{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "Example fit for the usage of iminuit" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from matplotlib import pyplot as plt\n", "plt.rcParams[\"font.size\"] = 20\n", "import numpy as np" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Data " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "x = np.array([0.2,0.4,0.6,0.8,1.,1.2,1.4,1.6,1.8,2.,2.2,2.4,2.6,2.8,3.,3.2,3.4,3.6,3.8,4.],dtype='d')\n", "dy = np.array([0.04,0.021,0.035,0.03,0.029,0.019,0.024,0.018,0.019,0.022,0.02,0.025,0.018,0.024,0.019,0.021,0.03,0.019,0.03,0.024 ], dtype='d')\n", "y = np.array([1.792,1.695,1.541,1.514,1.427,1.399,1.388,1.270,1.262,1.228,1.189,1.182,1.121,1.129,1.124,1.089,1.092,1.084,1.058,1.057 ], dtype='d')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Define fit functions -an exponential" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def xp(a, b , c):\n", " return a * np.exp(b*x) + c" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "least-squares function: sum of data residuals squared" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def LS(a,b,c):\n", " return np.sum((y - xp(a,b,c)) ** 2 / dy ** 2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "import Minuit object" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from iminuit import Minuit" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Minuit instance using LS function to minimize" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "LS.errordef = Minuit.LEAST_SQUARES\n", "m = Minuit(LS, a=0.9, b=-0.7 , c=0.95)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Run migrad , parameter c is now fixed" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "m.fixed[\"c\"] = True\n", "m.migrad()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "release fix on \"c\" and minimize again" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "m.fixed[\"c\"] = False\n", "m.migrad()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Get covariance information" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "m.hesse()\n", "m.params\n", "m.covariance" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Get a 2D contour of the function around the minimum for 2 parameters" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "m.minos()\n", "print (m.merrors['a']) # Print control information of parameter a\n", "m.draw_profile('b', subtract_min=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The Minos algorithm uses the profile likelihood method to compute (generally asymmetric) confidence intervals. This can be plotted" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "m.draw_mncontour('a', 'b', cl=[1,2,3,4])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Access fit results" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "print(m.values,m.errors)\n", "print (m.merrors['a'])\n", "print (m.merrors['a'].lower)\n", "print (m.merrors['a'].upper)\n", "a_fit = m.values[\"a\"]\n", "b_fit = m.values[\"b\"]\n", "c_fit = m.values[\"c\"]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Prepare data to display fitted function " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "x_plot = np.linspace( 0.1, 4.5 , 100 )\n", "y_fit = a_fit * np.exp(b_fit*x_plot) + c_fit " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "plot data and fit results with matplotlib" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "plt.figure()\n", "plt.errorbar(x, y, dy , fmt=\"o\")\n", "plt.plot(x_plot, y_fit)\n", "plt.title(\"iminuit exponential Fit\")\n", "plt.xlim(-0.1, 4.1)\n", "plt.show()" ] } ], "metadata": { "kernelspec": { "display_name": "Python [conda env:ML]", "language": "python", "name": "conda-env-ML-py" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.9" } }, "nbformat": 4, "nbformat_minor": 4 }