXLtOVqlOnFmLdqXOf22WMMQIAAAAAAAAAAHCYOtHuAAAAAAAAAAAAgC+8xAAAAAAAAAAAAI7ESwwAAAAAAAAAAOBIvMQAAAAAAAAAAACOxEsMAAAAAAAAAADgSLzEAAAAAAAAAAAAjsRLDAAAAAAAAAAA4Ei8xAAAAAAAAAAAAI7ESwwAAAAAAAAAAOBIvMSAnnvuOeXl5SktLU0ul0tbtmyJdpd8ys/Pl8vlsq29wsJCuVwuffnll7a16enTTz9Vfn5+2NpH6KZNm6aXXnop2t2IaZxDRBq/UwEAThbu2GLOnDkqLCy0vd2RI0eqTZs2trdbZeXKlcrPzw9b+wjNrl27lJ+f79jYPxZwDhEN/E5FIuMlRoL77rvvNHz4cJ1wwglatWqV1q9fr5NOOina3YoLn376qaZOncof3ByIP8DXHucQkcbvVABAIgvXS4xwW7lypaZOnRrtbuAYu3bt0tSpU/kDfC1wDhEN/E5FIkuOdgcQXf/+9791+PBhXXvtterbt2+0u5PQfv75Z9WvXz/a3QAkSZWVlaqoqFBKSkqt2zp48KBSU1NtzaRymoMHDyotLS3a3QAAAIhZxhgdOnSIZyo4hp1xTLzH+3bGjwDgC5kYCWzkyJE666yzJElXXHGFXC6X+vXr5/758uXL1bt3b9WvX1+NGjXSwIEDtX79+mpt+Eo/9jX1k8vl0s0336xnnnlGHTt2VP369XXKKafo1Vdfrbb9ihUr1K1bN6WkpKht27aaOXOmpWN7/fXXNWDAAKWnp6t+/fo688wz9cYbb9i67eeff66rrrpKWVlZSklJUatWrXTdddeprKxMhYWF+t3vfidJ6t+/v1wul1wul3v0VL9+/dS5c2e9/fbb6tOnj+rXr68bbrhBkvT111/r2muvVfPmzZWSkqKOHTvqT3/6k44cOeLe95dffimXy6WZM2fqkUceUdu2bdWwYUP17t1b7733XsBjrEp3f/PNNzVq1Cg1bdpU6enpuu6663TgwAEVFxfr8ssvV+PGjZWTk6OJEyfq8OHDXm38+OOPGjNmjI4//njVq1dP7dq101133aWysjKv9aqu+4IFC9ShQwelpaWpZ8+eeu+992SM0cMPP+zu/7nnnqsvvvgipGtSdc9t3bpVV111lTIyMpSVlaUbbrhBJSUlXv05cOCAnn76afd1qbrv/U1Z5mt6gDZt2mjYsGF69dVX1b17d6Wlpaljx47u+7mwsFAdO3ZUgwYNdPrpp2vjxo0Br4skffLJJ7rooovUpEkTpaamqlu3bnr66afdP//uu+9Ur1493XPPPdW2/fzzz+VyufTYY4+5lxUXF2v06NFq0aKF6tWrp7Zt22rq1KmqqKhwr1N1P82YMUMPPPCA2rZtq5SUFL311ls++1jTOaw6V6tXr9YNN9ygZs2aqX79+iorK9MXX3yh66+/Xu3bt1f9+vV1/PHH64ILLtDHH3/s1f7atWvlcrm0ZMkS3XXXXcrNzVV6errOO+88bdu2zWvdzZs3a9iwYe5/L7m5ufrNb36jb775RpLUvXt3nX322dWOobKyUscff7wuueQS97Ly8nI98MADOvnkk5WSkqJmzZrp+uuv13fffee1bdW1f/HFF9W9e3elpqa6R8O88MIL6tWrlzIyMlS/fn21a9fO/W+7SmlpqSZOnKi2bduqXr16Ov744zV+/HgdOHDA5/n2VPW7Y/369erTp4/S0tLUpk0bLViwQNLR352nnnqq6tevry5dumjVqlXV2njnnXc0YMAANWrUSPXr11efPn20YsUKr3Xs+B1h9XyuWrVKp556qtLS0nTyySfrr3/9q1d/avqd2qZNG40cOdLn+fL8/1rVvbV48WLdfvvtysnJUcOGDXXBBRfo22+/1b59+/T73/9exx13nI477jhdf/312r9/f8DrAgCAP3/96191yimnKDU1VZmZmfrtb3+rzz77zGud//73v7ryyiuVm5urlJQUZWVlacCAAe4R3m3atNHWrVtVVFTk/n9goCmgjDGaM2eOunXrprS0NDVp0kSXXXaZ/vvf/wbss5VtV61apQEDBriffTp27KiCggJJR2PFJ554QpLc/fZ8pq6KE+bNm6eOHTsqJSXF/dxr5Xnlrbfe0h/+8Acdd9xxatq0qS655BLt2rUr4HGOHDlSDRs21Oeff67BgwerQYMGysnJ0UMPPSRJeu+993TWWWepQYMGOumkk7yeyasEenaX7Hn+CPaaVD0rbtiwQWeffbb7efShhx5yx5Nr167VaaedJkm6/vrr3delaoqaY5+fPM+X531XFUM8/PDDmj59utq0aaO0tDT169fPPVjyjjvuUG5urjIyMvTb3/5We/bsCXhdpMB/i3jppZfkcrl8xulz586Vy+XSRx995F62ceNGXXjhhcrMzFRqaqq6d++u559/3mu7muKYYwU6h1X31scff6xBgwapUaNGGjBggCRpzZo1uuiii9SiRQulpqbqxBNP1OjRo/X999977SPY+FaqOQaJdPx45MgRPfDAA+7Yv3HjxurataseffRRr33/5z//0dVXX+31d4+q3xeB2PE3hmB+N9vxO8LK+Qz0952afqdWteErY8/z3pR+vbc++ugj/e53v1NGRoYyMzM1YcIEVVRUaNu2bTr//PPVqFEjtWnTRjNmzAjqugBhZ5CwvvjiC/PEE08YSWbatGlm/fr1ZuvWrcYYY/72t78ZSWbQoEHmpZdeMs8995zp0aOHqVevnvnnP//pbmPEiBGmdevW1dqeMmWKOfb2kmTatGljTj/9dPP888+blStXmn79+pnk5GTzf//3f+71Xn/9dZOUlGTOOuss8+KLL5oXXnjBnHbaaaZVq1bV2vTlmWeeMS6Xy1x88cXmxRdfNK+88ooZNmyYSUpKMq+//rp7vQULFhhJZvv27Za33bJli2nYsKFp06aNmTdvnnnjjTfMokWLzOWXX25KS0vNnj17zLRp04wk88QTT5j169eb9evXmz179hhjjOnbt6/JzMw0LVu2NI8//rh56623TFFRkdmzZ485/vjjTbNmzcy8efPMqlWrzM0332wkmT/84Q/u/W/fvt19Ps8//3zz0ksvmZdeesl06dLFNGnSxPz00081nqOqY2/btq257bbbzOrVq8306dNNUlKSueqqq8ypp55qHnjgAbNmzRpz++23G0nmT3/6k3v7gwcPmq5du5oGDRqYmTNnmtWrV5t77rnHJCcnm6FDh1a77q1btzZ9+vQxL774olm2bJk56aSTTGZmprn11lvNRRddZF599VXzt7/9zWRlZZmuXbuaI0eOWL4mVfdchw4dzL333mvWrFljHnnkEZOSkmKuv/5693rr1683aWlpZujQoe7rUnXf+7pv/d0rrVu3Ni1atDCdO3c2S5YsMStXrjS9evUydevWNffee68588wzvY43KyvL/PzzzzVel88//9w0atTInHDCCWbhwoVmxYoV5qqrrjKSzPTp093r/fa3vzUtW7Y0lZWVXttPmjTJ1KtXz3z//ffGGGN2795tWrZsaVq3bm2efPJJ8/rrr5v777/fpKSkmJEjR7q3q7qfjj/+eNO/f3/z97//3axevdrreD3VdA6rztXxxx9vfv/735t//OMf5u9//7upqKgwRUVF5rbbbjN///vfTVFRkVm2bJm5+OKLTVpamvn888/d7b/11lvu+/uaa64xK1asMEuWLDGtWrUy7du3NxUVFcYYY/bv32+aNm1qevbsaZ5//nlTVFRknnv
"text/plain": [
"<Figure size 2000x600 with 4 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig, ((ax0, ax1)) = plt.subplots(nrows=1, ncols=2, figsize=(20,6))\n",
"\n",
"a0=ax0.hist2d(p_found, pt_found, bins=200, cmap=plt.cm.jet, cmin=0,range=[[0,1e4],[0,1e3]])\n",
"ax0.set_xlabel(\"p\")\n",
"ax0.set_ylabel(r\"$p_T$\")\n",
"ax0.set_title(\"found electron momentum over transverse momentum\")\n",
"plt.colorbar(a0[3],ax=ax0)\n",
"\n",
"a1=ax1.hist2d(p_lost, pt_lost, bins=200, cmap=plt.cm.jet, cmin=0, range=[[0,1e4],[0,1e3]]) \n",
"ax1.set_xlabel(\"p\")\n",
