Update scripts/NNDy_Interface.py
complete commenting added handling of uncertainities
This commit is contained in:
parent
48d73f6811
commit
59741c971b
@ -1,90 +1,119 @@
|
||||
#imports for runmanager - labscript
|
||||
from runmanager_remote import run_experiment
|
||||
import time
|
||||
import numpy as np
|
||||
|
||||
#Imports for M-LOOP
|
||||
import mloop.interfaces as mli
|
||||
|
||||
|
||||
|
||||
#importlib allows to import the costfunction defined in cost_model.py
|
||||
import importlib
|
||||
_module_cache = {} #avoid multiple calls of cost function for same routine
|
||||
|
||||
|
||||
#Declare your custom class that inherits from the Interface class
|
||||
class NNDy_Interface(mli.Interface):
|
||||
|
||||
def __init__(self, routine_name, cost_model, hyperpars):
|
||||
#You must include the super command to call the parent class, Interface, constructor
|
||||
super(NNDy_Interface,self).__init__()
|
||||
|
||||
#Attributes of the interface can be added here
|
||||
self.exp_global_par = hyperpars['globalPar']
|
||||
self.input_names = hyperpars['inputPar_names']
|
||||
self.routine = routine_name
|
||||
self.cost_model = cost_model
|
||||
|
||||
def cost(self, parameters):
|
||||
module_name = self.cost_model
|
||||
if module_name not in _module_cache:
|
||||
try:
|
||||
module = importlib.import_module(module_name)
|
||||
cost_func = getattr(module, 'cost')
|
||||
#analysis_func = getattr(self.module, 'analysis')
|
||||
_module_cache[module_name] = {
|
||||
"cost_func": cost_func ,
|
||||
# "analysis_func": analysis_func
|
||||
}
|
||||
except (ModuleNotFoundError, AttributeError) as e:
|
||||
raise ImportError(f'Failed to load cost function from "{module_name}.py": {e}')
|
||||
|
||||
cost_model = _module_cache[module_name]["cost_func"]
|
||||
|
||||
return cost_model(parameters)
|
||||
|
||||
|
||||
|
||||
#the method that runs the experiment given a set of parameters and returns a cost
|
||||
def get_next_cost_dict(self,In_params_raw):
|
||||
|
||||
#The parameters come in a dictionary and are provided in a numpy array
|
||||
In_params = In_params_raw['params']
|
||||
#print(In_params)
|
||||
#optimization parameters to be send back to labscript are converted back into dictionaries
|
||||
if len(In_params) != len(self.input_names):
|
||||
raise Exception('number of optimized parameters and names do not match')
|
||||
In_params_dict = {}
|
||||
for par,name in zip(In_params, self.input_names) :
|
||||
In_params_dict.update({name: par})
|
||||
#merge with fixed global variables
|
||||
global_group = In_params_dict | self.exp_global_par
|
||||
|
||||
|
||||
#Here you can include the code to run your experiment given a particular set of parameters
|
||||
|
||||
#run_experiment runs the routine specified by routine name with global variables equal to the new set of parameters given by the optimizer
|
||||
#this means that the experiment parameters - In_params - are chosen among the global variablesof this labscript routine and are passed as a dictionary
|
||||
#print('running the experiment')
|
||||
results = {
|
||||
'cost': np.inf,
|
||||
'bad': False
|
||||
}
|
||||
try:
|
||||
hdf_output_file = run_experiment(self.routine, global_var = global_group)
|
||||
results = self.cost(hdf_output_file)
|
||||
except Exception as e:
|
||||
print(f"Exception type '{e}', considered as bad run!")
