{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "Exercise 2: Example for pandas using the heart.csv data set" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# read the csv Data \n", "df = pd.read_csv('heart.csv')" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Index(['age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg', 'thalach',\n", " 'exang', 'oldpeak', 'slope', 'ca', 'thal', 'target'],\n", " dtype='object')\n", "\n", "RangeIndex: 303 entries, 0 to 302\n", "Data columns (total 14 columns):\n", " # Column Non-Null Count Dtype \n", "--- ------ -------------- ----- \n", " 0 age 303 non-null int64 \n", " 1 sex 303 non-null int64 \n", " 2 cp 303 non-null int64 \n", " 3 trestbps 303 non-null int64 \n", " 4 chol 303 non-null int64 \n", " 5 fbs 303 non-null int64 \n", " 6 restecg 303 non-null int64 \n", " 7 thalach 303 non-null int64 \n", " 8 exang 303 non-null int64 \n", " 9 oldpeak 303 non-null float64\n", " 10 slope 303 non-null int64 \n", " 11 ca 303 non-null int64 \n", " 12 thal 303 non-null int64 \n", " 13 target 303 non-null int64 \n", "dtypes: float64(1), int64(13)\n", "memory usage: 33.3 KB\n", "None\n", "age int64\n", "sex int64\n", "cp int64\n", "trestbps int64\n", "chol int64\n", "fbs int64\n", "restecg int64\n", "thalach int64\n", "exang int64\n", "oldpeak float64\n", "slope int64\n", "ca int64\n", "thal int64\n", "target int64\n", "dtype: object\n" ] } ], "source": [ "# What is the number of columns and rows\n", "print(df.columns)\n", "print (df.info())\n", "print(df.dtypes)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " age sex cp trestbps chol fbs restecg thalach exang oldpeak slope \\\n", "0 63 1 3 145 233 1 0 150 0 2.3 0 \n", "1 37 1 2 130 250 0 1 187 0 3.5 0 \n", "2 41 0 1 130 204 0 0 172 0 1.4 2 \n", "\n", " ca thal target \n", "0 0 1 1 \n", "1 0 2 1 \n", "2 0 2 1 \n" ] } ], "source": [ "# get first 3 lines\n", "print(df.head(3))" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " age sex cp trestbps chol fbs \\\n", "count 303.000000 303.000000 303.000000 303.000000 303.000000 303.000000 \n", "mean 54.366337 0.683168 0.966997 131.623762 246.264026 0.148515 \n", "std 9.082101 0.466011 1.032052 17.538143 51.830751 0.356198 \n", "min 29.000000 0.000000 0.000000 94.000000 126.000000 0.000000 \n", "25% 47.500000 0.000000 0.000000 120.000000 211.000000 0.000000 \n", "50% 55.000000 1.000000 1.000000 130.000000 240.000000 0.000000 \n", "75% 61.000000 1.000000 2.000000 140.000000 274.500000 0.000000 \n", "max 77.000000 1.000000 3.000000 200.000000 564.000000 1.000000 \n", "\n", " restecg thalach exang oldpeak slope ca \\\n", "count 303.000000 303.000000 303.000000 303.000000 303.000000 303.000000 \n", "mean 0.528053 149.646865 0.326733 1.039604 1.399340 0.729373 \n", "std 0.525860 22.905161 0.469794 1.161075 0.616226 1.022606 \n", "min 0.000000 71.000000 0.000000 0.000000 0.000000 0.000000 \n", "25% 0.000000 133.500000 0.000000 0.000000 1.000000 0.000000 \n", "50% 1.000000 153.000000 0.000000 0.800000 1.000000 0.000000 \n", "75% 1.000000 166.000000 1.000000 1.600000 2.000000 1.000000 \n", "max 2.000000 202.000000 1.000000 6.200000 2.000000 4.000000 \n", "\n", " thal target \n", "count 303.000000 303.000000 \n", "mean 2.313531 0.544554 \n", "std 0.612277 0.498835 \n", "min 0.000000 0.000000 \n", "25% 2.000000 0.000000 \n", "50% 2.000000 1.000000 \n", "75% 3.000000 1.000000 \n", "max 3.000000 1.000000 \n" ] } ], "source": [ "#display statistics summary\n", "print(df.describe())" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " age sex cp trestbps chol fbs \\\n", "age 1.000000 -0.098447 -0.068653 0.279351 0.213678 0.121308 \n", "sex -0.098447 1.000000 -0.049353 -0.056769 -0.197912 0.045032 \n", "cp -0.068653 -0.049353 1.000000 0.047608 -0.076904 0.094444 \n", "trestbps 0.279351 -0.056769 0.047608 1.000000 0.123174 0.177531 \n", "chol 0.213678 -0.197912 -0.076904 0.123174 1.000000 0.013294 \n", "fbs 0.121308 0.045032 0.094444 0.177531 0.013294 1.000000 \n", "restecg -0.116211 -0.058196 0.044421 -0.114103 -0.151040 -0.084189 \n", "thalach -0.398522 -0.044020 0.295762 -0.046698 -0.009940 -0.008567 \n", "exang 0.096801 0.141664 -0.394280 0.067616 0.067023 0.025665 \n", "oldpeak 0.210013 0.096093 -0.149230 0.193216 0.053952 0.005747 \n", "slope -0.168814 -0.030711 0.119717 -0.121475 -0.004038 -0.059894 \n", "ca 0.276326 0.118261 -0.181053 0.101389 0.070511 0.137979 \n", "thal 0.068001 0.210041 -0.161736 0.062210 0.098803 -0.032019 \n", "target -0.225439 -0.280937 0.433798 -0.144931 -0.085239 -0.028046 \n", "\n", " restecg thalach exang oldpeak slope ca \\\n", "age -0.116211 -0.398522 0.096801 0.210013 -0.168814 0.276326 \n", "sex -0.058196 -0.044020 0.141664 0.096093 -0.030711 0.118261 \n", "cp 0.044421 0.295762 -0.394280 -0.149230 0.119717 -0.181053 \n", "trestbps -0.114103 -0.046698 0.067616 0.193216 -0.121475 0.101389 \n", "chol -0.151040 -0.009940 0.067023 0.053952 -0.004038 0.070511 \n", "fbs -0.084189 -0.008567 0.025665 0.005747 -0.059894 0.137979 \n", "restecg 1.000000 0.044123 -0.070733 -0.058770 0.093045 -0.072042 \n", "thalach 0.044123 1.000000 -0.378812 -0.344187 0.386784 -0.213177 \n", "exang -0.070733 -0.378812 1.000000 0.288223 -0.257748 0.115739 \n", "oldpeak -0.058770 -0.344187 0.288223 1.000000 -0.577537 0.222682 \n", "slope 0.093045 0.386784 -0.257748 -0.577537 1.000000 -0.080155 \n", "ca -0.072042 -0.213177 0.115739 0.222682 -0.080155 1.000000 \n", "thal -0.011981 -0.096439 0.206754 0.210244 -0.104764 0.151832 \n", "target 0.137230 0.421741 -0.436757 -0.430696 0.345877 -0.391724 \n", "\n", " thal target \n", "age 0.068001 -0.225439 \n", "sex 0.210041 -0.280937 \n", "cp -0.161736 0.433798 \n", "trestbps 0.062210 -0.144931 \n", "chol 0.098803 -0.085239 \n", "fbs -0.032019 -0.028046 \n", "restecg -0.011981 0.137230 \n", "thalach -0.096439 0.421741 \n", "exang 0.206754 -0.436757 \n", "oldpeak 0.210244 -0.430696 \n", "slope -0.104764 0.345877 \n", "ca 0.151832 -0.391724 \n", "thal 1.000000 -0.344029 \n", "target -0.344029 1.000000 \n" ] } ], "source": [ "#display correlation\n", "print (df.corr())" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " age sex cp trestbps chol fbs \\\n", "target \n", "0 56.601449 0.826087 0.478261 134.398551 251.086957 0.159420 \n", "1 52.496970 0.563636 1.375758 129.303030 242.230303 0.139394 \n", "\n", " restecg thalach exang oldpeak slope ca thal \n", "target \n", "0 0.449275 139.101449 0.550725 1.585507 1.166667 1.166667 2.543478 \n", "1 0.593939 158.466667 0.139394 0.583030 1.593939 0.363636 2.121212 \n" ] } ], "source": [ "# Print mean values for each column with and without disease\n", "print(df.groupby('target').mean())" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " age sex cp trestbps chol fbs restecg thalach exang oldpeak \\\n", "167 62 0 0 140 268 0 0 160 0 3.6 \n", "181 65 0 0 150 225 0 0 114 0 1.0 \n", "182 61 0 0 130 330 0 0 169 0 0.0 \n", "190 51 0 0 130 305 0 1 142 1 1.2 \n", "204 62 0 0 160 164 0 0 145 0 6.2 \n", "\n", " slope ca thal target \n", "167 0 2 2 0 \n", "181 1 3 3 0 \n", "182 2 0 2 0 \n", "190 1 0 3 0 \n", "204 0 3 3 0 \n" ] } ], "source": [ "# get table with selection on more than 1 column\n", "df1 = df[(df[\"sex\"] == 0) & (df[\"target\"] == 0) ]\n", "print (df1.head(5))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " Plots" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0 63\n", "1 37\n", "3 56\n", "5 57\n", "7 44\n", " ..