"ax1.set_ylabel(r\"$p_T$\")\n",
"ax1.set_title(\"lost electron momentum over transverse momentum\")\n",
"plt.colorbar(a1[3],ax=ax1)\n",
"\n",
"\"\"\"\n",
2023-09-20 10:52:44 +02:00
"B:\n",
"\n",
2023-09-20 10:52:44 +02:00
"D:\n",
"both: clustered between 2000<p<6000 and 20<pt<400 (found a little more spread)\n",
"\"\"\"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 58,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABhUAAAIiCAYAAADPQknpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACQI0lEQVR4nOzde3wU1f3/8feSQBIuiQQlgNwCIqKA3BRBK1CEiohYq1ZFhVq/9QJWQOv1pwRBULBqWyoWLyhVRK2KoBVFBdSKFVHUIsUbRWxFvEACiIGE8/sDdjObzLAzu7PZ3cnr+Xjsw83szJkzs0k7H875nE/IGGMEAAAAAAAAAAAQQ71UdwAAAAAAAAAAAGQGBhUAAAAAAAAAAIArDCoAAAAAAAAAAABXGFQAAAAAAAAAAACuMKgAAAAAAAAAAABcYVABAAAAAAAAAAC4wqACAAAAAAAAAABwhUEFAAAAAAAAAADgCoMKAAAAAAAAAADAFQYVAAePP/64jjrqKOXl5SkUCmnNmjWp7pKtkpIShUIh39p78803VVJSom3btvnWZm0bM2aM2rdv71t7ft/j6oJwz4Pohx9+UElJiZYvX57qrgAAAGSkhx56SKFQSP/5z3+S0v4999yjhx56yPd258+fr7vvvtv3dmtT+/btNWbMGN/aGzhwoAYOHOhbe9UF4Z4H0UcffaSSkpKk/Q0DyFwMKgA2vvnmG11wwQXq2LGjlixZopUrV+rwww9PdbdqxZtvvqnJkyfzD9y1iHuenn744QdNnjyZQQUAAIA0xaBCcHDP09NHH32kyZMnM6gAoIbsVHcASEcff/yx9uzZo/PPP18DBgxIdXeAKLt27VJeXl6quwEAAAAAta6yslIVFRXKyclJdVcAoM4iUwGoZsyYMTrhhBMkSb/85S8VCoWi0jwXLVqkfv36qWHDhmrSpImGDBmilStX1mjDbvkdu2V0QqGQxo0bp7/+9a/q0qWLGjZsqKOPPlrPPfdcjeOff/559ejRQzk5OSouLtYdd9zh6dpefvllDR48WPn5+WrYsKGOP/54vfLKK1H9+93vfidJKi4uVigUUigUiszUfvzxxzV06FC1bNlSeXl56tKli6677jrt3Lkz5rm/+eYbXX755TryyCPVuHFjNW/eXD/96U/1+uuvR+33n//8R6FQSHfccYfuvPNOFRcXq3HjxurXr5/eeuutGu0+9NBD6ty5s3JyctSlSxfNmzfP0z15/PHH1a9fPzVq1EiNGzfWz372M7333nu+HvvPf/5TI0aMULNmzZSbm6uOHTtq/PjxkmLf8/bt2+vUU0/V008/rZ49eyo3N1eTJ0+WJP3rX//SyJEj1bRpU+Xm5qpHjx56+OGHo869fPlyhUIhPfbYY7rxxhvVqlUr5efn66STTtL69etjXmP4d/aDDz7QWWedpYKCAhUWFmrixImqqKjQ+vXrdfLJJ6tJkyZq3769ZsyYUaONL774Queff76aN28e+Z5+//vfa+/evZF9wt/7zJkzdfvtt6t9+/bKy8vTwIEDI4N81113nVq1aqWCggL9/Oc/15YtW+L6TsaMGaPGjRvr008/1SmnnKLGjRurTZs2uuqqq1ReXh7pzyGHHCJJmjx5cuR7CaeQx/M3PnfuXHXu3Fl5eXnq06eP3nrrLRljNHPmzMjv+U9/+lN9+umnMb8XAACATPbggw/q6KOPVm5urgoLC/Xzn/9c69ati9rn888/1znnnKNWrVopJydHRUVFGjx4cGRZ2vbt22vt2rVasWJF5Fkt1hKoxhjdc8896tGjh/Ly8tS0aVOdeeaZ+vzzzyP7DBw4UM8//7