123 lines
2.8 KiB
Plaintext
123 lines
2.8 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "8f9f0e7b",
|
|
"metadata": {},
|
|
"source": [
|
|
"Display fashion_mnist dataset of clothes from Zalando"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "cc829d9a",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import tensorflow as tf\n",
|
|
"from tensorflow import keras\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"import numpy as np"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "63348efe",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Load the MNIST Fashion dataset\n",
|
|
"(x_train, y_train), (x_test, y_test) = keras.datasets.fashion_mnist.load_data()\n",
|
|
"# Set the class names\n",
|
|
"class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', \n",
|
|
" 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "a6c86027",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# print the shape of the numpy arrays\n",
|
|
"print ('Print shape of pixel data')\n",
|
|
"print(x_train.shape)\n",
|
|
"print ('Print shape of labels')\n",
|
|
"print(y_train.shape)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "cc58b142",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Normalize pixel values to between 0 and 1\n",
|
|
"x_train = x_train.astype(\"float32\") / 255.0\n",
|
|
"x_test = x_test.astype(\"float32\") / 255.0"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "c7976111",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# choose an image num to print\n",
|
|
"num = 20\n",
|
|
"image = x_train[num]\n",
|
|
"label = y_train[num]\n",
|
|
"\n",
|
|
"print ('Print normailzed pixel data of image ',num, ' :')\n",
|
|
"print(x_train[num])\n",
|
|
"print ('Print label of image ',num , ' :' )\n",
|
|
"print(y_train[num])\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "64a46625",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"plt.figure(figsize=(10,10))\n",
|
|
"for i in range(25):\n",
|
|
" plt.subplot(5,5,i+1)\n",
|
|
" plt.xticks([])\n",
|
|
" plt.yticks([])\n",
|
|
" plt.grid(False)\n",
|
|
" plt.imshow(x_train[i], cmap=plt.cm.binary)\n",
|
|
" plt.xlabel(class_names[y_train[i]])\n",
|
|
"plt.show()"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.8.16"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|