\n", "295 63\n", "297 59\n", "299 45\n", "300 68\n", "301 57\n", "Name: age, Length: 207, dtype: int64\n" ] }, { "data": { "text/plain": [ "" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAHFCAYAAAAHcXhbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABA0ElEQVR4nO3deXyNZ/7/8fchyZHIgpANlahYY6nqqKUNVRQ1VFtKq9YpZVpLtaqoaNU6UmYMtbTBV1HVUq2x1ZIuhoZSmnRUbUETaa0RFUuu3x9+OY8eSUgicXLzej4eeUzv677u+/6c6yTOe677OufYjDFGAAAAFlXM1QUAAADcCsIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMUAC2bNkim82mLVu2ONp69uyp0NDQPJ3n119/VVRUlHbv3p2n47K7ls1m09///vc8nedmZs6cqfnz52dpP3z4sGw2W7b7kHvz58+XzWbT4cOHHW3NmjVTs2bNXFJPTs/3rbp8+bJmz56tBx54QGXKlJGXl5cqVaqkDh06aMWKFQV+Pdz5CDNAIRk9enSe/2H+9ddfNXbs2DyHmfxcKz9yenELDg7Wf//7X7Vr167Qa7jbzJw5UzNnznTZtQsjzHTv3l0vvfSSmjdvrkWLFunzzz/XqFGj5ObmpnXr1hX49XDnc3N1AcCd6t577y30a1y4cEFeXl635Vo3Yrfb9eCDD7q0BiswxujixYvy9PTM9TE1a9YsxIpuv0OHDumjjz7Sm2++qbFjxzraW7Roob/97W/KyMhwYXWwKmZmUKT98ssv6tWrl8LDw+Xl5aXy5curffv22rt3b5a+8fHxatWqlby8vFSuXDkNHDhQq1evznL7R5K+/PJLtWjRQr6+vvLy8lKTJk20cePGXNX0v//9T4899pi8vLxUtmxZ9e/fX6mpqVn6ZXfr5+OPP1bDhg3l5+cnLy8vVa5cWb1795Z07VbVAw88IEnq1auXbDabbDaboqKiHOfz9vbW3r171apVK/n4+KhFixY5XivT7NmzVbVqVdntdtWsWVNLly512h8VFSWbzZbluOtveYSGhio+Pl6xsbGO2jKvmdNtpm+++UYtWrSQj4+PvLy81LhxY61evTrb62zevFkvvviiypYtK39/f3Xq1Em//vprto/pz3bs2KFnnnlGoaGh8vT0VGhoqLp27aojR45k6Xv8+HG98MILqlixojw8PBQSEqKnnnpKJ06ccPQ5c+aMXnnlFVWuXFl2u10BAQFq27at/ve//zn6nDp1SgMGDFD58uXl4eGhypUra+TIkUpPT3e6Xuatvvfee081atSQ3W7XggULJEnbtm1TkyZNVKJECYWEhGjEiBG6fPlylpqvv82UOdb/+Mc/FB0drbCwMHl7e6tRo0batm1bluPnzp3r9PwvXrw4V7dAb/R8S1JiYqKee+45BQQEyG63q0aNGpo6depNw8jJkyclXZvNy06xYs4vS+fOndOwYcMUFhYmDw8PlS9fXoMHD1ZaWpqjT//+/VWiRAnt3LnT0ZaRkaEWLVooMDBQSUlJN6wJ1sfMDIq0X3/9Vf7+/po4caLKlSunU6dOacGCBWrYsKF27dqlatWqSZKSkpIUGRmpkiVLatasWQoICNCSJUuyXTOyaNEiPf/88+rQoYMWLFggd3d3zZ49W61bt9a6descASE7J06cUGRkpNzd3TVz5kwFBgbqww8/zNXalP/+97/q0qWLunTpoqioKJUoUUJHjhzRpk2bJEn169dXTEyMevXqpVGjRjlu2VSoUMFxjkuXLumvf/2r+vXrp9dff11Xrly54TVXrVqlzZs366233lLJkiU1c+ZMde3aVW5ubnrqqaduWvOfrVixQk899ZT8/Pwctz3sdnuO/WNjY9WyZUvVqVNH77//vux2u2bOnKn27dtryZIl6tKli1P/vn37ql27dlq8eLGOHj2qV199Vc8995xjfHJy+PBhVatWTc8884zKlCmjpKQkzZo1Sw888IASEhJUtmxZSdeCzAMPPKDLly/rjTfeUJ06dXTy5EmtW7dOp0+fVmBgoFJTU9W0aVMdPnxYw4cPV8OGDXX+/Hl99dVXSkpKUvXq1XXx4kU1b95cBw4c0NixY1WnTh19/fXXmjBhgnbv3p0lrK1cuVJff/213nzzTQUFBSkgIEAJCQlq0aKFQkNDNX/+fHl5eWnmzJlavHhxrp+Pf//736pevbqmTZsm6dqtxrZt2+rQoUPy8/OTJM2ZM0f9+vXTk08+qXfffVdnz57V2LFjs4Su7Nzo+f7tt9/UuHFjXbp0SW+//bZCQ0P1xRdfaNiwYTpw4MANb4vVqFFDpUqV0tixY1WsWDG1atUqx2B14cIFRUZG6tixY47nLD4+Xm+++ab27t2rL7/8UjabTdOmTdP27dvVuXNn7dy503H+LVu2aO3atTkGJ9xBDGAhV65cMZcuXTLh4eFmyJAhjvZXX33V2Gw2Ex8f79S/devWRpLZvHmzMcaYtLQ0U6ZMGdO+fXunflevXjV169Y1f/nLX254/eHDhxubzWZ2797t1N6yZUun6xhjTI8ePUylSpUc2//4xz+MJHPmzJkczx8XF2ckmZiYmCz7evToYSSZDz74INt9f76WMcZIMp6eniY5OdnRduXKFVO9enVTpUoVR9uYMWNMdv8UxMTEGEnm0KFDjrZatWqZyMjILH0PHTqUpe4HH3zQBAQEmNTUVKfrR0REmAoVKpiMjAyn6wwYMMDpnJMnTzaSTFJSUpbr3ciVK1fM+fPnTcmSJc306dMd7b179zbu7u4mISEhx2PfeustI8ls2LAhxz7vvfeekWSWLVvm1D5p0iQjyaxfv97RJsn4+fmZU6dOOfXt0qVLjs/N9WMeGRnpNOaZY127dm1z5coVR/t3331nJJklS5YYY679TgcFBZmGDRs6XfvIkSPG3d09y+9LdnJ6vl9//XUjyWzfvt2p/cUXXzQ2m83s27fvhuddvXq1KVu2rJFkJBl/f3/z9NNPm1WrVjn1mzBhgilWrJiJi4tzal++fLmRZP7zn/842vbv3298fX1Nx44dzZdffmmKFStmRo0addPHiDsDt5lQpF25ckXjx49XzZo15eHhITc3N3l4eGj//v366aefHP1iY2MVERGRZX1B165dnba3bt2qU6dOqUePHrpy5YrjJyMjQ4899pji4uKcpq+vt3nzZtWqVUt169Z1au/WrdtNH0vmLaTOnTtr2bJlOn78+E2Pyc6TTz6Z676Z0+yZihcvri5duuiXX37RsWPH8nX93EhLS9P27dv11FNPydvb2+n63bt317Fjx7Rv3z6nY/761786bdepU0eSsr1d9Gfnz5/X8OHDVaVKFbm5ucnNzU3e3t5KS0tz+h1Zs2aNmjdvrho1auR4rjVr1qhq1ap69NFHc+yzadMmlSxZMsvMVs+ePSUpy+3KRx55RKVLl3Zq27x5c47PTW61a9dOxYsXd2xfP1779u1TcnKyOnfu7HTcPffcoyZNmuT6OtnZtGmTatasqb/85S9O7T179pQx5qazaW3btlViYqJWrFihYcOGqVatWlq5cqX++te/Os1yfvHFF4qIiFC9evWc/l5bt26d5fZxlSpVNHfuXK1cuVKPP/64HnroIcctWtz5CDMo0oYOHarRo0erY8eO+vzzz7V9+3bFxcWpbt26+uOPPxz9Tp486fTCkOn6tsy1EU899ZTc3d2dfiZNmiRjjE6dOpVjPSdPnlRQUFCW9uzarvfwww9r5cqVunLlip5//nlVqFBBERERWrJkyU2PzeTl5SVfX99c979RrZlrFwrD6dOnZYzJdno/JCQk2+v7+/s7bWfe0vjz85ydbt26acaMGerbt6/WrVun7777TnFxcSpXrpzTsb/99pvTLbvs5KZP5u/A9euMAgIC5ObmluVxZTcGt/J7lOlm45VZR27+LvLq5MmTeXpus+Pp6amOHTtqypQpio2N1S+//KKaNWvq3//+t+Lj4yVd+3vds2dPlr9VHx8fGWP0+++/O52zXbt2CgwM1MWLFzV06FCnsIc7G2tmUKRlrm8ZP368U/vvv/+uUqVKObb9/f2dFnFmSk5OdtrOXD/xr3/9K8d339zoH3p/f/8s58zuOjnp0KGDOnTooPT0dG3btk0TJkxQt27dFBoaqkaNGt30+OwW6t7IjWrNfDEsUaKEJCk9Pd1pDcz1LxR5Ubp0aRUrVizbhZeZi3ozn4tbcfbsWX3xxRcaM2aMXn/9dUd7enp6llBarly5m85G5aaPv7+/tm/fLmOM0/ORkpKiK1euZHlc2T1nt/p7lBuZz29u/i7yc+6Cfm7vuecevfDCCxo8eLDi4+NVq1YtlS1bVp6envrggw+yPeb662Quxq9Vq5ZefvllPfTQQ1lmxXBnYmYGRZrNZsuyyHT16tVZbtFERkbqxx9/VEJCglP79e/cadKkiUqVKqWEhAQ1aNAg2x8PD48c62nevLni4+P1ww8/OLXnZeGmdO3/RUdGRmrSpEmSpF27djnapZvPRuTWxo0bnV7Mrl69qo8++kj33nuvYwYic/Hlnj17nI79/PPPs607N7WVLFlSDRs21KeffurUPyMjQ4sWLVKFChVUtWrV/DwkJzabTcaYLL8j8+bN09WrV53a2rRpo82bN2e5vXV9n59//vmGt0latGih8+fPa+XKlU7tCxcudOy/mebNm+f43BSUatWqKSgoSMuWLXNqT0xM1NatW3N1jpye7xYtWighIUHff/+9U/vChQtls9nUvHnzHM+Zmpqq8+fPZ7sv87Zg5gzP448/rgMHDsjf3z/bv9U/LxyeN2+eFi1apBkzZmjVqlU6c+aMevXqlavHiTuAKxfsADfz/PPPG7vdbt59912zceNGM3nyZFOuXDlToUIFp4WJx48fN/7+/uaee+4x8+fPN2vWrDHdu3c3lSpVMpJMbGyso+///d//mWLFipkuXbqYjz/+2MTGxprly5eb0aNHm/79+9+wnqSkJFOuXDlTvnx5ExMTY/7zn/+YZ5991lSsWPGmC4BHjx5tevXqZRYtWmS2bNliVq5caZo3b27c3d3Njz/+aIy5tkDZ09PTNGnSxGzevNnExcWZ48ePO85XsmTJbOvKaQFwxYoVTc2aNc2SJUvMqlWrzGOPPWYkmaVLlzr6nT171pQpU8bUrl3brFixwnz++efmySefNGFhYVkWo/bo0cPY7XazdOlS891335k9e/YYY7JfALxlyxbj7u5uGjZsaD7++GPz2WefmdatWxubzeZ0/cwFwNcv8ty8eXOWMc3Oww8/bMqUKWPmzp1rNmzYYEaNGmWCg4NNqVKlTI8ePRz9jh07ZoKDg01AQICZNm2a2bhxo/nkk0/M3/72N/PTTz8ZY4w5d+6cqVWrlvH29jbjxo0z69evN5999pkZOnSo2bRpkzHGmD/++MPUqVPH+Pj4mOjoaLNhwwYzZswY4+7ubtq2bZvlORg4cGCWmvfu3Ws8PT1NzZo1zdKlS82qVatM69atHb9HuVkAPGXKlCznlWTGjBnj2J49e7aRZJ588kmzevVq8+GHH5qqVauae+65x4SFhd1wXI3J+flOSUkx5cuXN0FBQWbOnDlm3bp15uWXXzY2my3LQu7rxcXFmTJlypgBAwaYjz76yHz11Vfms88+My+88IKRZJo1a2auXr1qjDHm/Pnz5r777jMVKlQwU6dONRs2bDDr1q0zc+fONU8//bTZtm2bMcaYPXv2GE9PT6fnO3OR8LvvvnvTxwnrI8ygSDt9+rTp06ePCQgIMF5eXqZp06bm66+/zvIPvDHG/Pjjj+bRRx81JUqUMGXKlDF9+vQxCxYsMJLMDz/84NQ3NjbWtGvXzpQpU8a4u7ub8uXLm3bt2pmPP/74pjUlJCSYli1bOl3ns88+u2mY+eKLL0ybNm1M+fLljYeHhwkICDBt27Y1X3/9tdP5lyxZYqpXr27c3d2dXpzyE2YGDhxoZs6cae69917j7u5uqlevbj788MMsx3/33XemcePGpmTJkqZ8+fJmzJgxZt68eVleWA8fPmxatWplfHx8jCTHNbMLM8YY8/XXX5tHHnnElCxZ0nh6epoHH3zQfP755059bjXMHDt2zDz55JOmdOnSxsfHxzz22GPmxx9/NJUqVXJ6cTPGmKNHj5revXuboKAg4+7ubkJCQkznzp3NiRMnHH1Onz5tBg0aZO655x7j7u5uAgICTLt27cz//vc/R5+TJ0+a/v37m+DgYOPm5mYqVapkRowYYS5evJjtc5Cdb7/91jz44IPGbreboKAg8+qrr5o5c+YUaJgxxpg5c+aYKlWqGA8PD1O1alXzwQcfmA4dOpj77rvvhuNqTM7PtzHX3hXVrVs34+/vb9zd3U21atXMlClTHEEkJ6dPnzbjxo0zjzzyiONvoWTJkqZevXpm3Lhx5sKFC079z58/b0aNGmWqVatmPDw8jJ+fn6ldu7YZMmSISU5ONufPnzfVq1c3NWvWNGlpaU7HDhw40Li7u2d51xXuPDZjjLktU0CAC7zwwgtasmSJTp48ecPbR8Dd4syZM6patao6duyoOXPmuLocoECwABh3jLfeekshISGqXLmyzp8/ry+++ELz5s3TqFGjCDK4KyUnJ+udd95R8+bN5e/vryNHjujdd99VamqqBg0a5OrygAJDmMEdw93dXVOmTNGxY8d05coVhYeHKzo6mn+0cdey2+06fPiwBgwYoFOnTsnLy0sPPvig3nvvPdWqVcvV5QEFhttMAADA0nhrNgAAsDTCDAAAsDTCDAAAsLQ7fgFwRkaGfv31V/n4+OT5o+ABAIBrGGOUmpqqkJAQFSt247mXOz7M/Prrr6pYsaKrywAAAPlw9OjRm34B7B0fZnx8fCRdG4y8fNswAABwnXPnzqlixYqO1/EbuePDTOatJV9fX8IMAAAWk5slIiwABgAAlkaYAQAAlkaYAQAAlnbHr5kBAOBGrl69qsuXL7u6jLuOu7u7ihcvXiDnIswAAO5KxhglJyfrzJkzri7lrlWqVCkFBQXd8ufAEWYAAHelzCATEBAgLy8vPlj1NjLG6MKFC0pJSZEkBQcH39L5CDMAgLvO1atXHUHG39/f1eXclTw9PSVJKSkpCggIuKVbTiwABgDcdTLXyHh5ebm4krtb5vjf6polwgwA4K7FrSXXKqjxJ8wAAABLI8wAAHCX69mzpzp27OjqMvKNBcAAAPxJ6Ourb9u1Dk9sd9uudSdjZgYAAFgaYQYAAAtp1qyZXnrpJQ0ePFilS5dWYGCg5syZo7S0NPXq1Us+Pj669957tWbNGknX3obep08fhYWFydPTU9WqVdP06dNveA1jjCZPnqzKlSvL09NTdevW1fLly2/Hw8sXwgwAABazYMEClS1bVt99951eeuklvfjii3r66afVuHFjff/992rdurW6d++uCxcuKCMjQxUqVNCyZcuUkJCgN998U2+88YaWLVuW4/lHjRqlmJgYzZo1S/Hx8RoyZIiee+45xcbG3sZHmXs2Y4xxdRGF6dy5c/Lz89PZs2fl6+vr6nIA4LauySgod9rajosXL+rQoUMKCwtTiRIlnPYV9TUzzZo109WrV/X1119Lujbz4ufnp06dOmnhwoWSrn26cXBwsP773//qwQcfzHKOgQMH6sSJE47Zlp49e+rMmTNauXKl0tLSVLZsWW3atEmNGjVyHNO3b19duHBBixcvzs9DzdaNnoe8vH6zABgAAIupU6eO47+LFy8uf39/1a5d29EWGBgoSY6vC3jvvfc0b948HTlyRH/88YcuXbqkevXqZXvuhIQEXbx4US1btnRqv3Tpku67774CfiQFgzADAIDFuLu7O23bbDantswPo8vIyNCyZcs0ZMgQTZ06VY0aNZKPj4+mTJmi7du3Z3vujIwMSdLq1atVvnx5p312u70gH0aBIcwAAHAH+/rrr9W4cWMNGDDA0XbgwIEc+9esWVN2u12JiYmKjIy8HSXeMsIMAAB3sCpVqmjhwoVat26dwsLC9H//93+Ki4tTWFhYtv19fHw0bNgwDRkyRBkZGWratKnOnTunrVu3ytvbWz169LjNj+DmCDMAANzB+vfvr927d6tLly6y2Wzq2rWrBgwY4HjrdnbefvttBQQEaMKECTp48KBKlSql+vXr64033riNlece72YCgNuMdzO53o3eRYPbp6DezcTnzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEvj6wwAWJoVP00XuBXGGPXr10/Lly/X6dOntWvXLtWrV++213H48GGFhYW57Pp/RpgBAODPovxu47XO5vmQtWvXav78+dqyZYsqV66ssmXLFkJh1kKYAQDAQg4cOKDg4GA1btzY1aUUGayZAQDAInr27KmXXnpJiYmJstlsCg0NlTFGkydPVuXKleXp6am6detq+fLljmO2bNkim82mdevW6b777pOnp6ceeeQRpaSkaM2aNapRo4Z8fX3VtWtXXbhwwXHc2rVr1bRpU5UqVUr+/v56/PHHdeDAgRvWl5CQoLZt28rb21uBgYHq3r27fv/990Ibj0xFJsxMmDBBNptNgwcPdrQZYxQVFaWQkBB5enqqWbNmio+Pd12RAAC40PTp0/XWW2+pQoUKSkpKUlxcnEaNGqWYmBjNmjVL8fHxGjJkiJ577jnFxsY6HRsVFaUZM2Zo69atOnr0qDp37qxp06Zp8eLFWr16tTZs2KB//etfjv5paWkaOnSo4uLitHHjRhUrVkxPPPGEMjIysq0tKSlJkZGRqlevnnbs2KG1a9fqxIkT6ty5c6GOiVREbjPFxcVpzpw5qlOnjlP75MmTFR0drfnz56tq1aoaN26cWrZsqX379snHx8dF1QIA4Bp+fn7y8fFR8eLFFRQUpLS0NEVHR2vTpk1q1KiRJKly5cr65ptvNHv2bEVGRjqOHTdunJo0aSJJ6tOnj0aMGKEDBw6ocuXKkqSnnnpKmzdv1vDhwyVJTz75pNO133//fQUEBCghIUERERFZaps1a5bq16+v8ePHO9o++OADVaxYUT///LOqVq1asIPxJy6fmTl//ryeffZZzZ07V6VLl3a0G2M0bdo0jRw5Up06dVJERIQWLFigCxcuaPHixS6sGACAoiEhIUEXL15Uy5Yt5e3t7fhZuHBhlltCf54wCAwMlJeXlyPIZLalpKQ4tg8cOKBu3bqpcuXK8vX1VVhYmCQpMTEx21p27typzZs3O9VRvXp1x7kKk8tnZgYOHKh27drp0Ucf1bhx4xzthw4dUnJyslq1auVos9vtioyM1NatW9WvX79sz5eenq709HTH9rlz5wqveAAAXCjzls/q1atVvnx5p312u91p293d3fHfNpvNaTuz7c+3kNq3b6+KFStq7ty5CgkJUUZGhiIiInTp0qUca2nfvr0mTZqUZV9wcHDeHlgeuTTMLF26VN9//73i4uKy7EtOTpZ0LSn+WWBgoI4cOZLjOSdMmKCxY8cWbKEAABRBNWvWlN1uV2JiotMtpVt18uRJ/fTTT5o9e7YeeughSdI333xzw2Pq16+vTz75RKGhoXJzu73xwmW3mY4ePapBgwZp0aJFKlGiRI79bDab07YxJkvbn40YMUJnz551/Bw9erTAagYAoCjx8fHRsGHDNGTIEC1YsEAHDhzQrl279O9//1sLFizI93lLly4tf39/zZkzR7/88os2bdqkoUOH3vCYgQMH6tSpU+ratau+++47HTx4UOvXr1fv3r119erVfNeSGy6bmdm5c6dSUlJ0//33O9quXr2qr776SjNmzNC+ffskXZuh+fP0VEpKSpbZmj+z2+1ZptYAALhTvf322woICNCECRN08OBBlSpVSvXr19cbb7yR73MWK1ZMS5cu1csvv6yIiAhVq1ZN//znP9WsWbMcjwkJCdG3336r4cOHq3Xr1kpPT1elSpX02GOPqVixwp07sRljTKFeIQepqalZbhf16tVL1atX1/Dhw1WrVi2FhIRoyJAheu211yRJly5dUkBAgCZNmpTjmpnrnTt3Tn5+fjp79qx8fX0L/HEAcC2+zuD2ODyxnatLKFAXL17UoUOHFBYWdsO7AyhcN3oe8vL67bKZGR8fnyxv7SpZsqT8/f0d7YMHD9b48eMVHh6u8PBwjR8/Xl5eXurWrZsrSgYAAEWQy9/NdCOvvfaa/vjjDw0YMECnT59Ww4YNtX79ej5jBgAAOBSpMLNlyxanbZvNpqioKEVFRbmkHgAAUPS5/EPzAAAAbgVhBgBw13LRe2Dw/xXU+BNmAAB3ncxPv/3zt0Tj9ssc/+s/jTivitSaGQAAbofixYurVKlSju8i8vLyuuEHsqJgGWN04cIFpaSkqFSpUipevPgtnY8wAwC4KwUFBUmS05cr4vYqVaqU43m4FYQZAMBdyWazKTg4WAEBAbp8+bKry7nruLu73/KMTCbCDADgrla8ePECe1GFa7AAGAAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWJpLw8ysWbNUp04d+fr6ytfXV40aNdKaNWsc+40xioqKUkhIiDw9PdWsWTPFx8e7sGIAAFDUuDTMVKhQQRMnTtSOHTu0Y8cOPfLII+rQoYMjsEyePFnR0dGaMWOG4uLiFBQUpJYtWyo1NdWVZQMAgCLEpWGmffv2atu2rapWraqqVavqnXfekbe3t7Zt2yZjjKZNm6aRI0eqU6dOioiI0IIFC3ThwgUtXrzYlWUDAIAipMismbl69aqWLl2qtLQ0NWrUSIcOHVJycrJatWrl6GO32xUZGamtW7fmeJ709HSdO3fO6QcAANy5XB5m9u7dK29vb9ntdvXv318rVqxQzZo1lZycLEkKDAx06h8YGOjYl50JEybIz8/P8VOxYsVCrR8AALiWy8NMtWrVtHv3bm3btk0vvviievTooYSEBMd+m83m1N8Yk6Xtz0aMGKGzZ886fo4ePVpotQMAANdzc3UBHh4eqlKliiSpQYMGiouL0/Tp0zV8+HBJUnJysoKDgx39U1JSsszW/Jndbpfdbi/cogEAQJHh8pmZ6xljlJ6errCwMAUFBWnDhg2OfZcuXVJsbKwaN27swgoBAEBR4tKZmTfeeENt2rRRxYoVlZqaqqVLl2rLli1au3atbDabBg8erPHjxys8PFzh4eEaP368vLy81K1bN1eWDQAAihCXhpkTJ06oe/fuSkpKkp+fn+rUqaO1a9eqZcuWkqTXXntNf/zxhwYMGKDTp0+rYcOGWr9+vXx8fFxZNgAAKEJsxhjj6iIK07lz5+Tn56ezZ8/K19fX1eUAKGChr692dQl3hcMT27m6BNxl8vL6XeTWzAAAAOSFy9/NBNyprDhjwP/7BmBFzMwAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLc3N1AQCKjtDXV7u6BADIM2ZmAACApRFmAACApeUrzBw6dKig6wAAAMiXfIWZKlWqqHnz5lq0aJEuXrxY0DUBAADkWr7CzA8//KD77rtPr7zyioKCgtSvXz999913BV0bAADATeUrzERERCg6OlrHjx9XTEyMkpOT1bRpU9WqVUvR0dH67bffCrpOAACAbN3SAmA3Nzc98cQTWrZsmSZNmqQDBw5o2LBhqlChgp5//nklJSUVVJ0AAADZuqUws2PHDg0YMEDBwcGKjo7WsGHDdODAAW3atEnHjx9Xhw4dCqpOAACAbOXrQ/Oio6MVExOjffv2qW3btlq4cKHatm2rYsWuZaOwsDDNnj1b1atXL9BiAQAArpevMDNr1iz17t1bvXr1UlBQULZ97rnnHr3//vu3VBwAAMDN5CvM7N+//6Z9PDw81KNHj/ycHgAAINfytWYmJiZGH3/8cZb2jz/+WAsWLLjlogAAAHIrX2Fm4sSJKlu2bJb2gIAAjR8//paLAgAAyK18hZkjR44oLCwsS3ulSpWUmJh4y0UBAADkVr7CTEBAgPbs2ZOl/YcffpC/v/8tFwUAAJBb+VoA/Mwzz+jll1+Wj4+PHn74YUlSbGysBg0apGeeeaZACwQAuF7o66tdXUKeHZ7YztUl4DbJV5gZN26cjhw5ohYtWsjN7dopMjIy9Pzzz7NmBgAA3Fb5CjMeHh766KOP9Pbbb+uHH36Qp6enateurUqVKhV0fQAAADeUrzCTqWrVqqpatWpB1QIAAJBn+QozV69e1fz587Vx40alpKQoIyPDaf+mTZsKpDgAAICbyVeYGTRokObPn6927dopIiJCNputoOsCAADIlXyFmaVLl2rZsmVq27ZtQdcDAACQJ/n6nBkPDw9VqVKloGsBAADIs3yFmVdeeUXTp0+XMaag6wEAAMiTfN1m+uabb7R582atWbNGtWrVkru7u9P+Tz/9tECKAwAAuJl8hZlSpUrpiSeeKOhaAAAA8ixfYSYmJqag6wAAAMiXfK2ZkaQrV67oyy+/1OzZs5WamipJ+vXXX3X+/PkCKw4AAOBm8jUzc+TIET322GNKTExUenq6WrZsKR8fH02ePFkXL17Ue++9V9B1AgAAZCtfMzODBg1SgwYNdPr0aXl6ejran3jiCW3cuLHAigMAALiZfL+b6dtvv5WHh4dTe6VKlXT8+PECKQwAACA38hVmMjIydPXq1Sztx44dk4+Pzy0XBVwv9PXVri4BAFBE5es2U8uWLTVt2jTHts1m0/nz5zVmzBi+4gAAANxW+ZqZeffdd9W8eXPVrFlTFy9eVLdu3bR//36VLVtWS5YsKegaAQAAcpSvMBMSEqLdu3dryZIl+v7775WRkaE+ffro2WefdVoQDAAAUNjyFWYkydPTU71791bv3r0Lsh4AAIA8yVeYWbhw4Q33P//88/kqBgAAIK/yFWYGDRrktH358mVduHBBHh4e8vLyIswAAIDbJl/vZjp9+rTTz/nz57Vv3z41bdqUBcAAAOC2yvd3M10vPDxcEydOzDJrAwAAUJgKLMxIUvHixfXrr78W5CkBAABuKF9rZlatWuW0bYxRUlKSZsyYoSZNmhRIYQAAALmRrzDTsWNHp22bzaZy5crpkUce0dSpUwuiLgAAgFzJ93czAQAAFAUFumYGAADgdsvXzMzQoUNz3Tc6Ojo/lwAAAMiVfIWZXbt26fvvv9eVK1dUrVo1SdLPP/+s4sWLq379+o5+NputYKoEAADIQb7CTPv27eXj46MFCxaodOnSkq59kF6vXr300EMP6ZVXXinQIgEAAHKSrzUzU6dO1YQJExxBRpJKly6tcePG8W4mAABwW+UrzJw7d04nTpzI0p6SkqLU1NRbLgoAACC38hVmnnjiCfXq1UvLly/XsWPHdOzYMS1fvlx9+vRRp06dCrpGAACAHOVrzcx7772nYcOG6bnnntPly5evncjNTX369NGUKVMKtEAAAIAbydfMjJeXl2bOnKmTJ0863tl06tQpzZw5UyVLlsz1eSZMmKAHHnhAPj4+CggIUMeOHbVv3z6nPsYYRUVFKSQkRJ6enmrWrJni4+PzUzYAALgD3dKH5iUlJSkpKUlVq1ZVyZIlZYzJ0/GxsbEaOHCgtm3bpg0bNujKlStq1aqV0tLSHH0mT56s6OhozZgxQ3FxcQoKClLLli1ZmwMAACTl8zbTyZMn1blzZ23evFk2m0379+9X5cqV1bdvX5UqVSrX72hau3at03ZMTIwCAgK0c+dOPfzwwzLGaNq0aRo5cqRjLc6CBQsUGBioxYsXq1+/fvkpHwAA3EHyNTMzZMgQubu7KzExUV5eXo72Ll26ZAkoeXH27FlJUpkyZSRJhw4dUnJyslq1auXoY7fbFRkZqa1bt2Z7jvT0dJ07d87pBwAA3LnyFWbWr1+vSZMmqUKFCk7t4eHhOnLkSL4KMcZo6NChatq0qSIiIiRJycnJkqTAwECnvoGBgY5915swYYL8/PwcPxUrVsxXPQAAwBryFWbS0tKcZmQy/f7777Lb7fkq5O9//7v27NmjJUuWZNl3/dciGGNy/KqEESNG6OzZs46fo0eP5qseAABgDfkKMw8//LAWLlzo2LbZbMrIyNCUKVPUvHnzPJ/vpZde0qpVq7R582an2Z6goCBJyjILk5KSkmW2JpPdbpevr6/TDwAAuHPlawHwlClT1KxZM+3YsUOXLl3Sa6+9pvj4eJ06dUrffvttrs9jjNFLL72kFStWaMuWLQoLC3PaHxYWpqCgIG3YsEH33XefJOnSpUuKjY3VpEmT8lM6AAC4w+QrzNSsWVN79uzRrFmzVLx4caWlpalTp04aOHCggoODc32egQMHavHixfrss8/k4+PjmIHx8/OTp6enbDabBg8erPHjxys8PFzh4eEaP368vLy81K1bt/yUDgAA7jB5DjOXL19Wq1atNHv2bI0dO/aWLj5r1ixJUrNmzZzaY2Ji1LNnT0nSa6+9pj/++EMDBgzQ6dOn1bBhQ61fv14+Pj63dG0AAHBnyHOYcXd3148//pjjAty8yM2H7NlsNkVFRSkqKuqWrwcAAO48+VoA/Pzzz+v9998v6FoAAADyLF9rZi5duqR58+Zpw4YNatCgQZbvY4qOji6Q4gAAAG4mT2Hm4MGDCg0N1Y8//qj69etLkn7++WenPgVx+wkAACC38hRmwsPDlZSUpM2bN0u69vUF//znP3P8zBcAAIDClqc1M9cv2F2zZo3TN1wDAADcbvlaAJwpN+9GAgAAKEx5CjM2my3LmhjWyAAAAFfK05oZY4x69uzp+DLJixcvqn///lnezfTpp58WXIUAAAA3kKcw06NHD6ft5557rkCLAQAAyKs8hZmYmJjCqgMAXO5wCb7zLb9CLy52dQm4i93SAmAAAABXI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLc3N1AQDuHodLdHN1CSgkRfK5jcr837OurAK3ATMzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0lwaZr766iu1b99eISEhstlsWrlypdN+Y4yioqIUEhIiT09PNWvWTPHx8a4pFgAAFEkuDTNpaWmqW7euZsyYke3+yZMnKzo6WjNmzFBcXJyCgoLUsmVLpaam3uZKAQBAUeXmyou3adNGbdq0yXafMUbTpk3TyJEj1alTJ0nSggULFBgYqMWLF6tfv363s1QAAFBEFdk1M4cOHVJycrJatWrlaLPb7YqMjNTWrVtzPC49PV3nzp1z+gEAAHcul87M3EhycrIkKTAw0Kk9MDBQR44cyfG4CRMmaOzYsYVaG+5uh0t0c3UJNxR6cbGrSwCA26rIzsxkstlsTtvGmCxtfzZixAidPXvW8XP06NHCLhEAALhQkZ2ZCQoKknRthiY4ONjRnpKSkmW25s/sdrvsdnuh1wcAAIqGIjszExYWpqCgIG3YsMHRdunSJcXGxqpx48YurAwAABQlLp2ZOX/+vH755RfH9qFDh7R7926VKVNG99xzjwYPHqzx48crPDxc4eHhGj9+vLy8vNStW9FeswAAAG4fl4aZHTt2qHnz5o7toUOHSpJ69Oih+fPn67XXXtMff/yhAQMG6PTp02rYsKHWr18vHx8fV5UMAACKGJeGmWbNmskYk+N+m82mqKgoRUVF3b6iAACApRTZNTMAAAC5UWTfzQQAQEEIfX21q0vItcMT27m6BEtiZgYAAFgaYQYAAFgaYQYAAFgaYQYAAFgaYQYAAFgaYQYAAFgaYQYAAFganzNzF7LCZy4cLtHtum0XFQIAKPKYmQEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJbm5uoCABSswyW6uboEALitmJkBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWxufMAADuaEX9s5dCLy52dQmWx8wMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNDdXFwDXOVyim6tLAADgljEzAwAALI0wAwAALI0wAwAALI0wAwAALI0wAwAALI0wAwAALI0wAwAALI3PmQEAwIWcPvMrymVlZC/qrKsryBVmZgAAgKURZgAAgKURZgAAgKURZgAAgKURZgAAgKURZgAAgKURZgAAgKURZgAAgKXxoXm3KPT11a4uAQCAQpGb17jDE9vdhkpujJkZAABgaYQZAABgaZYIMzNnzlRYWJhKlCih+++/X19//bWrSwIAAEVEkQ8zH330kQYPHqyRI0dq165deuihh9SmTRslJia6ujQAAFAEFPkwEx0drT59+qhv376qUaOGpk2bpooVK2rWrFmuLg0AABQBRTrMXLp0STt37lSrVq2c2lu1aqWtW7e6qCoAAFCUFOm3Zv/++++6evWqAgMDndoDAwOVnJyc7THp6elKT093bJ89e1aSdO7cuUKpMSP9QqGc93Y4ZzOuLgEAUITl5jWusF5fM89rzM1fq4p0mMlks9mcto0xWdoyTZgwQWPHjs3SXrFixUKpzcr8XF0AAKCI63zTHn7TCreC1NRU+fnd+BWrSIeZsmXLqnjx4llmYVJSUrLM1mQaMWKEhg4d6tjOyMjQqVOn5O/vn2MAKkznzp1TxYoVdfToUfn6+t7269+tGHfXYNxdg3F3Dca9cBljlJqaqpCQkJv2LdJhxsPDQ/fff782bNigJ554wtG+YcMGdejQIdtj7Ha77Ha7U1upUqUKs8xc8fX15ZfdBRh312DcXYNxdw3GvfDcbEYmU5EOM5I0dOhQde/eXQ0aNFCjRo00Z84cJSYmqn///q4uDQAAFAFFPsx06dJFJ0+e1FtvvaWkpCRFREToP//5jypVquTq0gAAQBFQ5MOMJA0YMEADBgxwdRn5YrfbNWbMmCy3vlC4GHfXYNxdg3F3Dca96LCZ3LznCQAAoIgq0h+aBwAAcDOEGQAAYGmEGQAAYGmEGQAAYGmEmQIwa9Ys1alTx/HBSY0aNdKaNWsc+40xioqKUkhIiDw9PdWsWTPFx8e7sOI704QJE2Sz2TR48GBHG2Nf8KKiomSz2Zx+goKCHPsZ88Jz/PhxPffcc/L395eXl5fq1aunnTt3OvYz9gUvNDQ0y++7zWbTwIEDJTHmRQVhpgBUqFBBEydO1I4dO7Rjxw498sgj6tChg+MXevLkyYqOjtaMGTMUFxenoKAgtWzZUqmpqS6u/M4RFxenOXPmqE6dOk7tjH3hqFWrlpKSkhw/e/fudexjzAvH6dOn1aRJE7m7u2vNmjVKSEjQ1KlTnT7hnLEveHFxcU6/6xs2bJAkPf3005IY8yLDoFCULl3azJs3z2RkZJigoCAzceJEx76LFy8aPz8/895777mwwjtHamqqCQ8PNxs2bDCRkZFm0KBBxhjD2BeSMWPGmLp162a7jzEvPMOHDzdNmzbNcT9jf3sMGjTI3HvvvSYjI4MxL0KYmSlgV69e1dKlS5WWlqZGjRrp0KFDSk5OVqtWrRx97Ha7IiMjtXXrVhdWeucYOHCg2rVrp0cffdSpnbEvPPv371dISIjCwsL0zDPP6ODBg5IY88K0atUqNWjQQE8//bQCAgJ03333ae7cuY79jH3hu3TpkhYtWqTevXvLZrMx5kUIYaaA7N27V97e3rLb7erfv79WrFihmjVrOr7x+/pv+Q4MDMzybeDIu6VLl+r777/XhAkTsuxj7AtHw4YNtXDhQq1bt05z585VcnKyGjdurJMnTzLmhejgwYOaNWuWwsPDtW7dOvXv318vv/yyFi5cKInf99th5cqVOnPmjHr27CmJMS9KLPF1BlZQrVo17d69W2fOnNEnn3yiHj16KDY21rHfZrM59TfGZGlD3hw9elSDBg3S+vXrVaJEiRz7MfYFq02bNo7/rl27tho1aqR7771XCxYs0IMPPiiJMS8MGRkZatCggcaPHy9Juu+++xQfH69Zs2bp+eefd/Rj7AvP+++/rzZt2igkJMSpnTF3PWZmCoiHh4eqVKmiBg0aaMKECapbt66mT5/ueJfH9Sk9JSUlS5pH3uzcuVMpKSm6//775ebmJjc3N8XGxuqf//yn3NzcHOPL2BeukiVLqnbt2tq/fz+/74UoODhYNWvWdGqrUaOGEhMTJYmxL2RHjhzRl19+qb59+zraGPOigzBTSIwxSk9PV1hYmIKCghwr4KVr911jY2PVuHFjF1ZofS1atNDevXu1e/dux0+DBg307LPPavfu3apcuTJjfxukp6frp59+UnBwML/vhahJkybat2+fU9vPP/+sSpUqSRJjX8hiYmIUEBCgdu3aOdoY8yLElauP7xQjRowwX331lTl06JDZs2ePeeONN0yxYsXM+vXrjTHGTJw40fj5+ZlPP/3U7N2713Tt2tUEBwebc+fOubjyO8+f381kDGNfGF555RWzZcsWc/DgQbNt2zbz+OOPGx8fH3P48GFjDGNeWL777jvj5uZm3nnnHbN//37z4YcfGi8vL7No0SJHH8a+cFy9etXcc889Zvjw4Vn2MeZFA2GmAPTu3dtUqlTJeHh4mHLlypkWLVo4gowx194yOWbMGBMUFGTsdrt5+OGHzd69e11Y8Z3r+jDD2Be8Ll26mODgYOPu7m5CQkJMp06dTHx8vGM/Y154Pv/8cxMREWHsdrupXr26mTNnjtN+xr5wrFu3zkgy+/bty7KPMS8abMYY4+rZIQAAgPxizQwAALA0wgwAALA0wgwAALA0wgwAALA0wgwAALA0wgwAALA0wgwAALA0wgyAImv+/Pmy2Wyy2WwaPHiwq8u5qaioKEe906ZNc3U5wF2DMAOgSPP19VVSUpLefvttV5dyU8OGDVNSUpIqVKjg6lKAu4qbqwsAgBux2WyObyd2pcuXL8vd3f2Gfby9veXt7a3ixYvfpqoASMzMAMiFtWvXqmnTpipVqpT8/f31+OOP68CBA059tm7dqnr16qlEiRJq0KCBVq5cKZvNpt27dzv6JCQkqG3btvL29lZgYKC6d++u33//PU+1vPXWW6pdu3aW9vvvv19vvvmmYzsmJkY1atRQiRIlVL16dc2cOdOp//Dhw1W1alV5eXmpcuXKGj16tC5fvuzYHxUVpXr16umDDz5Q5cqVZbfbZYzR8uXLVbt2bXl6esrf31+PPvqo0tLS8vQYABQswgyAm0pLS9PQoUMVFxenjRs3qlixYnriiSeUkZEhSUpNTVX79u1Vu3Ztff/993r77bc1fPhwp3MkJSUpMjJS9erV044dO7R27VqdOHFCnTt3zlMtvXv3VkJCguLi4hxte/bs0a5du9SzZ09J0ty5czVy5Ei98847+umnnzR+/HiNHj1aCxYscBzj4+Oj+fPnKyEhQdOnT9fcuXP17rvvOl3rl19+0bJly/TJJ59o9+7dSk5OVteuXdW7d2/99NNP2rJlizp16iS+4g5wMdd+zyUAK0pJSTGSHN8OPGvWLOPv72/++OMPR5+5c+caSWbXrl3GGGNGjx5tWrVq5XSeo0eP5vhtxMYYExMTY/z8/LK0t2nTxrz44ouO7cGDB5tmzZo5titWrGgWL17sdMzbb79tGjVqlONjmjx5srn//vsd22PGjDHu7u4mJSXF0bZz504jyRw+fDjH8xhjTKVKlcy77757wz4ACg4zMwBu6sCBA+rWrZsqV64sX19fhYWFSZISExMlSfv27VOdOnVUokQJxzF/+ctfnM6xc+dObd682bGuxNvbW9WrV3ecPy/+9re/acmSJbp48aIuX76sDz/8UL1795Yk/fbbbzp69Kj69OnjdK1x48Y5XWf58uVq2rSpgoKC5O3trdGjRzseT6ZKlSqpXLlyju26deuqRYsWql27tp5++mnNnTtXp0+fzlPtAAoeC4AB3FT79u1VsWJFzZ07VyEhIcrIyFBERIQuXbokSTLGyGazOR1jrrv1kpGRofbt22vSpElZzh8cHJzneux2u1asWCG73a709HQ9+eSTjutI1241NWzY0Om4zIW527Zt0zPPPKOxY8eqdevW8vPz09KlSzV16lSn/iVLlsxy/IYNG7R161atX79e//rXvzRy5Eht377dEfAA3H6EGQA3dPLkSf3000+aPXu2HnroIUnSN99849SnevXq+vDDD5Weni673S5J2rFjh1Of+vXr65NPPlFoaKjc3G7tnx43Nzf16NFDMTExstvteuaZZ+Tl5SVJCgwMVPny5XXw4EE9++yz2R7/7bffqlKlSho5cqSj7ciRI7m6ts1mU5MmTdSkSRO9+eabqlSpklasWKGhQ4fe0mMCkH+EGQA3VLp0afn7+2vOnDkKDg5WYmKiXn/9dac+3bp108iRI/XCCy/o9ddfV2Jiov7xj39IkmPGZuDAgZo7d666du2qV199VWXLltUvv/yipUuXau7cuXl+O3Pfvn1Vo0YNSdfCyZ9FRUXp5Zdflq+vr9q0aaP09HTt2LFDp0+f1tChQ1WlShUlJiZq6dKleuCBB7R69WqtWLHiptfcvn27Nm7cqFatWikgIEDbt2/Xb7/95qgDgGuwZgbADRUrVkxLly7Vzp07FRERoSFDhmjKlClOfXx9ffX5559r9+7dqlevnkaOHOl4m3TmOpqQkBB9++23unr1qlq3bq2IiAgNGjRIfn5+KlYs7/8UhYeHq3HjxqpWrVqW20l9+/bVvHnzNH/+fNWuXVuRkZGaP3++41ZQhw4dNGTIEP39739XvXr1tHXrVo0ePfqm1/T19dVXX32ltm3bqmrVqho1apSmTp2qNm3a5Ll+AAXHZq6/sQ0ABeDDDz9Ur169dPbsWXl6eubrHPPnz9fgwYN15syZLPuMMapevbr69etX5G7xhIaGavDgwZb4CgbgTsDMDIACsXDhQn3zzTc6dOiQVq5cqeHDh6tz5875DjKZzp49K29vb6fPrUlJSVF0dLSOHz+uXr163WrpBWb8+PHy9vbO8q4oAIWLmRkABWLy5MmaOXOmkpOTFRwcrI4dO+qdd95xLMzNj9TUVJ04cUKSVKpUKZUtW1bStXU4ZcuW1fTp09WtW7cCqb8gnDp1SqdOnZIklStXTn5+fi6uCLg7EGYAAIClcZsJAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABY2v8DrgH7vLhahUEAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# age dirtibution group into male and female (1 = male; 0 = female)\n", "# male\n", "plt.title('age distribution according to Sex') \n", "df[df[\"sex\"] == 1]['age'].plot.hist()\n", "print(df[df[\"sex\"] > 0]['age'])\n", "# female\n", "df[df[\"sex\"] == 0]['age'].plot.hist()\n", "plt.xlabel('age [years]')\n", "plt.legend([\"male\", \"female\"])" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Text(0.5, 0, 'max heart rate')" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAHFCAYAAAAHcXhbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABSbklEQVR4nO3dd1gUV/828HtpS18EBRZFwIhYQCPRIMaIvVf0sfcSDZYotqgxYvQRSzQkMdYY1BhFE0vMY0VFNFEjdo3GCmIiSESlqUs77x++zC8rHcHdgftzXXtdzpkzM985u+zeTtlVCCEEiIiIiGTKQNcFEBEREb0OhhkiIiKSNYYZIiIikjWGGSIiIpI1hhkiIiKSNYYZIiIikjWGGSIiIpI1hhkiIiKSNYYZIiIikjWGGSoxhUKBoKAgXZdRamJiYqBQKPD555/ruhQtDx48QFBQEC5evFiutylHrq6uGDZsmDR97NgxKBQKHDt27I3Xcu3aNQQFBSEmJqZU17thwwYoFAqcPXu2VNf7uk6ePImgoCA8ffr0tdYzbNgwuLq6arWVt/e2ioBhhkrs1KlTGDVqlK7LKPcePHiAefPmvfEw86a3WR54e3vj1KlT8Pb2fuPbvnbtGubNm1fqYUZfnTx5EvPmzXvtMJMXvrfJj5GuCyD5atKkia5LKNeysrKQmZlZKut6/vw5TE1NoVAoSmV9FcWzZ89gbm5e5P7W1tb8uyhjOa/lssTnUH54ZEYmgoKCoFAocPnyZfznP/+BSqWCra0tAgMDkZmZiRs3bqBDhw6wsrKCq6srlixZorX8ixcvMGXKFLz99tvSsr6+vvj555+1+oWFhUGhUGDFihVa7XPnzoWhoSHCw8OltlcPxeYcjj569ChGjx4NOzs7WFtbY8iQIUhLS0N8fDz69OkDGxsbqNVqTJ06FRkZGdLy+R2izzn9s2HDBqlt2LBhsLS0xJ9//on27dvDwsICarUaixYtAgCcPn0azZo1g4WFBWrVqoWNGzcWa7yXL18ONzc3WFpawtfXF6dPn87V5+zZs+jWrRtsbW1hamqKhg0bYvv27Vp9/vnnHwQEBKBu3bqwtLSEvb09WrVqhRMnTuS5j0uWLMGCBQvg5uYGpVKJiIgING7cGAAwfPhwKBSKQg+B5zwPhw4dwogRI1ClShWYm5tDo9Hg9u3bGD58ONzd3WFubo6qVauia9euuHLlirT8sWPHCt1mUfY9P/PmzYOPjw9sbW1hbW0Nb29vrF+/Hnn95u2WLVvg6+sLS0tLWFpa4u2338b69eu1+hw4cACtW7eGSqWCubk56tSpg+DgYK0+e/bsga+vL8zNzWFlZYW2bdvi1KlTWn1y/sbOnz+P3r17o1KlSnjrrbcAABkZGZg+fTocHR1hbm6OZs2a4cyZM7nqzes1nPNavX37Njp16gRLS0s4OztjypQp0Gg0Wsv/9ddf6N27N6ysrGBjY4OBAwciKioq1+v/VRs2bMB//vMfAEDLli2l5+zfy3z33Xdo0KABTE1NYWtri549e+L69ev5rvNVKSkp+PDDD1G5cmXY2dnB398fDx48yNVv27Zt8PX1hYWFBSwtLdG+fXtcuHBBq8/Zs2fRr18/uLq6wszMDK6urujfvz/u3buXa7/yei3PnDkT06ZNAwC4ublJ+1vY6b0NGzbAw8MDSqUSderUwaZNm/Ls9+rr/dmzZ5g6dSrc3Nyk8WvUqBG2bt2aa79K6z0BAFatWoUGDRrA0tISVlZWqF27NmbNmqXVJz4+HmPGjEG1atVgYmICNzc3zJs3r9T+IyQXPDIjM3369MGgQYMwZswYhIeHY8mSJcjIyMDhw4cREBCAqVOnYsuWLZgxYwZq1qwJf39/AIBGo8Hjx48xdepUVK1aFenp6Th8+DD8/f0RGhqKIUOGAAD69euHyMhITJkyBU2aNEGjRo1w9OhRLFiwALNmzULbtm0LrXHUqFHw9/dHWFgYLly4gFmzZkmBy9/fHx988AEOHz6MxYsXw8nJCYGBgSUai4yMDPj7+2Ps2LGYNm0atmzZgpkzZyI5ORk7duzAjBkzUK1aNXz99dcYNmwYPD098c477xS63m+++Qa1a9dGSEgIAGDOnDno1KkToqOjoVKpAAARERHo0KEDfHx8sHr1aqhUKoSFhaFv37549uyZdB3F48ePAbwMg46OjkhNTcWuXbvQokULHDlyBC1atNDa9ldffYVatWrh888/h7W1NRwcHBAaGorhw4fjk08+QefOnQEA1apVK3Q/RowYgc6dO+P7779HWloajI2N8eDBA9jZ2WHRokWoUqUKHj9+jI0bN8LHxwcXLlyAh4cHvL29C9xmUfc9PzExMRgzZgyqV68O4GXwnDBhAv7++298+umnUr9PP/0U8+fPh7+/P6ZMmQKVSoWrV69qfeCtX78eo0ePhp+fH1avXg17e3vcvHkTV69elfps2bIFAwcORLt27bB161ZoNBosWbJEeg6aNWumVZ+/vz/69euHsWPHIi0tDQAwevRobNq0CVOnTkXbtm1x9epV+Pv7IyUlpdDnAXj5Wu3WrRtGjhyJKVOm4Pjx45g/fz5UKpW0z2lpaWjZsiUeP36MxYsXo2bNmjhw4AD69u1b6Po7d+6MhQsXYtasWfjmm2+k01w5YSw4OBizZs1C//79ERwcjMTERAQFBcHX1xdRUVFwd3cvdBujRo1C586dsWXLFty/fx/Tpk3DoEGDcPToUanPwoUL8cknn0ivnfT0dCxduhTvv/8+zpw5g7p16wJ4+Rrw8PBAv379YGtri7i4OKxatQqNGzfGtWvXULlyZa1tv/pabtSoEZ49e4avv/4aO3fuhFqtBgBp/XnZsGEDhg8fju7du2PZsmVISkpCUFAQNBoNDAwK/n99YGAgvv/+eyxYsAANGzZEWloarl69isTERKlPab8nhIWFISAgABMmTMDnn38OAwMD3L59G9euXZO2GR8fj3fffRcGBgb49NNP8dZbb+HUqVNYsGABYmJiEBoaWsizWo4IkoW5c+cKAGLZsmVa7W+//bYAIHbu3Cm1ZWRkiCpVqgh/f/9815eZmSkyMjLEyJEjRcOGDbXmvXjxQjRs2FC4ubmJa9euCQcHB+Hn5ycyMzO1+gEQc+fOlaZDQ0MFADFhwgStfj169BAAxPLly3PV7u3tLU1HREQIACIiIkKrX3R0tAAgQkNDpbahQ4cKAGLHjh259huAOH/+vNSemJgoDA0NRWBgYL7j8e/teHl5ae3rmTNnBACxdetWqa127dqiYcOGIiMjQ2sdXbp0EWq1WmRlZeW5jZxxb926tejZs2eubb/11lsiPT1da5moqKhc+1+QnOdhyJAhhfbNzMwU6enpwt3dXUyePLlI2yzpvuclKytLZGRkiM8++0zY2dmJ7OxsIYQQd+/eFYaGhmLgwIH5LpuSkiKsra1Fs2bNpOXyWr+Tk5Pw8vLSqislJUXY29uLpk2bSm05f2Offvqp1jquX78uAGiNjxBC/PDDDwKAGDp0qNSW12s457W6fft2reU7deokPDw8pOlvvvlGABD79+/X6jdmzJgiPf8//vhjnn8/T548EWZmZqJTp05a7bGxsUKpVIoBAwYUuN6c11NAQIBW+5IlSwQAERcXJ63PyMgo199/SkqKcHR0FH369Ml3G5mZmSI1NVVYWFiIL7/8Mte283otL126VAAQ0dHRBdYvxP+9Dry9vbVeKzExMcLY2Fi4uLho9X/1vc3T01P06NGjwG2U9nvC+PHjhY2NTYHbHDNmjLC0tBT37t3Tav/8888FAPHHH38UuHx5wtNMMtOlSxet6Tp16kChUKBjx45Sm5GREWrWrJnrkO2PP/6I9957D5aWljAyMoKxsTHWr1+f61CzUqnE9u3bkZiYCG9vbwghsHXrVhgaGpa4RgDS//D/3f5qjcWhUCjQqVMnaTpnv9VqNRo2bCi129rawt7evsjb6ty5s9a+1q9fHwCk5W/fvo0///wTAwcOBABkZmZKj06dOiEuLg43btyQll+9ejW8vb1hamoqjfuRI0fyPMTfrVs3GBsbF2MU8terV69cbZmZmVi4cCHq1q0LExMTGBkZwcTEBLdu3SrSKYfi7ntejh49ijZt2kClUsHQ0BDGxsb49NNPkZiYiISEBABAeHg4srKyMG7cuHzXc/LkSSQnJyMgICDfa4Fu3LiBBw8eYPDgwVr/+7a0tESvXr1w+vRpPHv2TGuZV8ctIiICAKR9ztGnTx8YGRXt4LZCoUDXrl212urXr6/1moyMjISVlRU6dOig1a9///5F2kZ+Tp06hefPn+c6Yubs7IxWrVrhyJEjRVpPt27dtKZf/bs4ePAgMjMzMWTIEK3XhampKfz8/LROAaWmpkpHj42MjGBkZARLS0ukpaXl+TrM67VcHDmvgwEDBmi9VlxcXNC0adNCl3/33Xexf/9+fPzxxzh27BieP3+uNb8s3hPeffddPH36FP3798fPP/+MR48e5arrf//7H1q2bAknJyetbeZ8HkRGRhZvoGSMYUZmbG1ttaZNTExgbm6e64I4ExMTvHjxQpreuXMn+vTpg6pVq2Lz5s04deoUoqKiMGLECK1+OWrWrIn3338fL168wMCBA6XDuCWtMb/2vLZdVPnt96vbKe627OzstKaVSiUASG9gDx8+BABMnToVxsbGWo+AgAAAkN54li9fjg8//BA+Pj7YsWMHTp8+jaioKHTo0CHXGyKAYo1zYfJaV2BgIObMmYMePXrgl19+we+//46oqCg0aNAgz3peVZx9z8uZM2fQrl07AMC6devw22+/ISoqCrNnzwbwf2P8zz//ACj4dFpR+uScBshrLJycnJCdnY0nT55otb/aN2cdjo6OWu1GRka5Xiv5yeu1qlQqtV6TiYmJcHBwyLVsXm3FUdgY/PtUSUGK+nfRuHHjXK+Nbdu2ab0uBgwYgBUrVmDUqFE4ePAgzpw5g6ioKFSpUqVM/i7yew7za3vVV