w2btwYadf6fDd58mT17dtXhYWFys/PV69evfTAAw/IGBPzut955x2dc845kWfd9u3b69xzz9XGjRuj9gsvG7Vs2TJddtllOvjgg9WsWTOdccYZ+t///he17549e3TNNdeoRYsWatiwoU444QS9/fbbMfsStnv3bk2dOlVHHHGEcnJydMghh+hXv/qVvvnmG1+PnT9/vvr166fGjRurcePG6tGjhx544AFJB77n4ThhxowZmjp1qoqLi5WTk6Nly5ZJchefh5/R165dq3PPPVcFBQUqKirSRRddpNLS0pjXOXDgQHXt2lUrV65U//79I9/d3LlzJe2L03v16qWGDRuqW7duWrJkSY023njjDQ0ePFhNmjRRw4YN1b9/fz3//PNR+4S/91dffVX/93//p2bNmik/P18XXnihdu7cqc2bN+vss8/WQQcdpJYtW+rqq6/Wnj174vpOwnHmkiVL1KtXL+Xl5emII47Qgw8+GNWfs846S5I0aNCgyPcSzg5yWmKr+lJZ4Zh0/vz5uvbaa9WyZUs1btxYI0aM0Ndff63t27frN7/5jQ4++GAdfPDB+tWvfqUdO3bE/F4ApJgBEOXTTz81f/7zn40kM23aNLNy5Uqzdu1aY4wxjz76qJFkhg4dahYuXGgef/xx07t3b9OgQQPz+uuvR9oYPXq0adeuXY22J02aZKr/2Uky7du3N8cee6x54oknzN///nczcOBAk52dbT777LPIfi+//LLJysoyJ5xwgnn66afNk08+aY455hjTtm3bGm3a+etf/2pCoZA5/fTTzdNPP20WL15sTj31VJOVlWVefvllY4wxmzZtMldccYWRZJ5++mmzcuVKs3LlSlNaWmqMMWbKlCnmrrvuMs8//7xZvny5uffee01xcbEZNGhQzPP/+9//NpdddplZsGCBWb58uXnuuefMr3/9a1OvXj2zbNmyyH4bNmyI3JOTTz7ZLFy40CxcuNB069bNNG3a1Gzbti2y79y5c40kM3LkSLN48WLzyCOPmMMOO8y0adPG9v5Xd+utt5pQKGQuuugi89xzz5mnn37a9OvXzzRq1CjynRtj/725PXbJkiWmfv36pnv37uahhx4yr776qnnwwQfNOeec4+qet2vXzrRs2dJ06NDBPPjgg2bZsmXm7bffNv/+979NkyZNTMeOHc28efPM888/b84991wjydx+++2R8y9btixyP0eNGmWef/5589hjj5m2bduaTp06mYqKigPeo/C1d+7c2UyZMsUsXbrUXHPNNUaSGTdunDniiCPMH//4R7N06VLzq1/9ykgyTz31VOT4LVu2mEMPPdQccsgh5t577zVLliwx48aNM5LMZZddVuN7b9eunRkxYoR57rnnzCOPPGKKiorM4Ycfbi644AJz0UUXmRdeeMHce++9pnHjxmbEiBFxfSejR482DRo0MF26dDF33HGHefnll83NN99sQqGQmTx5sjHGmB9//NEsWbLESDK//vWvI9/Lp59+GmnDy994u3btTP/+/c3TTz9tnnnmGXP44YebwsJCM2HCBDNy5Ejz3HPPmUcffdQUFRWZ7t27m7179x7wewEAAMgE4ef1DRs2RLZNmzbNSDLnnnuuef755828efNMhw4dTEFBgfn4448j+3Xu3Nkcdthh5q9//atZsWKFeeqpp8xVV10ViR3effdd06FDB9OzZ8/Is9q77757wP783//9n6lfv7656qqrzJIlS8z8+fPNEUccYYqKiszmzZuNMcasXbvWHH/88aZFixaRdleuXBlpY8yYMeaBBx4wS5cuNUuXLjVTpkwxeXl5kefIA3nyySfNzTffbJ555hmzYsUKs2DBAjNgwABzyCGHmG+++abGfevQoYO54oorzIsvvmjuv/9+07Rp0xqx1+jRo00oFDK/+93vzEsvvWTuvPNOc+ihh5r8/HwzevToA/ansrLSnHzyyaZRo0Zm8uTJZunSpeb+++83hx56qDnyyCPNDz/8ENl3wIABZsCAAXEde9NNNxlJ5owzzjBPPvlkpJ833XRTzHsejhMOPfRQM2jQIPO3v/3NvPTSS2bDhg2u43NrTHPzzTebpUuXmjvvvNPk5OSYX/3qVzG/twEDBphmzZqZzp07mwceeMC8+OKL5tRTTzWSzOTJk023bt3MY489Zv7+97+b4447zuTk5Jj//ve/keOXL19u6tevb3r37m0ef/xxs3DhQjN06FATCoXMggULanzvxcX
