ML-Kurs-SS2023/notebooks/02_fit_exp_fit_iMinuit.ipynb
2023-04-03 12:26:38 +02:00

285 lines
5.5 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Example fit for the usage of iminuit"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from matplotlib import pyplot as plt\n",
"plt.rcParams[\"font.size\"] = 20\n",
"import numpy as np"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Data "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"x = np.array([0.2,0.4,0.6,0.8,1.,1.2,1.4,1.6,1.8,2.,2.2,2.4,2.6,2.8,3.,3.2,3.4,3.6,3.8,4.],dtype='d')\n",
"dy = np.array([0.04,0.021,0.035,0.03,0.029,0.019,0.024,0.018,0.019,0.022,0.02,0.025,0.018,0.024,0.019,0.021,0.03,0.019,0.03,0.024 ], dtype='d')\n",
"y = np.array([1.792,1.695,1.541,1.514,1.427,1.399,1.388,1.270,1.262,1.228,1.189,1.182,1.121,1.129,1.124,1.089,1.092,1.084,1.058,1.057 ], dtype='d')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Define fit functions -an exponential"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def xp(a, b , c):\n",
" return a * np.exp(b*x) + c"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"least-squares function: sum of data residuals squared"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def LS(a,b,c):\n",
" return np.sum((y - xp(a,b,c)) ** 2 / dy ** 2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"import Minuit object"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from iminuit import Minuit"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Minuit instance using LS function to minimize"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"LS.errordef = Minuit.LEAST_SQUARES\n",
"m = Minuit(LS, a=0.9, b=-0.7 , c=0.95)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Run migrad , parameter c is now fixed"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"m.migrad()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"release fix on \"c\" and minimize again"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"m.fixed[\"c\"] = False\n",
"m.migrad()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Get covariance information"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"m.hesse()\n",
"m.params\n",
"m.covariance"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copy covariance information to numpy arrays"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Get a 2D contour of the function around the minimum for 2 parameters"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"m.minos()\n",
"print (m.merrors['a']) # Print control information of parameter a\n",
"m.draw_profile('b', subtract_min=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The Minos algorithm uses the profile likelihood method to compute (generally asymmetric) confidence intervals. This can be plotted"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"m.draw_mncontour('a', 'b')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Access fit results"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(m.values,m.errors)\n",
"a_fit = m.values[\"a\"]\n",
"b_fit = m.values[\"b\"]\n",
"c_fit = m.values[\"c\"]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Prepare data to display fitted function "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"x_plot = np.linspace( 0.1, 4.5 , 100 )\n",
"y_fit = a_fit * np.exp(b_fit*x_plot) + c_fit "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"plot data and fit results with matplotlib"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plt.figure()\n",
"plt.errorbar(x, y, dy , fmt=\"o\")\n",
"plt.plot(x_plot, y_fit)\n",
"plt.title(\"iminuit exponential Fit\")\n",
"plt.xlim(-0.1, 4.1)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.16"
}
},
"nbformat": 4,
"nbformat_minor": 4
}