228 lines
5.9 KiB
Plaintext
228 lines
5.9 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "abe24003",
|
|
"metadata": {},
|
|
"source": [
|
|
"Use a Convolutional Neural Net to classify the MNIST data of digits"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "6c95fefb",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import tensorflow as tf\n",
|
|
"import numpy as np\n",
|
|
"import matplotlib.pyplot as plt"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "280c5099",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# load the data\n",
|
|
"(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "8c3fc1b2",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Normalize the pixel values to be between 0 and 1\n",
|
|
"x_train = x_train / 255\n",
|
|
"x_test = x_test / 255"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "3a9686ff",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Convert the labels into one-hot encoded arrays\n",
|
|
"y_train = tf.keras.utils.to_categorical(y_train, num_classes=10)\n",
|
|
"y_test = tf.keras.utils.to_categorical(y_test, num_classes=10)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "e80e582c",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Define the model\n",
|
|
"model = tf.keras.models.Sequential()\n",
|
|
"model.add(tf.keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))\n",
|
|
"model.add(tf.keras.layers.MaxPooling2D((2, 2)))\n",
|
|
"model.add(tf.keras.layers.Conv2D(64, (3, 3), activation='relu'))\n",
|
|
"model.add(tf.keras.layers.MaxPooling2D((2, 2)))\n",
|
|
"model.add(tf.keras.layers.Flatten())\n",
|
|
"model.add(tf.keras.layers.Dense(64, activation='relu'))\n",
|
|
"model.add(tf.keras.layers.Dense(10, activation='softmax'))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "aff6c38a",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Compile the model\n",
|
|
"model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "049f9d49",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Train the model and record the history, the data is split in batches\n",
|
|
"history = model.fit(x_train, y_train, epochs=10, batch_size=64, validation_data=(x_test, y_test))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "f7a8baea",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Get the weights of the Dense layer\n",
|
|
"# plot the weights as a heatmap or image, where the weights are represented\n",
|
|
"# as pixel values.\n",
|
|
"last_layer_weights = model.layers[-1].get_weights()[0]\n",
|
|
"# Plot the weights as a heatmap\n",
|
|
"plt.imshow(last_layer_weights, cmap='coolwarm')\n",
|
|
"plt.colorbar()\n",
|
|
"plt.title('weights in the output layer')\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "6cc4d04b",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Plot loss and accuracy\n",
|
|
"plt.figure(figsize=(12, 4))\n",
|
|
"\n",
|
|
"# Plot the loss during training\n",
|
|
"plt.subplot(1, 2, 1)\n",
|
|
"plt.plot(history.history['loss'], label='training loss')\n",
|
|
"plt.plot(history.history['val_loss'], label='validation loss')\n",
|
|
"plt.xlabel('Epoch')\n",
|
|
"plt.ylabel('Loss')\n",
|
|
"plt.legend()\n",
|
|
"\n",
|
|
"plt.subplot(1, 2, 2)\n",
|
|
"plt.plot(history.history['accuracy'])\n",
|
|
"plt.plot(history.history['val_accuracy'])\n",
|
|
"plt.xlabel('Epoch')\n",
|
|
"plt.ylabel('Accuracy')\n",
|
|
"plt.legend()\n",
|
|
"\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "dcdef199",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Plot a confusion matrix of the test set predictions\n",
|
|
"test_preds = np.argmax(model.predict(x_test), axis=1)\n",
|
|
"conf_mat = tf.math.confusion_matrix(y_test.argmax(axis=1), test_preds)\n",
|
|
"\n",
|
|
"plt.imshow(conf_mat, cmap=\"Blues\")\n",
|
|
"plt.xlabel(\"Predicted labels\")\n",
|
|
"plt.ylabel(\"True labels\")\n",
|
|
"plt.xticks(np.arange(10))\n",
|
|
"plt.yticks(np.arange(10))\n",
|
|
"plt.colorbar()\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "8f28f1ea",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Evaluate the model on the test set\n",
|
|
"test_loss, test_acc = model.evaluate(x_test, y_test)\n",
|
|
"print('Test accuracy:', test_acc)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "50c0f27a",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Make predictions on the test set\n",
|
|
"y_pred = model.predict(x_test)\n",
|
|
"y_pred = np.argmax(y_pred, axis=1)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "f781bef8",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Plot some examples from the test set and their predictions\n",
|
|
"fig, axes = plt.subplots(4, 4, figsize=(10, 10))\n",
|
|
"for i, ax in enumerate(axes.ravel()):\n",
|
|
" ax.imshow(x_test[i].reshape(28, 28), cmap='gray')\n",
|
|
" ax.set_title(\"True: %d\\nPred: %d\" % (np.argmax(y_test[i]), y_pred[i]))\n",
|
|
" ax.axis('off')\n",
|
|
"plt.suptitle(\"Examples of test set images and their predictions\")\n",
|
|
"plt.show()\n"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.8.16"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|