"text/plain": [
"<Figure size 2000x600 with 4 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig, ((ax0, ax1)) = plt.subplots(nrows=1, ncols=2, figsize=(20,6))\n",
"\n",
"a0=ax0.hist2d(eta_found, p_found/(1e3), bins=200, cmap=plt.cm.jet, cmin=0, range=[[0,7],[0,50]])\n",
"ax0.set_xlabel(r\"$\\eta$\")\n",
2023-09-20 10:52:44 +02:00
"ax0.set_ylabel(r\"$p$ [GeV]\")\n",
"ax0.set_title(\"found eta and electron momentum\")\n",
"plt.colorbar(a0[3],ax=ax0)\n",
"\n",
"a1=ax1.hist2d(eta_lost, p_lost/(1e3), bins=200, cmap=plt.cm.jet, cmin=0, range=[[0,7],[0,50]])\n",
"ax1.set_xlabel(r\"$\\eta$\")\n",
2023-09-20 10:52:44 +02:00
"ax1.set_ylabel(r\"$p$ [GeV]\")\n",
"ax1.set_title(\"lost eta and electron momentum\")\n",
"plt.colorbar(a1[3],ax=ax1)\n",
"\n",
"\"\"\"\n",
2023-09-20 10:52:44 +02:00
"B:\n",
"particles with lower momentum appear to have lower rapidity as well, ie a larger angle to the beam axis.\n",
"D:\n",
"both: clustered between 3<eta<5 and 0<p<10GeV. it seems that most particles had a higher rapidity \n",
"\"\"\"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
2023-09-19 09:58:54 +02:00
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'all_endvtx_types_length': 11,\n",
" 'all_endvtx_types': [101.0,\n",
" 101.0,\n",
" 101.0,\n",
" 101.0,\n",
" 101.0,\n",
" 101.0,\n",
" 101.0,\n",
" 101.0,\n",
" 101.0,\n",
" 101.0,\n",
" 0.0],\n",
" 'all_endvtx_x_length': 11,\n",
" 'all_endvtx_x': [19.496400833129883,\n",
" 24.957000732421875,\n",
" 32.490699768066406,\n",
" 34.14419937133789,\n",
" 34.6599006652832,\n",
" 36.427101135253906,\n",
" -1914.992431640625,\n",
" -2413.033203125,\n",
" -3782.947998046875,\n",
" -3786.80810546875,\n",
" -3819.826904296875],\n",
" 'all_endvtx_y_length': 11,\n",
" 'all_endvtx_y': [-20.370500564575195,\n",
" -26.043100357055664,\n",
" -33.85060119628906,\n",
" -35.53160095214844,\n",
" -36.069400787353516,\n",
" -37.92850112915039,\n",
" -504.0671081542969,\n",
" -533.6621704101562,\n",
" -598.8317260742188,\n",
" -599.1124877929688,\n",
" -593.3890991210938],\n",
" 'all_endvtx_z_length': 11,\n",
" 'all_endvtx_z': [399.7018127441406,\n",