199hRkzZmD37t1o2bIlbG1t0aNHD9y6dQtA2bwnDB48GN999x3u3buHXr16wd7eHj4+PlrXLT58+BC//PJLrm3Wq1dPa5sVAa+ZqSA2b94MNzc3bNu2Tet/Jq9egJjj22+/xd69e/Huu+9ixYoV6Nu3L3x8fMq0xpw3+1dr0rc/yJzz+TNnzpSuSXqVh4cHgJfj3qJFC6xatUprfn7XWpTm3UZ5rWvz5s0YMmQIFi5cqNX+6NEj2NjYFLrO4ux7XsLCwmBsbIz//e9/Wh/uu3fv1upXpUoVAC8viHV2ds5zXf/uk5+cD+C4uLhc8x48eAADAwNUqlRJq/3VcctZR3x8PKpWrSq1Z2ZmFjkIFIWdnV2eFxXHx8e/9nqB/Mfg1etTSipnPT/99BNcXFzy7ZeUlIT//e9/mDt3Lj7++GOpPee6vry87t/Fv5/DVxVlfC0sLDBv3jzMmzcPDx8+lI7SdO3aFX/++WeZvScMHz4cw4cPR1paGo4fP465c+eiS5cuuHnzJlxcXFC5cmXUr18f//3vf/PcppOTU6H7Vl4wzFQQCoUCJiYmWm8K8fHxue5mAoArV65g4sSJGDJkCNatW4emTZuib9++uHDhQq43/tKU88VVly9fRvv27aX2PXv2lNk2S8LDwwPu7u64dOlSrlDwKoVCIf0PNsfly5dx6tSpfD+kX/Xq/4BfR1717N27F3///Tdq1qxZ6DaLs+/5bd/IyEjrNN7z58/x/fffa/Vr164dDA0NsWrVKvj6+ua5rqZNm0KlUmH16tXo169fnh94Hh4eqFq1KrZs2YKpU6dKfdLS0rBjxw7pDqeC5FyQ+cMPP2hdQL59+/ZSvWPEz88P27dvx/79+7VOG4eFhRVp+fyeM19fX5iZmWHz5s3SHU/AyxB49OhR9O7duxSqB9q3bw8jIyPcuXOnwNNCCoUCQohcr8Nvv/0WWVlZRd5ecf4uPDw8oFarsXXrVgQGBkqvg3v37uHkyZPF+tB3cHDAsGHDcOnSJYSEhODZs2dl/p5gYWGBjh07Ij09HT169MAff/wBFxcXdOnSBfv27cNbb71Vpu/NcsAwU0F06dIFO3fuREBAAHr37o379+9j/vz5UKvV0qFS4OWbfJ8+feDm5oaVK1fCxMQE27dvh7e3N4YPH57rf9ClydHREW3atEFwcDAqVaoEFxcXHDlyBDt37iyzbZbUmjVr0LFjR7Rv3x7Dhg1D1apV8fjxY1y/fh3nz5/Hjz/+CODluM+fPx9z586Fn58fbty4gc8++wxubm5F/iB86623YGZmhh9++AF16tSBpaUlnJycSvS/ri5dumDDhg2oXbs26tevj3PnzmHp0qW5TtUUtM2i7nteOnfujOXLl2PAgAH44IMPkJiYiM8//zzXm7urqytmzZqF+fPn4/nz5+jfvz9UKhWuXbuGR48eYd68ebC0tMSyZcswatQotGnTBqNHj4aDgwNu376NS5cuYcWKFTAwMMCSJUswcOBAdOnSBWPGjIFGo8HSpUvx9OlT6Vb+gtSpUweDBg1CSEgIjI2N0aZNG1y9elW646y0DB06FF988QUGDRqEBQsWoGbNmti/fz8OHjwIAIXecePp6QkAWLt2LaysrGBqago3NzfY2dlhzpw5mDVrFoYMGYL+/fsjMTER8+bNg6mpKebOnVsq9bu6uuKzzz7D7NmzcffuXXTo0AGVKlXCw4cPcebMGenohrW1NZo3b46lS5eicuXKcHV1RWRkJNavX1+ko4M5vLy8AABffvklhg4dCmNjY3h4eMDKyipXXwMDA8yfPx+jRo1Cz549MXr0aDx9+hRBQUFFOs3k4+ODLl26oH79+qhUqRKuX7+O77//XisMl/Z7wujRo2FmZob33nsParUa8fHxCA4Ohkqlkr464bPPPkN4eDiaNm2KiRMnwsPDAy9evEBMTAz27duH1atXF+nOx3JB11cgU9Hk3Gnxzz//aLUPHTpUWFhY5Orv5+cn6tWrp9W2aNEi4erqKpRKpahTp45Yt26dtN4cgwYNEubm5rmugs+5U+KLL76Q2pDP3UxRUVElrj0uLk707t1b2NraCpVKJQYNGiTOnj2b591MRd1vIYRwcXERnTt3ztX+bzl3FC1dujTXvFf3VQghLl26JPr06SPs7e2FsbGxcHR0FK1atRKrV6+W+mg0GjF16lRRtWpVYWpqKry9vcXu3bvF0KFDte6gKGjbQgixdetWUbt2bWFsbJxnLf+W3/MgxMs7W0aOHCns7e2Fubm5aNasmThx4oTw8/MTfn5+Rd5mUfY9P999953w8PAQSqVS1KhRQwQHB4v169fneWfKpk2bROPGjYWpqamwtLQUDRs2zHVXz759+4Sfn5+wsLAQ5ubmom7dumLx4sVafXbv3i18fHyEqampsLCwEK1btxa//fabVp/8XqdCvHwep0yZIuzt7YWpqalo0qSJOHXqlHBxcSnS3Ux5vVZf/dsT4uUdQf7+/sLS0lJYWVmJXr16iX379gkA4ueffy5gVF8KCQkRbm5uwtDQMNffzLfffivq168vTExMhEqlEt27dy/S3S75vZ7yu/tw9+7domXLlsLa2loolUrh4uIievfuLQ4fPiz1+euvv0SvXr1EpUqVhJWVlejQoYO4evVqrvEs6LUshBAzZ84UTk5OwsDAIM9aXvXtt98Kd3d3YWJiImrVqiW+++67XH+LQuT+e//4449Fo0aNRKVKlaTX7eTJk8WjR4+0livN94SNGzeKli1bCgcHB2FiYiKcnJxEnz59xOXLl7W2+c8//4iJEycKNzc3YWxsLGxtbcU777wjZs+eLVJTUwscj/JEIUQe31RFRER6Iee7W2JjYyvO/7KJiomnmYiI9ETON2/Xrl0bGRkZOHr0KL766isMGjSIQYaoAAwzRER6wtzcHF988QViYmKg0WhQvXp1zJgxA5988omuSyPSazzNRERERLLGL80jIiIiWWOYISIiIlljmCEiIiJZK/cXAGdnZ+PBgwewsrIq1a+KJyIiorIjhEBKSgqcnJwK/dLIch9mHjx4UOSvjSciIiL9cv/+/UK/mqDch5mcr7a+f/9+qX71OBEREZWd5ORkODs75/kTFa8q92Em59SStbU1wwwREZHMFOUSEV4ATERERLLGMENERESyxjBDREREslbur5khIiJ5ysrKQkZGhq7LoDJibGwMQ0PDUlkXwwwREekVIQTi4+Px9OlTXZdCZczGxgaOjo6v/T1wDDNERKRXcoKMvb09zM3N+YWn5ZAQAs+ePUNCQgIAQK1Wv9b6GGaIiEhvZGVlSUHGzs5O1+VQGTIzMwMAJCQkwN7e/rVOOfECYCIi0hs518iYm5vruBJ6E3Ke59e9NophhoiI9A5PLVUMpfU8M8wQERGRrDHMEBERlZEWLVpg0qRJAABXV1eEhITotJ7yihcAExGR3nP9eO8b3V7Mos6lvs6oqChYWFiU+nqJYYaIiOiNqFKliq5LKLd4momIiKgUpKWlYciQIbC0tIRarcayZcu05r96mikoKAjVq1eHUqmEk5MTJk6cKM1LT0/H9OnTUbVqVVhYWMDHxwfHjh2T5icmJqJ///6oVq0azM3N4eXlha1bt2pt76effoKXlxfMzMxgZ2eHNm3aIC0tTZofGhqKOnXqwNTUFLVr18bKlStLd0DeIB6ZISIiKgXTpk1DREQEdu3aBUdHR8yaNQvnzp3D22+/navvTz/9hC+++AJhYWGoV68e4uPjcenSJWn+8OHDERMTg7CwMDg5OWHXrl3o0KEDrly5And3d7x48QLvvPMOZsyYAWtra+zduxeDBw9GjRo14OPjg7i4OPTv3x9LlixBz549kZKSghMnTkAIAQBYt24d5s6dixUrVqBhw4a4cOECRo8eDQsLCwwdOvRNDVmpYZghIqrA3vS1KIX5M6i1rksokdTUVKxfvx6bNm1C27ZtAQAbN25EtWrV8uwfGxsLR0dHtGnTBsbGxqhevTreffddAMCdO3ewdetW/PXXX3BycgIATJ06FQcOHEBoaCgWLlyIqlWrYurUqdL6JkyYgAMHDuDHH3+UwkxmZib8/f3h4uICAPDy8pL6z58/H8uWLYO/vz8AwM3NDdeuXcOaNWsYZoiIiCqiO3fuID09Hb6+vlKbra0tPDw88uz/n//8ByEhIahRowY6dOiATp06oWvXrjAyMsL58+chhECtWrW0ltFoNNK3ImdlZWHRokXYtm0b/v77b2g0Gmg0GukC4wYNGqB169bw8vJC+/bt0a5dO/Tu3RuVKlXCP//8g/v372PkyJEYPXq0tP7MzEyoVKrSHpo3gmGGiIjoNeWcvikqZ2dn3LhxA+Hh4Th8+DACAgKwdOlSREZGIjs7G4aGhjh37lyur/i3tLQEACxbtgxffPEFQkJC4OXlBQsLC0yaNAnp6ekAAENDQ4SHh+PkyZM4dOgQvv76a8yePRu///679K2769atg4+Pj9b6S+tXrN80hhkiIqLXVLNmTRgbG+P06dOoXr06AODJkye4efMm/Pz88lzGzMwM3bp1Q7du3TBu3DjUrl0bV65cQcOGDZGVlYWEhAS8//77eS574sQJdO/eHYMGDQIAZGdn49atW6hTp47UR6FQ4L333sN7772HTz/9FC4uLti1axcCAwNRtWpV3L17FwMHDizlkdANvbmbKTg4GAqFQvpyIeBl0g0KCoKTkxPMzMzQokUL/PHHH7orkoiIKA+WlpYYOXIkpk2bhiNHjuDq1asYNmwYDAzy/pjdsGED1q9fj6tXr+Lu3bv4/vvvYWZmBhcXF9SqVQsDBw7EkCFDsHPnTkRHRyMqKgqLFy/Gvn37ALwMTzlHXq5fv44xY8YgPj5eWv/vv/+OhQsX4uzZs4iNjcXOnTvxzz//SGEnKCgIwcHB+PLLL3Hz5k1cuXIFoaGhWL58edkPVhnQiyMzUVFRWLt2LerXr6/VvmTJEixfvhwbNmxArVq1sGDBArRt2xY3btyAlZWVjqolIiLKbenSpUhNTUW3bt1gZWWFKVOmICkpKc++NjY2WLRoEQIDA5GVlQUvLy/88ssv0jUxoaGhWLBgAaZMmYK///4bdnZ28PX1RadOnQAAc+bMQXR0NNq3bw9zc3N88MEH6NGjh7Q9a2trHD9+HCEhIUhOToaLiwuWLVuGjh07AgBGjRoFc3NzLF26FNOnT4eFhQW8vLy0DijIiUIU90RfKUtNTYW3tzdWrlyJBQsW4O2330ZISAiEEHBycsKkSZMwY8YMAC8vfnJwcMDixYsxZsyYIq0/OTkZKpUKSUlJsLa2LstdISKSHX28myk6Ohpubm4wNTXVdTlUxl68eJHv812cz2+dn2YaN24cOnfujDZt2mi1R0dHIz4+Hu3atZPalEol/Pz8cPLkyXzXp9FokJycrPUgIiKi8kunp5nCwsJw/vx5REVF5ZqXc+7PwcFBq93BwQH37t3Ld53BwcGYN29e6RZKREREektnR2bu37+Pjz76CJs3by7wUKJCodCaFkLkavu3mTNnIikpSXrcv3+/1GomIiIi/aOzIzPnzp1DQkIC3nnnHaktKysLx48fx4oVK3Djxg0AL4/QqNVqqU9CQkKuozX/plQqoVQqy65wIiIi0is6OzLTunVrXLlyBRcvXpQejRo1wsCBA3Hx4kXUqFEDjo6OCA8Pl5ZJT09HZGQkmjZtqquyiYiISM/o7MiMlZUVPD09tdosLCxgZ2cntU+aNAkLFy6Eu7s73N3dsXDhQpibm2PAgAG6KJmIiIj0kF58z0x+pk+fjufPnyMgIABPnjyBj48PDh06xO+YISIiIolehZljx45pTSsUCgQFBSEoKEgn9RAREZH+0/n3zBARERG9DoYZIiIimYiJiYFCocDFixcBvDyjoVAo8PTpU53WpWt6dZqJiIgoT0GqN7y9vH9TSd80bdoUcXFxUKne8PjoGYYZIiIimTIxMYGjo6Ouy9A5nmYiIiJ6TS1atMDEiRMxffp02NrawtHRMdfNK7GxsejevTssLS1hbW2NPn364OHDhwWu98yZM2jYsCFMTU3RqFEjXLhwQWv+q6eZ7t27h65du6JSpUqwsLBAvXr1sG/fPqn/tWvX0KlTJ1haWsLBwQGDBw/Go0ePpPkHDhxAs2bNYGNjAzs7O3Tp0gV37tyR5qenp2P8+PFQq9UwNTWFq6srgoODpflJSUn44IMPYG9vD2tra7Rq1QqXLl0q7nAWG8MMERFRKdi4cSMsLCzw+++/Y8mSJfjss8+kL34VQqBHjx54/PgxIiMjER4ejjt37qBv3775ri8tLQ1dunSBh4cHzp07h6CgIEydOrXAGsaNGweNRoPjx4/jypUrWLx4MSwtLQEAcXFx8PPzw9tvv42zZ8/iwIEDePjwIfr06aO1zcDAQERFReHIkSMwMDBAz549kZ2dDQD46quvsGfPHmzfvh03btzA5s2b4erqKu1j586dER8fj3379uHcuXPw9vZG69at8fjx49cZ2kLxNBMREVEpqF+/PubOnQsAcHd3x4oVK3DkyBG0bdsWhw8fxuXLlxEdHQ1nZ2cAwPfff4969eohKioKjRs3zrW+H374AVlZWfjuu+9gbm6OevXq4a+//sKHH36Ybw2xsbHo1asXvLy8AAA1atSQ5q1atQre3t5YuHCh1Pbdd9/B2dkZN2/eRK1atdCrVy+t9a1fvx729va4du0aPD09ERsbC3d3dzRr1gwKhQIuLi5S34iICFy5cgUJCQnSzwp9/vnn2L17N3766Sd88MEHxR3SIuORGSIiolJQv359rWm1Wo2EhAQAwPXr1+Hs7CwFGQCoW7cubGxscP369TzXd/36dTRo0ADm5uZSm6+vb4E1TJw4EQsWLMB7772HuXPn4vLly9K8c+fOISIiApaWltKjdu3aACCdSrpz5w4GDBiAGjVqwNraGm5ubgBehiQAGDZsGC5evAgPDw9MnDgRhw4d0lp/amoq7OzstLYRHR2tdaqqLPDIDBERUSkwNjbWmlYoFNLpGSEEFApFrmXya8+ZV1yjRo1C+/btsXfvXhw6dAjBwcFYtmwZJkyYgOzsbHTt2hWLFy/OtVzODzp37doVzs7OWLduHZycnJCdnQ1PT0+kp6cDALy9vREdHY39+/fj8OHD6NOnD9q0aYOffvoJ2dnZUKvVub4AFwBsbGyKvS/FwTBDRERUxurWrYvY2Fjcv39fOjpz7do1JCUloU6dOvku8/333+P58+cwMzMDAJw+fbrQbTk7O2Ps2LEYO3YsZs6ciXXr1mHChAnw9vbGjh074OrqCiOj3B//iYmJuH79OtasWYP3338fAPDrr7/m6mdtbY2+ffuib9++6N27Nzp06IDHjx/D29sb8fHxMDIykq6jeVN4momIiKiMtWnTBvXr18fAgQNx/vx5nDlzBkOGDIGfnx8aNWqU5zIDBgyAgYEBRo4ciWvXrmHfvn34/PPPC9zOpEmTcPDgQURHR+P8+fM4evSoFJbGjRuHx48fo3///jhz5gzu3r2LQ4cOYcSIEcjKykKlSpVgZ2eHtWvX4vbt2zh69CgCAwO11v/FF18gLCwMf/75J27evIkff/wRjo6OsLGxQZs2beDr64sePXrg4MGDiImJwcmTJ/HJJ5/g7NmzpTOQ+WCYISIiKmMKhQK7d+9GpUqV0Lx5c7Rp0wY1atTAtm3b8l3G0tISv/zyC65du4aGDRti9uzZeZ4i+resrCyMGzcOderUQYcOHeDh4YGVK1cCAJycnPDbb78hKysL7du3h6enJz766COoVCoYGBjAwMAAYWFhOHfuHDw9PTF58mQsXbo0V02LFy9Go0aN0LhxY8TExGDfvn0wMDCAQqHAvn370Lx5c4wYMQK1atVCv379EBMTAwcHh9cfxAIoRElOyslIcnIyVCoVkpKSYG1tretyiIj0iuvHe3VdgpY/g1ojOjoabm5uMDU11XU5VMZevHiR7/NdnM9vHpkhIiIiWWOYISIiIlljmCEiIiJZY5ghIiIiWWOYISIivVPO702h/6+0nmeGGSIi0hs536L77NkzHVdCb0LO8/zqtycXF78BmIiI9IahoSFsbGyk3zQyNzfP9+v+Sb6EEHj27BkSEhJgY2MDQ0PD11ofwwwREekVR0dHAJACDZVfNjY20vP9OhhmiIhIrygUCqjVatjb2yMjI0PX5VAZMTY2fu0jMjkYZoiISC8ZGhqW2ocdlW+8AJiIiIhkjWGGiIiIZI1hhoiIiGSNYYaIiIhkjWGGiIiIZI1hhoiIiGSNYYaIiIhkjWGGiIiIZI1hhoiIiGRNp2Fm1apVqF+/PqytrWFtbQ1fX1/s379fmj9s2DAoFAqtR5MmTXRYMREREekbnf6cQbVq1bBo0SLUrFkTALBx40Z0794dFy5cQL169QAAHTp0QGhoqLSMiYmJTmolIiIi/aTTMNO1a1et6f/+979YtWoVTp8+LYUZpVJZKr+oSUREROWT3lwzk5WVhbCwMKSlpcHX11dqP3bsGOzt7VGrVi2MHj260J+E12