commenting and hyperparameters, also training dataset option
finish commenting, included some other hyperparameters that could be handful Included the possibility to refer to some past optimization data to skip training
This commit is contained in:
parent
a9fd8cebed
commit
c50b21677b
@ -40,6 +40,11 @@ if __name__ == '__main__':
|
||||
#if no value is to be set from here globalPar must be an empty dictionary
|
||||
globalPar = {}
|
||||
|
||||
# $$$ TRAINING DATASET $$$
|
||||
# if previous run of the same optimization -meaning with the same type of optimizer, same type and number of input parameters- have been performed, the past dataset can be fed to skip the initial training
|
||||
# indicate the path for the learner archive file, to be found in the /M-LOOP_archives/ folder
|
||||
training_filename =
|
||||
|
||||
|
||||
# $$$ INPUT PARAMETERS $$$
|
||||
#indicate variables to be optimized, in the following we will call them "input parameters"
|
||||
@ -85,17 +90,25 @@ if __name__ == '__main__':
|
||||
num_params = num_params,
|
||||
min_boundary = min_boundary, max_boundary = max_boundary,
|
||||
first_params = inputPar,
|
||||
param_names = inputPar_names,
|
||||
param_names = inputPar_names,
|
||||
|
||||
#if retrieving dataset from previous runs
|
||||
training_filename = training_filename,
|
||||
|
||||
#other settings
|
||||
# %of allowed variation (from 0 to 1) - wrt each parameter range - from current best parameters found, limits the exploration around the current global minimum of the cost function
|
||||
trust_region = ,
|
||||
trust_region = 1,
|
||||
#output parameters over which cost is computed are noisy quantities
|
||||
cost_has_noise = True,
|
||||
#if False, waits for the experiment to be performed every time so that every new optimization iteration trains on an enlarged training set
|
||||
no_delay = False)
|
||||
#for other possible settings for the optimizer see documentation https://m-loop.readthedocs.io/en/latest/tutorials.html
|
||||
no_delay = False,
|
||||
|
||||
default_bad_cost = 0, #default cost for bad run
|
||||
default_bad_uncertainty = 0, #default uncertainty for bad run
|
||||
|
||||
update_hyperparameters = True #whether hyperparameters should be tuned to avoid overfitting. Default False.
|
||||
#for other possible settings for the optimizer see documentation https://m-loop.readthedocs.io/en/latest/tutorials.html
|
||||
)
|
||||
|
||||
#To run M-LOOP and find the optimal parameters just use the controller method optimize
|
||||
controller.optimize()
|
||||
|
Loading…
Reference in New Issue
Block a user