" 500.7049865722656,\n",
" 637.5723266601562,\n",
" 667.4852905273438,\n",
" 677.0195922851562,\n",
" 709.4874877929688,\n",
" 8576.556640625,\n",
" 9281.2119140625,\n",
" 11183.1640625,\n",
" 11188.4541015625,\n",
" 11237.0966796875],\n",
" 'brem_photons_pe_length': 10,\n",
" 'brem_photons_pe': [2469.182861328125,\n",
" 169.8916473388672,\n",
" 223.71347045898438,\n",
" 388.2983703613281,\n",
" 3228.4228515625,\n",
" 809.4715576171875,\n",
" 171.57342529296875,\n",
" 223.80494689941406,\n",
" 178.85166931152344,\n",
" 793.921142578125],\n",
" 'brem_photons_px_length': 10,\n",
" 'brem_photons_px': [133.6999969482422,\n",
" 9.329999923706055,\n",
" 12.489999771118164,\n",
" 20.93000030517578,\n",
" 175.22000122070312,\n",
" 43.81999969482422,\n",
" -98.19999694824219,\n",
" -129.77000427246094,\n",
" -106.12000274658203,\n",
" -465.2200012207031],\n",
" 'brem_photons_py_length': 10,\n",
" 'brem_photons_py': [-137.9199981689453,\n",
" -9.65999984741211,\n",
" -12.579999923706055,\n",
" -21.809999465942383,\n",
" -183.27999877929688,\n",
" -47.79999923706055,\n",
" -6.090000152587891,\n",
" -7.429999828338623,\n",
" -5.800000190734863,\n",
" -36.66999816894531],\n",
" 'brem_photons_pz_length': 10,\n",
" 'brem_photons_pz': [2461.699951171875,\n",
" 169.36000061035156,\n",
" 223.00999450683594,\n",
" 387.1199951171875,\n",
" 3218.449951171875,\n",
" 806.8699951171875,\n",
" 140.55999755859375,\n",
" 182.19000244140625,\n",
" 143.85000610351562,\n",
" 642.2899780273438],\n",
" 'brem_vtx_x_length': 10,\n",
" 'brem_vtx_x': [19.496400833129883,\n",
" 24.957000732421875,\n",
" 32.490699768066406,\n",
" 34.14419937133789,\n",
" 34.6599006652832,\n",
" 36.427101135253906,\n",
" -1914.992431640625,\n",
" -2413.033203125,\n",
" -3782.947998046875,\n",
" -3786.80810546875],\n",
" 'brem_vtx_y_length': 10,\n",
" 'brem_vtx_y': [-20.370500564575195,\n",
" -26.043100357055664,\n",
" -33.85060119628906,\n",
" -35.53160095214844,\n",
" -36.069400787353516,\n",
" -37.92850112915039,\n",
" -504.0671081542969,\n",
" -533.6621704101562,\n",
" -598.8317260742188,\n",
" -599.1124877929688],\n",
" 'brem_vtx_z_length': 10,\n",
" 'brem_vtx_z': [399.7018127441406,\n",