g0SE5O1noQERFR+aXzMHPlyhVYWlpCqVRi7Nix2LVrF+rWrQsA6NixI3744QccPXoUy5YtQ1RUFFq1agWNRpPv+oKDg6FSqaSHs7Pzm9oVIiIi0gGFEELosoD09HTExsbi6dOn2LFjB7799ltERkZKgebf4uLi4OLigrCwMPj7++e5Po1GoxV2kpOT4ezsjKSkJFhbW5fZfhARyZHrx3t1XYKWmEWddV0C6Ynk5GSoVKoifX7r9JoZ4OUFvTkXADdq1AhRUVH48ssvsWbNmlx91Wo1XFxccOvWrXzXp1QqoVQqy6xeIiIi0i86P830KiFEvqeREhMTcf/+fajV6jdcFREREekrnR6ZmTVrFjp27AhnZ2ekpKQgLCwMx44dw4EDB5CamoqgoCD06tULarUaMTExmDVrFipXroyePXvqsmwiIiLSIzoNMw8fPsTgwYMRFxcHlUqF+vXr48CBA2jbti2eP3+OK1euYNOmTXj69CnUajVatmyJbdu2wcrKSpdlExERkR7RaZhZv359vvPMzMxw8ODBN1gNERERyZHeXTNDREREVBwMM0RERCRrOr81m4iootC373TRR/o4RvzuG/3HIzNEREQkawwzREREJGsMM0RERCRrDDNEREQkawwzREREJGsMM0RERCRrDDNEREQkawwzREREJGsMM0RERCRrDDNEREQkawwzREREJGsMM0RERCRrDDNEREQkawwzREREJGsMM0RERCRrDDNEREQkawwzREREJGsMM0RERCRrDDNEREQkawwzREREJGsMM0RERCRrDDNEREQkawwzREREJGsMM0RERCRrDDNEREQkawwzREREJGsMM0RERCRrDDNEREQkawwzREREJGs6DTOrVq1C/fr1YW1tDWtra/j6+mL//v3SfCEEgoKC4OTkBDMzM7Ro0QJ//PGHDismIiIifaPTMFOtWjUsWrQIZ8+exdmzZ9GqVSt0795dCixLlizB8uXLsWLFCkRFRcHR0RFt27ZFSkqKLssmIiIiPaLTMNO1a1d06tQJtWrVQq1atfDf//4XlpaWOH36NIQQCAkJwezZs+Hv7w9PT09s3LgRz549w5YtW3RZNhEREekRvblmJisrC2FhYUhLS4Ovry+io6MRHx+Pdu3aSX2USiX8/Pxw8uTJfNej0WiQnJys9SAiIqLyS+dh5sqVK7C0tIRSqcTYsWOxa9cu1K1bF/Hx8QAABwcHrf4ODg7SvLwEBwdDpVJJD2dn5zKtn4iIiHRL52HGw8MDFy9exOnTp/Hhhx9i6NChuHbtmjRfoVBo9RdC5Gr7t5kzZyIpKUl63L9/v8xqJyIiIt0z0nUBJiYmqFmzJgCgUaNGiIqKwpdffokZM2YAAOLj46FWq6X+CQkJuY7W/JtSqYRSqSzboomIiEhv6PzIzKuEENBoNHBzc4OjoyPCw8Oleenp6YiMjETTpk11WCERERHpE50emZk1axY6duwIZ2dnpKSkICwsDMeOHcOBAwegUCgwadIkLFy4EO7u7nB3d8fChQthbm6OAQMG6LJsIiIi0iM6DTMPHz7E4MGDERcXB5VKhfr16+PAgQNo27YtAGD69Ol4/vw5AgIC8OTJE/j4+ODQoUOwsrLSZdlERESkRxRCCKHrIspScnIyVCoVkpKSYG1tretyiKgCc/14r65LoBKIWdRZ1yVUSMX5/Na7a2aIiIiIioNhhoiIiGSNYYaIiIhkjWGGiIiIZI1hhoiIiGSNYYaIiIhkjWGGiIiIZI1hhoiIiGSNYYaIiIhkjWGGiIiIZE2nv81ERJRLkErXFRRdUJKuKyAi8MgMERERyRzDDBEREckawwwRERHJGsMMERERyRrDDBEREckawwwRERHJGsMMERERyRrDDBEREckawwwRERHJGsMMERERyRrDDBEREckawwwRERHJGsMMERERyRrDDBEREckawwwRERHJGsMMERERyRrDDBEREckawwwRERHJGsMMERERyRrDDBEREckawwwRERHJmk7DTHBwMBo3bgwrKyvY29ujR48euHHjhlafYcOGQaFQaD2aNGmio4qJiIhI35QozERHR5fKxiMjIzFu3DicPn0a4eHhyMzMRLt27ZCWlqbVr0OHDoiLi5Me+/btK5XtExERkfwZlWShmjVronnz5hg5ciR69+4NU1PTEm38wIEDWtOhoaGwt7fHuXPn0Lx5c6ldqVTC0dGxRNsgIiKi8q1ER2YuXbqEhg0bYsqUKXB0dMSYMWNw5syZ1y4mKSkJAGBra6vVfuzYMdjb26NWrVoYPXo0EhIS8l2HRqNBcnKy1oOIiIjKL4UQQpR04czMTPzyyy/YsGED9u/fD3d3d4wcORKDBw9GlSpVirUuIQS6d++OJ0+e4MSJE1L7tm3bYGlpCRcXF0RHR2POnDnIzMzEuXPnoFQqc60nKCgI8+bNy9WelJQEa2vr4u8kUXkQpNJ1BeVTUFKxurt+vLeMCqGyFLOos65LqJCSk5OhUqmK9Pn9WmEmh0ajwcqVKzFz5kykp6fD2NgYffv2xeLFi6FWq4u0jnHjxmHv3r349ddfUa1atXz7xcXFwcXFBWFhYfD398+zFo1GI00nJyfD2dmZYYYqNoaZssEwUyEwzOhGccLMa93NdPbsWQQEBECtVmP58uWYOnUq7ty5g6NHj+Lvv/9G9+7di7SeCRMmYM+ePYiIiCgwyACAWq2Gi4sLbt26led8pVIJa2trrQcRERGVXyW6AHj58uUIDQ3FjRs30KlTJ2zatAmdOnWCgcHLbOTm5oY1a9agdu3aBa5HCIEJEyZg165dOHbsGNzc3ArddmJiIu7fv1/kIz5ERERUvpUozKxatQojRozA8OHD873LqHr16li/fn2B6xk3bhy2bNmCn3/+GVZWVoiPjwcAqFQqmJmZITU1FUFBQejVqxfUajViYmIwa9YsVK5cGT179ixJ6URERFTOlCjM5HeK599MTEwwdOjQAvusWrUKANCiRQut9tDQUAwbNgyGhoa4cuUKNm3ahKdPn0KtVqNly5bYtm0brKysSlI6ERERlTMlCjOhoaGwtLTEf/7zH632H3/8Ec+ePSs0xOQo7NpjMzMzHDx4sCQlEhERUQVRoguAFy1ahMqVK+dqt7e3x8KFC1+7KCIiIqKiKlGYuXfvXp4X67q4uCA2Nva1iyIiIiIqqhKdZrK3t8fly5fh6uqq1X7p0iXY2dmVRl1ERFRKYkwH6LqEInN9sUXXJZAMlejITL9+/TBx4kREREQgKysLWVlZOHr0KD766CP069evtGskIiIiyleJjswsWLAA9+7dQ+vWrWFk9HIV2dnZGDJkCK+ZISIiojeqRGHGxMQE27Ztw/z583Hp0iWYmZnBy8sLLi4upV0fERERUYFKFGZy1KpVC7Vq1SqtWoiIiIiKrURhJisrCxs2bMCRI0eQkJCA7OxsrflHjx4tleKIiIiIClOiMPPRRx9hw4YN6Ny5Mzw9PaFQKEq7LiIiIqIiKVGYCQsLw/bt29GpU6fSroeIiIioWEp0a7aJiQlq1qxZ2rUQERERFVuJwsyUKVPw5ZdfFvrbSkRERERlrUSnmX799VdERERg//79qFevHoyNjbXm79y5s1SKIyIiIipMicKMjY0NevbsWdq1EBERERVbicJMaGhoaddBREREVCIlumYGADIzM3H48GGsWbMGKSkpAIAHDx4gNTW11IojIiIiKkyJjszcu3cPHTp0QGxsLDQaDdq2bQsrKyssWbIEL168wOrVq0u7TiIiIqI8lejIzEcffYRGjRrhyZMnMDMzk9p79uyJI0eOlFpxRERERIUp8d1Mv/32G0xMTLTaXVxc8Pfff5dKYURERERFUaIwk52djaysrFztf/31F6ysrF67KCIiWQhSFat7jGkZ1UFUwZXoNFPbtm0REhIiTSsUCqSmpmLu3Ln8iQMiIiJ6o0p0ZOaLL75Ay5YtUbduXbx48QIDBgzArVu3ULlyZWzdurW0ayQiIiLKV4nCjJOTEy5evIitW7fi/PnzyM7OxsiRIzFw4ECtC4KJiIiIylqJwgwAmJmZYcSIERgxYkRp1kNERERULCUKM5s2bSpw/pAhQ0pUDBEREVFxlSjMfPTRR1rTGRkZePbsGUxMTGBubs4wQ0RERG9Mie5mevLkidYjNTUVN27cQLNmzXgBMBEREb1RJf5tple5u7tj0aJFuY7aEBEREZWlUgszAGBoaIgHDx6U5iqJiIiIClSia2b27NmjNS2EQFxcHFasWIH33nuvVAojIiIiKooShZkePXpoTSsUClSpUgWtWrXCsmXLSqMuIiIioiIp8W8zEREREemDUr1mpriCg4PRuHFjWFlZwd7eHj169MCNGze0+gghEBQUBCcnJ5iZmaFFixb4448/dFQxERER6ZsSHZkJDAwsct/ly5fnOy8yMhLjxo1D48aNkZmZidmzZ6Ndu3a4du0aLCwsAABLlizB8uXLsWHDBtSqVQsLFixA27ZtcePGDf5CNxEREZUszFy4cAHnz59HZmYmPDw8AAA3b96EoaEhvL29pX4KhaLA9Rw4cEBrOjQ0FPb29jh37hyaN28OIQRCQkIwe/Zs+Pv7AwA2btwIBwcHbNmyBWPGjClJ+URERFSOlCjMdO3aFVZWVti4cSMqVaoE4OUX6Q0fPhzvv/8+pkyZUqJikpKSAAC2trYAgOjoaMTHx6Ndu3ZSH6VSCT8/P5w8eTLPMKPRaKDRaKTp5OTkEtVCRERE8lCia2aWLVuG4OBgKcgAQKVKlbBgwYIS380khEBgYCCaNWsGT09PAEB8fDwAwMHBQauvg4ODNO9VwcHBUKlU0sPZ2blE9RAREZE8lCjMJCcn4+HDh7naExISkJKSUqJCxo8fj8uXL+f5cwivnq4SQuR7CmvmzJlISkqSHvfv3y9RPURERCQPJTrN1LNnTwwfPhzLli1DkyZNAACnT5/GtGnTpGtbimPChAnYs2cPjh8/jmrVqkntjo6OAF4eoVGr1VJ7QkJCrqM1OZRKJZRKZbFrICIiInkq0ZGZ1atXo3Pnzhg0aBBcXFzg4uKCgQMHomPHjli5cmWR1yOEwPjx47Fz504cPXoUbm5uWvPd3Nzg6OiI8PBwqS09PR2RkZFo2rRpSUonIiKicqZER2bMzc2xcuVKLF26FHfu3IEQAjVr1pRupy6qcePGYcuWLfj5559hZWUlXQejUqlgZmYGhUKBSZMmYeHChXB3d4e7uzsWLlwIc3NzDBgwoCSlExERUTlTojCTIy4uDnFxcWjevDnMzMwKvJYlL6tWrQIAtGjRQqs9NDQUw4YNAwBMnz4dz58/R0BAAJ48eQIfHx8cOnSI3zFDREREAEoYZhITE9GnTx9ERERAoVDg1q1bqFGjBkaNGgUbG5si39EkhCi0j0KhQFBQEIKCgkpSKhEREZVzJbpmZvLkyTA2NkZsbCzMzc2l9r59++b6IjwiIiKislSiIzOHDh3CwYMHte48AgB3d3fcu3evVAojIiIiKooSHZlJS0vTOiKT49GjR7wtmoiIiN6oEoWZ5s2bY9OmTdK0QqFAdnY2li5dipYtW5ZacURERESFKdFppqVLl6JFixY4e/Ys0tPTMX36dPzxxx94/Pgxfvvtt9KukYiIiChfJToyU7duXVy+fBnvvvsu2rZti7S0NPj7++PChQt46623SrtGIiIionwV+8hMRkYG2rVrhzVr1mDevHllURMRERFRkRX7yIyxsTGuXr1arC/HIyIiIiorJTrNNGTIEKxfv760ayEiIiIqthJdAJyeno5vv/0W4eHhaNSoUa7fZFq+fHmpFEdERERUmGKFmbt378LV1RVXr16Ft7c3AODmzZtafXj6iYiIiN6kYoUZd3d3xMXFISIiAsDLny/46quv4ODgUCbFERERERWmWNfMvPrDkPv370daWlqpFkRERERUHCW6ADhHUX71moiIiKgsFSvMKBSKXNfE8BoZIiIi0qViXTMjhMCwYcOkH5N88eIFxo4dm+tupp07d5ZehUREREQFKFaYGTp0qNb0oEGDSrUYIiIiouIqVpgJDQ0tqzqIiIiISuS1LgAmIiIi0jWGGSIiIpI1hhkiIiKSNYYZIiIikjWGGSIiIpI1hhkiIiKSNYYZIiIikjWGGSIiIpI1hhkiIiKStWJ9AzARvSJIpesKiIgqPB6ZISIiIlljmCEiIiJZY5ghIiIiWWOYISIiIlnTaZg5fvw4unbtCicnJygUCuzevVtr/rBhw6BQKLQeTZo00U2xREREpJd0GmbS0tLQoEEDrFixIt8+HTp0QFxcnPTYt2/fG6yQiIiI9J1Ob83u2LEjOnbsWGAfpVIJR0fHN1QRERERyY3eXzNz7Ngx2Nvbo1atWhg9ejQSEhIK7K/RaJCcnKz1ICIiovJLr8NMx44d8cMPP+Do0aNYtmwZoqKi0KpVK2g0mnyXCQ4Ohkqlkh7Ozs5vsGIiIiJ60/T6G4D79u0r/dvT0xONGjWCi4sL9u7dC39//zyXmTlzJgIDA6Xp5ORkBhoiIqJyTK/DzKvUajVcXFxw69atfPsolUoolco3WBURERHpkl6fZnpVYmIi7t+/D7VaretSiIiISE/o9MhMamoqbt++LU1HR0fj4sWLsLW1ha2tLYKCgtCrVy+o1WrExMRg1qxZqFy5Mnr27KnDqomIiEif6DTMnD17Fi1btpSmc651GTp0KFatWoUrV65g06ZNePr0KdRqNVq2bIlt27bByspKVyUTERGRntFpmGnRogWEEPnOP3jw4BushoiIiORIVtfMEBEREb2KYYaIiIhkjWGGiIiIZI1hhoiIiGSNYYaIiIhkjWGGiIiIZI1hhoiIiGSNYYaIiIhkjWGGiIiIZI1hhoiIiGSNYYaIiIhkjWGGiIiIZI1hhoiIiGSNYYaIiIhkjWGGiIiIZI1hhoiIiGSNYYaIiIhkjWGGiIiIZI1hhoiIiGTNSNcFEBER6TPXj/fqugQtMYs667oEvcMjM0RERCRrDDNEREQkawwzREREJGsMM0RERCRrDDNEREQkawwzREREJGsMM0RERCRrDDNEREQkawwzREREJGsMM0RERCRrDDNEREQkawwzREREJGs6DTPHjx9H165d4eTkBIVCgd27d2vNF0IgKCgITk5OMDMzQ4sWLfDHH3/oplgiIiLSSzoNM2lpaWjQoAFWrFiR5/wlS5Zg+fLlWLFiBaKiouDo6Ii2bdsiJSXlDVdKRERE+spIlxvv2LEjOnbsmOc8IQRCQkIwe/Zs+Pv7AwA2btwIBwcHbNmyBWPGjHmTpRIREZGe0ttrZqKjoxEfH4927dpJbUqlEn5+fjh58mS+y2k0GiQnJ2s9iIiIqPzS6ZGZgsTHxwMAHBwctNodHBxw7969fJcLDg7GvHnzyrQ2KmNBKl1XQEREMqK3R2ZyKBQKrWkhRK62f5s5cyaSkpKkx/3798u6RCIiItIhvT0y4+joCODlERq1Wi21JyQk5Dpa829KpRJKpbLM6yMiIiL9oLdHZtzc3ODo6Ijw8HCpLT09HZGRkWjatKkOKyMiIiJ9otMjM6mpqbh9+7Y0HR0djYsXL8LW1hbVq1fHpEmTsHDhQri7u8Pd3R0LFy6Eubk5BgwYoMOqiYiISJ/oNMycPXsWLVu2lKYDAwMBAEOHDsWGDRswffp0PH/+HAEBAXjy5Al8fHxw6NAhWFlZ6apkIiIi0jMKIYTQdRFlKTk5GSqVCklJSbC2ttZ1OVQUvJuJqMJyfbFF1yXovZhFnXVdwhtRnM9vvb1mhoiIiKgoGGaIiIhI1hhmiIiISNYYZoiIiEjWGGaIiIhI1hhmiIiISNYYZoiIiEjWGGaIiIhI1hhmiIiISNYYZoiIiEjWdPrbTERERP8WYyqfHxLmTy/oDx6ZISIiIlljmCEiIiJZY5ghIiIiWWOYISIiIlljmCEiIiJZY5ghIiIiWWOYISIiIlljmCEiIiJZY5ghIiIiWWOYISIiIlljmCEiIiJZY5ghIiIiWWOYISIiIlljmCEiIiJZY5ghIiIiWWOYISIiIlljmCEiIiJZY5ghIiIiWWOYISIiIlljmCEiIiJZY5ghIiIiWdPrMBMUFASFQqH1cHR01HVZREREpEeMdF1AYerVq4fDhw9L04aGhjqshoiIiPSN3ocZIyMjHo0hIiKifOn1aSYAuHXrFpycnODm5oZ+/frh7t27BfbXaDRITk7WehAREVH5pddhxsfHB5s2bcLBgwexbt06xMfHo2nTpkhMTMx3meDgYKhUKunh7Oz8BismIiKiN00hhBC6LqKo0tLS8NZbb2H69OkIDAzMs49Go4FGo5Gmk5OT4ezsjKSkJFhbW7+pUul1BKl0XQERUaFcX2zRyXZjFnXWyXbftOTkZKhUqiJ9fuv9NTP/ZmFhAS8vL9y6dSvfPkqlEkql8g1WRURERLqk16eZXqXRaHD9+nWo1Wpdl0JERER6Qq/DzNSpUxEZGYno6Gj8/vvv6N27N5KTkzF06FBdl0ZERER6Qq9PM/3111/o378