{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3644475e",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Display hand writing dataset"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8125479b",
   "metadata": {},
   "outputs": [],
   "source": [
    "import tensorflow as tf\n",
    "import numpy as np\n",
    "import matplotlib.pyplot as plt"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d45b964f",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Load training dataset of 60000 images with greyscale values in 28 x 28\n",
    "# and labels \n",
    "(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "fa8ae2a6",
   "metadata": {},
   "outputs": [],
   "source": [
    "# print the shape of the numpy arrays\n",
    "print ('Print shape of pixel data')\n",
    "print(x_train.shape)\n",
    "print ('Print shape of labels')\n",
    "print(y_train.shape)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "be70973e",
   "metadata": {},
   "outputs": [],
   "source": [
    "# normalize pixel to 0-1\n",
    "x_train = x_train / 255\n",
    "x_test = x_test / 255"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "55f457d5",
   "metadata": {},
   "outputs": [],
   "source": [
    "# choose an image num  to display and print\n",
    "num = 20\n",
    "\n",
    "image = x_train[num]\n",
    "label = y_train[num]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "149788b7",
   "metadata": {},
   "outputs": [],
   "source": [
    "# plot the image using imshow\n",
    "plt.imshow(image, cmap='gray')\n",
    "# set the title\n",
    "plt.title(\"Label: %d\" % label )\n",
    "# remove the axis labels and ticks\n",
    "plt.axis('off')\n",
    "# show the plot\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "232ef6ca",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Plot 16 examples from the numpy array which was read in above\n",
    "# and display it\n",
    "fig, axes = plt.subplots(4, 4, figsize=(10, 10))\n",
    "for i , ax in enumerate(axes.ravel()):\n",
    "    ax.imshow(x_train[num+i], cmap='gray')\n",
    "    ax.set_title(\"Label: %d\" % y_train[num+i])\n",
    "    ax.axis('off')\n",
    "plt.suptitle(\"Examples of training set images\")\n",
    "plt.show()"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}