" 500.7049865722656,\n",
" 637.5723266601562,\n",
" 667.4852905273438,\n",
" 677.0195922851562,\n",
" 709.4874877929688,\n",
" 8576.556640625,\n",
" 9281.2119140625,\n",
" 11183.1640625,\n",
" 11188.4541015625],\n",
" 'endvtx_type': 0,\n",
" 'endvtx_x': nan,\n",
" 'endvtx_y': nan,\n",
" 'endvtx_z': nan,\n",
" 'energy': 9355.866625028413,\n",
" 'eta': 3.237728027535365,\n",
" 'event_count': 2,\n",
" 'fromB': True,\n",
" 'fromD': False,\n",
" 'fromDecay': True,\n",
" 'fromHadInt': False,\n",
" 'fromPV': False,\n",
" 'fromPairProd': False,\n",
" 'fromSignal': True,\n",
" 'fromStrange': False,\n",
" 'isElectron': True,\n",
" 'isKaon': False,\n",
" 'isMuon': False,\n",
" 'isPion': False,\n",
" 'isProton': False,\n",
" 'lost': False,\n",
" 'lost_in_track_fit': False,\n",
" 'match_fraction': 1.0,\n",
" 'mcp_idx': 5488,\n",
" 'mother_id': 511,\n",
" 'mother_key': 5479,\n",
" 'originvtx_type': 2,\n",
" 'originvtx_x': -0.0663,\n",
" 'originvtx_y': -0.0023,\n",
" 'originvtx_z': 40.3966,\n",
" 'p': 9355.866611073503,\n",
" 'phi': -0.8090232566094933,\n",
" 'pid': -11,\n",
" 'pt': 733.3612464536151,\n",
" 'px': 506.17,\n",
" 'py': -530.67,\n",
" 'pz': 9327.08,\n",
" 'scifi_hit_pos_x_length': 13,\n",
" 'scifi_hit_pos_x': [-1402.2215576171875,\n",
" -1448.5460205078125,\n",
" -1495.479736328125,\n",
" -1542.3804931640625,\n",
" -1865.9482421875,\n",
" -1914.599853515625,\n",
" -1915.0545654296875,\n",
" -1963.8216552734375,\n",
" -2012.78173828125,\n",
" -2349.04052734375,\n",
" -2398.658935546875,\n",
" -2448.573486328125,\n",
" -2498.376220703125],\n",
" 'scifi_hit_pos_y_length': 13,\n",
" 'scifi_hit_pos_y': [-470.2232666015625,\n",
" -473.55914306640625,\n",
" -476.8390197753906,\n",
" -480.12762451171875,\n",
" -501.0274963378906,\n",
" -504.04315185546875,\n",
" -504.0709228515625,\n",
" -507.0843200683594,\n",
" -510.0830383300781,\n",
" -530.0570068359375,\n",
" -532.8589477539062,\n",
" -535.61572265625,\n",
" -538.2548217773438],\n",
" 'scifi_hit_pos_z_length': 13,\n",
" 'scifi_hit_pos_z': [7824.40576171875,\n",
" 7894.1943359375,\n",
" 7964.38330078125,\n",
" 8034.171875,\n",
" 8506.294921875,\n",
" 8575.99609375,\n",