|
||||
results['bad'] = True
|
||||
|
||||
#self.analysis(hdf_output_file)
|
||||
#print('cost is computed')
|
||||
|
||||
uncer = 0
|
||||
|
||||
time.sleep(0.001)
|
||||
|
||||
#The cost, uncertainty and bad boolean must all be returned as a dictionary
|
||||
cost_dict = {'cost':results['cost'], 'uncer':uncer, 'bad':results['bad']}
|
||||
import time
|
||||
import numpy as np
|
||||
|
||||
#imports for runmanager - labscript
|
||||
from runmanager_remote import run_experiment
|
||||
|
||||
#Imports for M-LOOP
|
||||
import mloop.interfaces as mli
|
||||
|
||||
|
||||
# THIS FILE SHOULDN'T BE MODIFIED
|
||||
# if you're trying to improve the design of the interface define it in a new script
|
||||
# possible improvements of this version
|
||||
# - have the interface run the experiment many times to gather statistics
|
||||
# - run two or more optimizers in parallel with different settings (like trust regions, update of parameters) for efficiency
|
||||
|
||||
#only exception
|
||||
# if during debugging you want to know where the errors are generated in the experiment look for this mark $%$%$
|
||||
|
||||
|
||||
|
||||
#importlib allows to import the costfunction defined in cost_model.py
|
||||
import importlib
|
||||
_module_cache = {} #avoid multiple calls of cost function for same routine
|
||||
|
||||
|
||||
#Declare your custom class that inherits from the Interface class
|
||||
class NNDy_Interface(mli.Interface):
|
||||
|
||||
def __init__(self, routine_name, cost_model, hyperpars):
|
||||
#You must include the super command to call the parent class, Interface, constructor
|
||||
super(NNDy_Interface,self).__init__()
|
||||
|
||||
#Attributes of the interface can be added here
|
||||
|
||||
#here the interface is passed global variables eventually set from the main and the names of the input parameters that the controller controller will optimize
|
||||
self.exp_global_par = hyperpars['globalPar']
|
||||
self.input_names = hyperpars['inputPar_names']
|
||||
|
||||
self.routine = routine_name
|
||||
self.cost_model = cost_model
|
||||
|
||||
#the cost function is retrieved from /{cost_model}.py
|
||||
#in such file there should be a function called cost that takes as input the hdf5_file of the run and returns a dictionary with arguments 'bad', 'cost', 'uncer'
|
||||
def cost(self, hdf5_file):
|
||||
module_name = self.cost_model
|
||||
|
||||
#looks in the cache if the file was accessed already, otherwise imports the cost function
|
||||
if module_name not in _module_cache:
|
||||
try:
|
||||
module = importlib.import_module(module_name)
|
||||
cost_func = getattr(module, 'cost')
|
||||
_module_cache[module_name] = {
|
||||
"cost_func": cost_func ,
|
||||
}
|
||||
except (ModuleNotFoundError, AttributeError) as e:
|
||||
raise ImportError(f'Failed to load cost function from "{module_name}.py": {e}')
|
||||
|
||||
cost_model = _module_cache[module_name]["cost_func"]
|
||||
|
||||
return cost_model(hdf5_file)
|
||||
|
||||
|
||||
|
||||
#the method that runs the experiment given a set of parameters and returns a cost
|
||||
def get_next_cost_dict(self,In_params_raw):
|
||||
|
||||
#The parameters come in a dictionary and are provided in a numpy array
|
||||
In_params = In_params_raw['params']
|
||||
#print(In_params)
|
||||
|
||||
#optimization parameters to be send back to labscript are converted back into dictionaries
|
||||
if len(In_params) != len(self.input_names):
|
||||
raise Exception('number of optimized parameters and names do not match')
|
||||
In_params_dict = {}
|
||||
for par,name in zip(In_params, self.input_names) :
|
||||
In_params_dict.update({name: par})
|
||||
|
||||
#merge with fixed global variables
|
||||
global_group = In_params_dict | self.exp_global_par
|
||||
|
||||
|
||||
#Here you can include the code to run your experiment given a particular set of parameters
|
||||
|
||||
# default values
|
||||
results = {
|
||||
'bad': False,
|
||||
'cost': float('inf'), #may cause some problem, in case try with an absurdly high but finite value, or with 0 if cost is always negative
|
||||
'uncer': 0
|
||||
}
|
||||
|
||||
#run_experiment runs the routine specified by self.routine with global variables equal to the new set of parameters given by the optimizer
|
||||
#print('running the experiment')
|
||||
|
||||
# $%$%$ disable this expection catch if the experiment is always giving 'bad' results
|
||||
try:
|
||||
hdf_output_file = run_experiment(self.routine, global_var = global_group)
|
||||
#results should be a dictionary that contains at least a 'cost' item
|
||||
results = self.cost(hdf_output_file)
|
||||
|
||||
|
||||
except Exception as e:
|
||||
print(f"Exception type '{e}', considered as bad run!")
|
||||
results['bad'] = True
|
||||
|
||||
#print('cost is computed')
|
||||
|
||||
#sets uncer to 0 if it's not returned
|
||||
try:
|
||||
uncer = results['uncer']
|
||||
except Exception as e:
|
||||
uncer = 0
|
||||
#print(f"Exception type '{e}', no uncertainity set")
|
||||
|
||||
time.sleep(0.001)
|
||||
|
||||
#The cost, uncertainty and bad boolean must all be returned as a dictionary
|
||||
cost_dict = {'cost':results['cost'], 'uncer':uncer, 'bad':results['bad']}
|
||||
return cost_dict
|
Loading…
Reference in New Issue
Block a user