" 8576.6455078125,\n",
" 8646.2744140625,\n",
" 8716.0634765625,\n",
" 9191.1904296875,\n",
" 9260.98046875,\n",
" 9331.171875,\n",
" 9400.962890625],\n",
" 'track_p': 1931.9397828451663,\n",
" 'track_pt': 151.36962154532284,\n",
" 'tx': 0.05426886013629132,\n",
" 'ty': -0.056895620065443846,\n",
" 'ut_hit_pos_x_length': 4,\n",
" 'ut_hit_pos_x': [112.31356048583984,\n",
" 114.4996337890625,\n",
" 122.83889770507812,\n",
" 124.72588348388672],\n",
" 'ut_hit_pos_y_length': 4,\n",
" 'ut_hit_pos_y': [-135.26077270507812,\n",
" -138.64544677734375,\n",
" -152.51470947265625,\n",
" -155.91305541992188],\n",
" 'ut_hit_pos_z_length': 4,\n",
" 'ut_hit_pos_z': [2313.153564453125,\n",
" 2368.153564453125,\n",
" 2593.153564453125,\n",
" 2648.153564453125],\n",
" 'velo_hit_pos_x_length': 10,\n",
" 'velo_hit_pos_x': [3.2025206089019775,\n",
" 4.559732437133789,\n",
" 5.917426109313965,\n",
" 7.274953365325928,\n",
" 8.638668060302734,\n",
" 10.008487701416016,\n",
" 11.378168106079102,\n",
" 12.745656967163086,\n",
" 15.399646759033203,\n",
" 19.47773551940918],\n",
" 'velo_hit_pos_y_length': 10,\n",
" 'velo_hit_pos_y': [-3.429784059524536,\n",
" -4.8510894775390625,\n",
" -6.275496482849121,\n",
" -7.6981940269470215,\n",
" -9.124002456665039,\n",
" -10.54817008972168,\n",
" -11.963949203491211,\n",
" -13.374946594238281,\n",
" -16.1297550201416,\n",
" -20.351228713989258],\n",
" 'velo_hit_pos_z_length': 10,\n",
" 'velo_hit_pos_z': [100.64099884033203,\n",
" 125.64099884033203,\n",
" 150.64100646972656,\n",
" 175.64100646972656,\n",
" 200.64100646972656,\n",
" 225.64100646972656,\n",
" 250.64100646972656,\n",
" 275.6409912109375,\n",
" 324.3590087890625,\n",
" 399.3590087890625],\n",
" 'velo_track_idx': 143,\n",
" 'velo_track_tx': 0.054571494460105896,\n",
" 'velo_track_ty': -0.056447889655828476,\n",
" 'velo_track_x': 39.710758209228516,\n",
" 'velo_track_y': -41.2618293762207,\n",
" 'velo_track_z': 770.0}"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tracked[1].tolist()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "env1",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.5"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}