/Hj16hCpVqqBJkyY4ffo0XFxcdF0aERER6Qm9DjNhYWG6LoGIiIj0nF6fZiIiIiIqDMMMERERyRrDDBEREckawwwRERHJGsMMERERyRrDDBEREckawwwRERHJGsMMERERyRrDDBEREckawwwRERHJml7/nAGVoiCVrisgIqJS4PrxXl2XoCVmUWddl8AjM0RERCRvDDNEREQkawwzREREJGsMM0RERCRrDDNEREQkawwzREREJGsMM0RERCRrDDNEREQkawwzREREJGsMM0RERCRrDDNEREQkawwzREREJGsMM0RERCRrDDNEREQkawwzREREJGsMM0RERCRrRrouQPaCVLqugIiIdCDGdICuSygS1xdbdF1CmeORGSIiIpI1hhkiIiKSNYYZIiIikjVZhJmVK1fCzc0NpqameOedd3DixAldl0RERER6Qu/DzLZt2zBp0iTMnj0bFy5cwPvvv4+OHTsiNjZW16URERGRHtD7MLN8+XKMHDkSo0aNQp06dRASEgJnZ2esWrVK16URERGRHtDrMJOeno5z586hXbt2Wu3t2rXDyZMndVQVERER6RO9/p6ZR48eISsrCw4ODlrtDg4OiI+Pz3MZjUYDjUYjTSclJQEAkpOTy6ZIjSib9RIREZWCbM2zMl1/WX2+5qxXiMI/Z/U6zORQKBRa00KIXG05goODMW/evFztzs7OZVIbERGRfutTpmtXhZTp6pGSkgKVquAvqNXrMFO5cmUYGhrmOgqTkJCQ62hNjpkzZyIwMFCazs7OxuPHj2FnZ5dvAJKj5ORkODs74/79+7C2ttZ1OTrH8ciNY5IbxyQ3jkluHJPcdDEmQgikpKTAycmp0L56HWZMTEzwzjvvIDw8HD179pTaw8PD0b179zyXUSqVUCqVWm02NjZlWaZOWVtb84/tXzgeuXFMcuOY5MYxyY1jktubHpPCjsjk0OswAwCBgYEYPHgwGjVqBF9fX6xduxaxsbEYO3asrksjIiIiPaD3YaZv375ITEzEZ599hri4OHh6emLfvn1wcXHRdWlERESkB/Q+zABAQEAAAgICdF2GXlEqlZg7d26uU2oVFccjN45JbhyT3DgmuXFMctP3MVGIotzzRERERKSn9PpL84iIiIgKwzBDREREssYwQ0RERLLGMENERESyxjCjxzIzM/HJJ5/Azc0NZmZmqFGjBj777DNkZ2dLfYQQCAoKgpOTE8zMzNCiRQv88ccfOqy6dB0/fhxdu3aFk5MTFAoFdu/erTW/KPuv0WgwYcIEVK5cGRYWFujWrRv++uuvN7gXpaeg8cjIyMCMGTPg5eUFCwsLODk5YciQIXjw4IHWOsrTeACFv0b+bcyYMVAoFAgJCdFqr4hjcv36dXTr1g0qlQpWVlZo0qQJYmNjpfkVbUxSU1Mxfvx4VKtWDWZmZqhTpw5WrVql1ac8jUlwcDAaN24MKysr2Nvbo0ePHrhx44ZWHzm9vzLM6LHFixdj9erVWLFiBa5fv44lS5Zg6dKl+Prrr6U+S5YswfLly7FixQpERUXB0dERbdu2RUpKig4rLz1paWlo0KABVqxYkef8ouz/pEmTsGvXLoSFheHXX39FamoqunTpgqysrDe1G6WmoPF49uwZzp8/jzlz5uD8+fPYuXMnbt68iW7dumn1K0/jART+Gsmxe/du/P7773l+NXpFG5M7d+6gWbNmqF27No4dO4ZLly5hzpw5MDU1lfpUtDGZPHkyDhw4gM2bN+P69euYPHkyJkyYgJ9//lnqU57GJDIyEuPGjcPp06cRHh6OzMxMtGvXDmlpaVIfWb2/CtJbnTt3FiNGjNBq8/f3F4MGDRJCCJGdnS0cHR3FokWLpPkvXrwQKpVKrF69+o3W+iYAELt27ZKmi7L/T58+FcbGxiIsLEzq8/fffwsDAwNx4MCBN1Z7WXh1PPJy5swZAUDcu3dPCFG+x0OI/Mfkr7/+ElWrVhVXr14VLi4u4osvvpDmVcQx6du3r/Q+kpeKOCb16tUTn332mVabt7e3+OSTT4QQ5X9MEhISBAARGRkphJDf+yuPzOixZs2a4ciRI7h58yYA4NKlS/j111/RqVMnAEB0dDTi4+PRrl07aRmlUgk/Pz+cPHlSJzW/SUXZ/3PnziEjI0Orj5OTEzw9PSvEGCUlJUGhUEi/T1YRxyM7OxuDBw/GtGnTUK9evVzzK9qYZGdnY+/evahVqxbat28Pe3t7+Pj4aJ12qWhjArx8v92zZw/+/vtvCCEQERGBmzdvon379gDK/5gkJSUBAGxtbQHI7/2VYUaPzZgxA/3790ft2rVhbGyMhg0bYtKkSejfvz8ASL8m/uoviDs4OOT6pfHyqCj7Hx8fDxMTE1SqVCnfPuXVixcv8PHHH2PAgAHSD8NVxPFYvHgxjIyMMHHixDznV7QxSUhIQGpqKhYtWoQOHTrg0KFD6NmzJ/z9/REZGQmg4o0JAHz11VeoW7cuqlWrBhMTE3To0AErV65Es2bNAJTvMRFCIDAwEM2aNYOnpycA+b2/yuLnDCqqbdu2YfPmzdiyZQvq1auHixcvYtKkSXBycsLQoUOlfgqFQms5IUSutvKsJPtf3scoIyMD/fr1Q3Z2NlauXFlo//I6HufOncOXX36J8+fPF3v/yuuY5NxA0L17d0yePBkA8Pbbb+PkyZNYvXo1/Pz88l22vI4J8DLMnD59Gnv27IGLiwuOHz+OgIAAqNVqtGnTJt/lysOYjB8/HpcvX8avv/6aa55c3l95ZEaPTZs2DR9//DH69esHLy8vDB48GJMnT0ZwcDAAwNHREQByJeCEhIRcabo8Ksr+Ozo6Ij09HU+ePMm3T3mTkZGBPn36IDo6GuHh4dJRGaDijceJEyeQkJCA6tWrw8jICEZGRrh37x6mTJkCV1dXABVvTCpXrgwjIyPUrVtXq71OnTrS3UwVbUyeP3+OWbNmYfny5ejatSvq16+P8ePHo2/fvvj8888BlN8xmTBhAvbs2YOIiAhUq1ZNapfb+yvDjB579uwZDAy0nyJDQ0Ppf1Zubm5wdHREeHi4ND89PR2RkZFo2rTpG61VF4qy/++88w6MjY21+sTFxeHq1avlcoxygsytW7dw+PBh2NnZac2vaOMxePBgXL58GRcvXpQeTk5OmDZtGg4ePAig4o2JiYkJGjdunOs23Js3b8LFxQVAxRuTjIwMZGRkFPh+W97GRAiB8ePHY+fOnTh69Cjc3Ny05svu/fWNXm5MxTJ06FBRtWpV8b///U9ER0eLnTt3isqVK4vp06dLfRYtWiRUKpXYuXOnuHLliujfv79Qq9UiOTlZh5WXnpSUFHHhwgVx4cIFAUAsX75cXLhwQbo7pyj7P3bsWFGtWjVx+PBhcf78edGqVSvRoEEDkZmZqavdKrGCxiMjI0N069ZNVKtWTVy8eFHExcVJD41GI62jPI2HEIW/Rl716t1MQlS8Mdm5c6cwNjYWa9euFbdu3RJff/21MDQ0FCdOnJDWUdHGxM/PT9SrV09ERESIu3fvitDQUGFqaipWrlwpraM8jcmHH34oVCqVOHbsmNZ7xbNnz6Q+cnp/ZZjRY8nJyeKjjz4S1atXF6ampqJGjRpi9uzZWh9M2dnZYu7cucLR0VEolUrRvHlzceXKFR1WXboiIiIEgFyPoUOHCiGKtv/Pnz8X48ePF7a2tsLMzEx06dJFxMbG6mBvXl9B4xEdHZ3nPAAiIiJCWkd5Gg8hCn+NvCqvMFMRx2T9+vWiZs2awtTUVDRo0EDs3r1bax0VbUzi4uLEsGHDhJOTkzA1NRUeHh5i2bJlIjs7W1pHeRqT/N4rQkNDpT5yen9VCCFEWR31ISIiIiprvGaGiIiIZI1hhoiIiGSNYYaIiIhkjWGGiIiIZI1hhoiIiGSNYYaIiIhkjWGGiIiIZI1hhoh0SqFQYPfu3boug4hkjGGGiCqsDRs2wMbGpszWHxMTA4VCgYsXL5bZNoiIYYaIKqiMjAydLEtEpY9hhqgCatGiBSZMmIBJkyahUqVKcHBwwNq1a5GWlobhw4fDysoKb731Fvbv3y8tk5WVhZEjR8LNzQ1mZmbw8PDAl19+Kc1/8eIF6tWrhw8++EBqi46Ohkqlwrp16wqs59GjR+jZsyfMzc3h7u6OPXv2aM2/du0aOnXqBEtLSzg4OGDw4MF49OiRNP/AgQNo1qwZbGxsYGdnhy5duuDOnTvS/JwjJNu3b0eLFi1gamqKzZs3Y/jw4UhKSoJCoYBCoUBQUFCe9QUFBeHtt9/Gd999hxo1akCpVEIIUeh2c36JuGHDhlAoFGjRooU0LzQ0FHXq1IGpqSlq166NlStXFjhGRFSAN/5rUESkc35+fsLKykrMnz9f3Lx5U8yfP18YGBiIjh07irVr14qbN2+KDz/8UNjZ2Ym0tDQhhBDp6eni008/FWfOnBF3794VmzdvFubm5mLbtm3Sei9cuCBMTEzErl27RGZmpnjvvfdE9+7dC6wFgKhWrZrYsmWLuHXrlpg4caKwtLQUiYmJQgghHjx4ICpXrixmzpwprl+/Ls6fPy/atm0rWrZsKa3jp59+Ejt27BA3b94UFy5cEF27dhVeXl4iKytLCCGkH+F0dXUVO3bsEHfv3hX37t0TISEhwtraWvrF4JSUlDxrnDt3rrCwsBDt27cX58+fF5cuXRLZ2dmFbvfMmTMCgDh8+LCIi4uT9mnt2rVCrVZLtezYsUPY2tqKDRs2lOwJJargGGaIKiA/Pz/RrFkzaTozM1NYWFiIwYMHS21xcXECgDh16lS+6wkICBC9evXSaluyZImoXLmymDBhgnB0dBT//PNPgbUAEJ988ok0nZqaKhQKhdi/f78QQog5c+aIdu3aaS1z//59AUDcuHEjz3UmJCQIANIv/OaEmZCQEK1+oaGhQqVSFVifEC/DjLGxsUhISCiwX37bvXDhglY/Z2dnsWXLFq22+fPnC19f30JrIaLceJqJqIKqX7++9G9DQ0PY2dnBy8tLanNwcAAAJCQkSG2rV69Go0aNUKVKFVhaWmLdunWIjY3VWu+UKVPg4eGBr7/+GqGhoahcuXKxarGwsICVlZW03XPnziEiIgKWlpbSo3bt2gAgndK5c+cOBgwYgBo1asDa2lo6vfNqbY0aNSp8YPLh4uKCKlWqaLUVdbv/9s8//+D+/fsYOXKk1j4tWLBA6xQVERWdka4LICLdMDY21ppWKBRabQqFAgCQnZ0NANi+fTsmT56MZcuWwdfXF1ZWVli6dCl+//13rfUkJCTgxo0bMDQ0xK1bt9ChQ4cS1ZKz3ezsbHTt2hWLFy/OtZxarQYAdO3aFc7Ozli3bh2cnJyQnZ0NT09PpKena/W3sLAotJb85LVsUbf7bzn7tW7dOvj4+GjNMzQ0LHF9RBUZwwwRFcmJEyfQtGlTBAQESG15HUkYMWIEPD09MXr0aIwcORKtW7dG3bp1S7xdb29v7NixA66urjAyyv2WlZiYiOvXr2PNmjV4//33AQC//vprkdZtYmKCrKysEtVVlO2amJgAgNY2HBwcULVqVdy9excDBw4s0baJSBvDDBEVSc2aNbFp0yYcPHgQbm5u+P777xEVFSWdWgGAb775BqdOncLly5fh7OyM/fv3Y+DAgfj999+lD/biGjduHNatW4f+/ftj2rRpqFy5Mm7fvo2wsDCsW7cOlSpVgp2dHdauXQu1Wo3Y2Fh8/PHHRVq3q6srUlNTceTIETRo0ADm5uYwNzcv0rJF2a69vT3MzMxw4MABVKtWDaamplCpVAgKCsLEiRNhbW2Njh07QqPR4OzZs3jy5AkCAwOLPUZEFR2vmSGiIhk7diz8/f3Rt29f+Pj4IDExUesozZ9//olp06Zh5cqVcHZ2BvAy3Dx9+hRz5swp8XadnJzw22+/ISsrC+3bt4enpyc++ugjqFQqGBgYwMDAAGFhYTh37hw8PT0xefJkLF26tEjrbtq0KcaOHYu+ffuiSpUqWLJkSZHrKsp2jYyM8NVXX2HNmjVwcnJC9+7dAQCjRo3Ct99+iw0bNsDLywt+fn7YsGGDVjAkoqJTCCGErosgIiIiKikemSEiIiJZY5ghIiIiWWOYISIiIlljmCEiIiJZY5ghIiIiWWOYISIiIlljmCEiIiJZY5ghIiIiWWOYISIiIlljmCEiIiJZY5ghIiIiWWOYISIiIln7f1yJlvYL2cq5AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure()\n", "# Plot maximum heart rate\n", "# Heart disease (0 = no, 1 = yes)\n", "plt.title('maximum heart rate according to heart disease') \n", "df[df[\"target\"] == 1]['thalach'].plot.hist()\n", "# no disease\n", "df[df[\"target\"] == 0]['thalach'].plot.hist()\n", "plt.legend([\"disease\", \"no disease\"])\n", "plt.xlabel('max heart rate')" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHACAYAAACI8pP3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABH70lEQVR4nO3dd3QU5f7H8c8mpFeIpGmoUqWDIlFMFAjSsYGAIFUwKAIiykUhKBKJgl5BxEaxAHotiPeCEgXpHUGaIBAglBgpJhBCAsnz+8OT/blpgAYySd6vc+Yc9plnZr4zs5P9MDM7azPGGAEAAFiIU3EXAAAAkBsBBQAAWA4BBQAAWA4BBQAAWA4BBQAAWA4BBQAAWA4BBQAAWA4BBQAAWA4BBQAAWA4BpZSYM2eObDabNm/enO/4jh07qkqVKte3qL9YvHixYmJirrh/3759ZbPZ7IOXl5eqVKmizp07a/bs2crIyMgzTWRkpCIjI4uu6BKmb9++efaxzWa7qu0uXf2+KmhZl3tP/h3Hjx9XTEyMtm3blmdcTEyMbDZbkS2rrMp9HB06dEg2m01z5sy57rUUtr//qcTEREVHR6tmzZry8PBQhQoVVL9+fQ0aNEiJiYlFvjxcvXLFXQDKhsWLF+utt966qg8+Dw8PLVu2TJKUnp6uxMRELVmyRIMGDdKUKVP07bff6qabbrL3nzFjRlGXXeKtW7fOYRtdib+zr/7usq7W8ePHNWHCBFWpUkWNGjVyGDdw4EDde++913T5ZVFISIjWrVun6tWrX/dlF7a//4mjR4+qSZMm8vf319NPP61atWopJSVFu3fv1meffaaDBw8qLCysyJaHv4eAgmvq/Pnz8vT0/FvTOjk56fbbb3do69Onj/r166eOHTvqwQcf1Pr16+3j6tat+49qLY1yb7+iZozRhQsX5OHhcc2XdTk33XTTNQ9IpUF6errc3d2v+GyTm5tbse/bovbee+/p5MmT2rhxo6pWrWpv79q1q/71r38pOzu7GKtDDi7xlGHGGM2YMUONGjWSh4eHypcvrwcffFAHDx506BcfH68uXbropptukru7u26++WYNHjxYJ0+edOiXc4p969atevDBB1W+fHlVr15dffv21VtvvSVJDpdtDh069LfqjoqK0qBBg7RhwwatXLnS3p7fJZ63335bDRs2lLe3t3x8fFS7dm3961//cuiTlJSkwYMH66abbpKrq6uqVq2qCRMm6NKlSw79JkyYoObNm6tChQry9fVVkyZN9MEHHyj3720uW7ZMkZGRCggIkIeHhypVqqQHHnhA58+ft/fJzMzUxIkTVbt2bbm5ualixYrq16+ffv/99yvaBnPmzFGtWrXk5uamOnXq6MMPP8y3X+7LLufPn9eoUaNUtWpVubu7q0KFCmrWrJnmz58vSZfdVzabTU888YRmzpypOnXqyM3NTXPnzs13WTnOnDmjfv36qUKFCvLy8lKnTp3yvMeqVKmivn375pn2r/v0xx9/1K233ipJ6tevn722nGXmd4knOztbcXFx9u0cGBioPn366OjRo3mWU69ePW3atEktW7aUp6enqlWrpldeeeWKPqzeeust3XXXXQoMDJSXl5fq16+vuLg4Xbx4MU/fb7/9Vq1atZKfn588PT1Vp04dxcbGOvTZsGGDOnXqpICAALm7u6t69eoaPny4Q5/Vq1erVatW8vHxkaenp8LDw/W///3PoU/OZbalS5eqf//+qlixojw9PZWRkSFjjOLi4lS5cmW5u7urSZMmWrJkSZ5687vEk7Otd+3apR49esjPz09BQUHq37+/UlJSHKb/448/NGDAAFWoUEHe3t7q0KGDDh48eNnLj5fb35K0aNEitWjRQp6envLx8VGbNm20bt26AueZ49SpU3JyclJgYGC+452cHD8aN2/erM6dO6tChQpyd3dX48aN9dlnn9nHnzx5UmFhYQoPD3fY57t375aXl5d69+592ZqQF2dQSpmsrKw8H6yS8nyIStLgwYM1Z84cDRs2TJMnT9bp06f14osvKjw8XNu3b1dQUJAk6cCBA2rRooUGDhwoPz8/HTp0SFOnTtWdd96pHTt2yMXFxWG+999/vx5++GENGTJEaWlpqlevntLS0vT55587/PEICQn52+vZuXNnzZgxQytXrtRdd92Vb58FCxYoOjpaTz75pF577TU5OTlp//792r17t71PUlKSbrvtNjk5OWncuHGqXr261q1bp4kTJ+rQoUOaPXu2ve+hQ4c0ePBgVapUSZK0fv16Pfnkkzp27JjGjRtn79OhQwe1bNlSs2bNkr+/v44dO6Zvv/1WmZmZ8vT0VHZ2trp06aJVq1Zp9OjRCg8P1+HDhzV+/HhFRkZq8+bN8vDwKHDd58yZo379+qlLly6aMmWKUlJSFBMTo4yMjDx/WHMbOXKkPvroI02cOFGNGzdWWlqadu7cqVOnTkmSXnjhhcvuq4ULF2rVqlUaN26cgoODC/wjn2PAgAFq06aN5s2bp8TERD3//POKjIzUzz//LH9//0Kn/asmTZpo9uzZ6tevn55//nl16NBBkgo9a/L444/r3Xff1RNPPKGOHTvq0KFDeuGFF/Tjjz9q69atuuGGG+x9k5KS1KtXLz399NMaP368vvrqK40ZM0ahoaHq06dPobUdOHBAPXv2VNWqVeXq6qrt27fr5Zdf1i+//KJZs2bZ+33wwQcaNGiQIiIiNHPmTAUGBmrfvn3auXOnvc93332nTp06qU6dOpo6daoqVaqkQ4cOaenSpfY+K1asUJs2bdSgQQN98MEHcnNz04wZM9SpUyfNnz9f3bt3d6ivf//+6tChgz766COlpaXJxcVFEyZM0IQJEzRgwAA9+OCDSkxM1KBBg5SVlaVatWpd0T554IEH1L17dw0YMEA7duzQmDFjJMm+ztnZ2erUqZM2b96smJgYNWnSROvWrbuiS3GX29/z5s1Tr169FBUVpfnz5ysjI0NxcXGKjIzUDz/8oDvvvLPAebdo0UJvvfWW7r//fo0cOVItWrSQr69vvn2XL1+ue++9V82bN9fMmTPl5+enBQsWqHv37jp//rz69u2rG264QQsWLFBkZKSeffZZTZ06VefPn9dDDz2kSpUqaebMmVe0PZGLQakwe/ZsI6nQoXLlyvb+69atM5LMlClTHOaTmJhoPDw8zOjRo/NdTnZ2trl48aI5fPiwkWS+/vpr+7jx48cbSWbcuHF5phs6dKi5mrfbo48+ary8vAocv2fPHiPJPP744/a2iIgIExERYX/9xBNPGH9//0KXM3jwYOPt7W0OHz7s0P7aa68ZSWbXrl35TpeVlWUuXrxoXnzxRRMQEGCys7ONMcZ8/vnnRpLZtm1bgcucP3++kWS++OILh/ZNmzYZSWbGjBkFTpuVlWVCQ0NNkyZN7Ms0xphDhw4ZFxcXh31sjDGSzPjx4+2v69WrZ7p27Vrg/I0pfF9JMn5+fub06dP5jvvrsnLek/fdd59DvzVr1hhJZuLEifa2ypUrm0cffTTPPHPv05xtNHv27Dx9c95/OXLeI9HR0Q79NmzYYCSZf/3rXw7LkWQ2bNjg0Ldu3bqmbdu2eZZVmJz3xocffmicnZ3t2+rs2bPG19fX3HnnnQ77Lrfq1aub6tWrm/T09AL73H777SYwMNCcPXvW3nbp0iVTr149c9NNN9nnn7MP+vTp4zD9mTNnjLu7e4H75q/bPCEhIc82z9nWcXFxDtNHR0cbd3d3+/L/97//GUnm7bffdugXGxub5/2Sn4L2d85xUL9+fZOVlWVvP3v2rAkMDDTh4eGFzjc7O9sMHjzYODk5GUnGZrOZOnXqmBEjRpiEhASHvrVr1zaNGzc2Fy9edGjv2LGjCQkJcVj+5MmTjSTz1VdfmUcffdR4eHiYn3/+udBaUDAu8ZQyH374oTZt2pRnyP2/if/+97+y2Wx65JFHdOnSJfsQHByshg0b6scff7T3TU5O1pAhQxQWFqZy5crJxcVFlStXliTt2bMnTw0PPPDANV1HKf8zQrnddttt+uOPP9SjRw99/fXXeS5JSX9uh7vvvluhoaEO26Fdu3aS/vyfao5ly5apdevW8vPzk7Ozs1xcXDRu3DidOnVKycnJkqRGjRrJ1dVVjz32mObOnZvnUkbOMv39/dWpUyeHZTZq1EjBwcEO2z63vXv36vjx4+rZs6fD5YzKlSsrPDz8irbJkiVL9Nxzz+nHH39Uenr6ZafJ7Z577lH58uWvuH+vXr0cXoeHh6ty5cpavnz5VS/7auTMP/elo9tuu0116tTRDz/84NAeHBys2267zaGtQYMGOnz48GWX9dNPP6lz584KCAiwvzf69OmjrKws7du3T5K0du1apaamKjo6usD7P/bt26cDBw5owIABcnd3z7dPWlqaNmzYoAcffFDe3t72dmdnZ/Xu3VtHjx7V3r17HabJfUyuW7dOFy5cKHDfXKnOnTs7vG7QoIEuXLhgPx5yjp9u3bo59OvRo8cVLyM/OcdB7969Hc4aent764EHHtD69esdLqnmZrPZNHPmTB08eFAzZsxQv379dPHiRb3++uu65ZZb7HXv379fv/zyi307/fV4bd++vU6cOOGwrZ955hl16NBBPXr00Ny5czVt2jTVr1//H61rWUZAKWXq1KmjZs2a5Rn8/Pwc+v32228yxigoKEguLi4Ow/r16+0f5tnZ2YqKitKXX36p0aNH64cfftDGjRvtN6fm9wH3Ty7dXKmcD43Q0NAC+/Tu3VuzZs3S4cOH9cADDygwMFDNmzdXfHy8vc9vv/2mb775Js82uOWWWyTJvh02btyoqKgoSX/eYLdmzRpt2rRJY8eOlfT/26F69er6/vvvFRgYqKFDh6p69eqqXr26/v3vfzss848//pCrq2ue5SYlJeUbpHLkXIoJDg7OMy6/ttzefPNNPfvss1q4cKHuvvtuVahQQV27dtWvv/562WlzXO3+LajWnHW5VnLmn1+9oaGheZYfEBCQp5+bm9tlQ9yRI0fUsmVLHTt2TP/+97+1atUqbdq0yX4vT870OfcXFXZJ6kr6nDlzRsaYAtdLUp51y933n76PcuTeZm5ubpL+f51PnTqlcuXKqUKFCg79ci4f/12X27fZ2dk6c+bMZedTuXJlPf744/rggw/066+/6tNPP9WFCxf0zDPPSPrzWJWkUaNG5TlWo6OjJcnheLXZbOrbt68uXLig4OBg7j35h7gHpYy64YYbZLPZtGrVKvsflb/Kadu5c6e2b9+uOXPm6NFHH7WP379/f4Hzvh7Poli0aJEkXfa5J/369VO/fv2UlpamlStXavz48erYsaP27dunypUr64YbblCDBg308ssv5zt9zh/8BQsWyMXFRf/9738d/me7cOHCPNO0bNlSLVu2VFZWljZv3qxp06Zp+PDhCgoK0sMPP6wbbrhBAQEB+vbbb/Ndpo+PT4Hrk/OBkJSUlGdcfm25eXl52e89+O233+xnUzp16qRffvnlstNLV79/C6r15ptvtr92d3fP99k2J0+edLhP5GrkbKsTJ07k+cA/fvz4355vbgsXLlRaWpq+/PJLh7MPuZ/dUbFiRUnKc4Pu1fYpX768nJycdOLEiTzjjh8/Lkl51i33Prvc+6ionpkUEBCgS5cu6fTp0w4h5Ureq5ebr6QCt4GTk9NVneXL0a1bN8XGxtrvCcrZjmPGjNH999+f7zR/vV/nxIkTGjp0qBo1aqRdu3Zp1KhRevPNN6+6DvyJMyhlVMeOHWWM0bFjx/I945JzWjLnD1vuEPPOO+9c1fJy/8/qn4iPj9f777+v8PDwQm+E+ysvLy+1a9dOY8eOVWZmpnbt2iXpz+2wc+dOVa9ePd/tkBNQbDabypUrJ2dnZ/s809PT9dFHHxW4TGdnZzVv3tz+P+mtW7fal3nq1CllZWXlu8zCblCsVauWQkJCNH/+fIfLXIcPH9batWuvaFvkCAoKUt++fdWjRw/t3bvXfkq8KPeVJH3yyScOr9euXavDhw87hMsqVaro559/dui3b9++PJcqrqa2e+65R5L08ccfO7Rv2rRJe/bsUatWra54HQqT3zFijNF7773n0C88PFx+fn6aOXNmgZcoa9asqerVq2vWrFn5Bjbpz/dy8+bN9eWXXzpsh+zsbH388ce66aabVLNmzUJrvv322+Xu7l7gvikqERERkqRPP/3UoX3BggVXNH1B+7tWrVq68cYbNW/ePIdtmZaWpi+++ML+zZ6C5BdsJOncuXNKTEy0H/e1atVSjRo1tH379nyP1WbNmtn/Q5GVlaUePXrIZrNpyZIlio2N1bRp0/Tll19e0boiL86glFF33HGHHnvsMfXr10+bN2/WXXfdJS8vL504cUKrV69W/fr19fjjj6t27dqqXr26nnvuORljVKFCBX3zzTcOl0muRE7gmTx5stq1aydnZ2c1aNBArq6uBU6TnZ1tv5SUkZGhI0eOaMmSJfrss89Up04dh6/55WfQoEHy8PDQHXfcoZCQECUlJSk2NlZ+fn72ry+++OKLio+PV3h4uIYNG6ZatWrpwoULOnTokBYvXqyZM2fqpptuUocOHTR16lT17NlTjz32mE6dOqXXXnstT3CbOXOmli1bpg4dOqhSpUq6cOGC/RsNrVu3liQ9/PDD+uSTT9S+fXs99dRTuu222+Ti4qKjR49q+fLl6tKli+67775818nJyUkvvfSSBg4cqPvuu0+DBg3SH3/8oZiYmCs6Nd+8eXN17NhRDRo0UPny5bVnzx599NFHDn/Q/86+KszmzZs1cOBAPfTQQ0pMTNTYsWN144032k+RS39ejnvkkUcUHR2tBx54QIcPH1ZcXJz9jEKO6tWry8PDQ5988onq1Kkjb29vhYaG5nupr1atWnrsscc0bdo0OTk5qV27dvZv8YSFhWnEiBF/a31ya9OmjVxdXdWjRw+NHj1aFy5c0Ntvv53nEoO3t7emTJmigQMHqnXr1ho0aJCCgoK0f/9+bd++XdOnT5f051eWO3XqpNtvv10jRoxQpUqVdOTIEX333Xf2QBEbG6s2bdro7rvv1qhRo+Tq6qoZM2Zo586dmj9//mXPcpUvX16jRo3SxIkTHfbNlb6PrtS9996rO+64Q08//bRSU1PVtGlTrVu3zv61+Mt966yw/R0XF6devXqpY8eOGjx4sDIyMvTqq6/qjz/+0CuvvFLofF9++WWtWbNG3bt3tz9mISEhQdOnT9epU6f06quv2vu+8847ateundq2bau+ffvqxhtv1OnTp7Vnzx5t3bpV//nPfyRJ48eP16pVq7R06VIFBwfr6aef1ooVKzRgwAA1btzY4XkruELFdnsuilTO3fqbNm3Kd3yHDh3yfMPDGGNmzZplmjdvbry8vIyHh4epXr266dOnj9m8ebO9z+7du02bNm2Mj4+PKV++vHnooYfMkSNH8tyFn3Nn/++//55nORkZGWbgwIGmYsWKxmazGUl57pb/q0cffdThG0geHh6mUqVKplOnTmbWrFkmIyMjzzS5v/Exd+5cc/fdd5ugoCDj6upqQkNDTbdu3fLcVf/777+bYcOGmapVqxoXFxdToUIF07RpUzN27Fhz7tw5h21Vq1Yt4+bmZqpVq2ZiY2PNBx984LAu69atM/fdd5+pXLmycXNzMwEBASYiIsIsWrTIYZkXL140r732mmnYsKFxd3c33t7epnbt2mbw4MHm119/LXC75Hj//fdNjRo1jKurq6lZs6aZNWuWefTRRy/7LZ7nnnvONGvWzJQvX96+HiNGjDAnT5609ylsX0kyQ4cOzbem3MvKeU8uXbrU9O7d2/j7+xsPDw/Tvn37POuYnZ1t4uLiTLVq1Yy7u7tp1qyZWbZsWZ59asyf34KqXbu2cXFxcVhm7m/xGPPntz0mT55satasaVxcXMwNN9xgHnnkEZOYmOjQLyIiwtxyyy151im/bZqfb775xr4vb7zxRvPMM8+YJUuWGElm+fLlDn0XL15sIiIijJeXl/H09DR169Y1kydPduizbt06065dO+Pn52fc3NxM9erVzYgRIxz6rFq1ytxzzz32Y/f2228333zzjUOfwv4uZGdnm9jYWBMWFmZcXV1NgwYNzDfffJNnmxf2LZ7cx3rO8v56bJ8+fdr069fP+Pv7G09PT9OmTRuzfv16I8n8+9//vuy2LWh/G2PMwoULTfPmzY27u7vx8vIyrVq1MmvWrLnsPNevX2+GDh1qGjZsaCpUqGCcnZ1NxYoVzb333msWL16cp//27dtNt27dTGBgoHFxcTHBwcHmnnvuMTNnzjTGGLN06VLj5OSU51tJp06dMpUqVTK33nprvn+zUDibMVfwdQgAAIpIzjNM1qxZc0XfPkPZREABAFwz8+fP17Fjx1S/fn05OTlp/fr1evXVV9W4cWOHr/EDuXEPCgDgmvHx8dGCBQs0ceJEpaWlKSQkRH379tXEiROLuzRYHGdQAACA5fA1YwAAYDkEFAAAYDkEFAAAYDkl8ibZ7OxsHT9+XD4+PtflseoAAOCfM8bo7NmzCg0NveyD+kpkQDl+/LjCwsKKuwwAAPA3JCYmFvqjmFIJDSg5v32QmJgoX1/fYq4GAABcidTUVIWFhRX6o6g5SmRAybms4+vrS0ABAKCEuZLbM7hJFgAAWA4BBQAAWA4BBQAAWE6JvAflSmVlZenixYvFXQauIRcXFzk7Oxd3GQCAIlYqA4oxRklJSfrjjz+KuxRcB/7+/goODuaZOABQipTKgJITTgIDA+Xp6ckHVylljNH58+eVnJwsSQoJCSnmigAARaXUBZSsrCx7OAkICCjucnCNeXh4SJKSk5MVGBjI5R4AKCVK3U2yOfeceHp6FnMluF5y9jX3GwFA6VHqAkoOLuuUHexrACh9Sm1AAQAAJRcBpQw6dOiQbDabtm3bJkn68ccfZbPZ+NYTAMAySt1NsoW63pcCjLm+y/ubwsPDdeLECfn5+RV3KQAASCprAQX5cnV1VXBwcHGXAQCAHZd4LCQyMlLDhg3T6NGjVaFCBQUHBysmJsahz5EjR9SlSxd5e3vL19dX3bp102+//VbofDdu3KjGjRvL3d1dzZo1008//eQwPvclnsOHD6tTp04qX768vLy8dMstt2jx4sX2/rt371b79u3l7e2toKAg9e7dWydPnrSP//bbb3XnnXfK399fAQEB6tixow4cOGAfn5mZqSeeeEIhISFyd3dXlSpVFBsbax+fkpKixx57TIGBgfL19dU999yj7du3X+3mBACUYAQUi5k7d668vLy0YcMGxcXF6cUXX1R8fLykPx9M1rVrV50+fVorVqxQfHy8Dhw4oO7duxc4v7S0NHXs2FG1atXSli1bFBMTo1GjRhVaw9ChQ5WRkaGVK1dqx44dmjx5sry9vSVJJ06cUEREhBo1aqTNmzfr22+/1W+//aZu3bo5LHPkyJHatGmTfvjhBzk5Oem+++5Tdna2JOnNN9/UokWL9Nlnn2nv3r36+OOPVaVKFfs6dujQQUlJSVq8eLG2bNmiJk2aqFWrVjp9+vQ/2bQAgJLElEApKSlGkklJSckzLj093ezevdukp6fnnfDPu0Ku33CVIiIizJ133unQduutt5pnn33WGGPM0qVLjbOzszly5Ih9/K5du4wks3Hjxnzn+c4775gKFSqYtLQ0e9vbb79tJJmffvrJGGPM8uXLjSRz5swZY4wx9evXNzExMfnO74UXXjBRUVEObYmJiUaS2bt3b77TJCcnG0lmx44dxhhjnnzySXPPPfeY7OzsPH1/+OEH4+vray5cuODQXr16dfPOO+/kO/9C9zlQklzvv1FWGVBmFPb5nRtnUCymQYMGDq9DQkLsj3Lfs2ePwsLCFBYWZh9ft25d+fv7a8+ePfnOb8+ePWrYsKHDg+tatGhRaA3Dhg3TxIkTdccdd2j8+PH6+eef7eO2bNmi5cuXy9vb2z7Url1bkuyXcQ4cOKCePXuqWrVq8vX1VdWqVSX9eXlKkvr27att27apVq1aGjZsmJYuXeow/3PnzikgIMBhGQkJCQ6XiQAApRs3yVqMi4uLw2ubzWa/NGKMyfehZAW154y7WgMHDlTbtm31v//9T0uXLlVsbKymTJmiJ598UtnZ2erUqZMmT56cZ7qc38Lp1KmTwsLC9N577yk0NFTZ2dmqV6+eMjMzJUlNmjRRQkKClixZou+//17dunVT69at9fnnnys7O1shISH68ccf88zf39//qtcFAFAyEVBKkLp16+rIkSNKTEy0n0XZvXu3UlJSVKdOnQKn+eijj5Senm7/3Zr169dfdllhYWEaMmSIhgwZojFjxui9997Tk08+qSZNmuiLL75QlSpVVK5c3rfPqVOntGfPHr3zzjtq2bKlJGn16tV5+vn6+qp79+7q3r27HnzwQd177706ffq0mjRpoqSkJJUrV85+XwoAoOzhEk8J0rp1azVo0EC9evXS1q1btXHjRvXp00cRERFq1qxZvtP07NlTTk5OGjBggHbv3q3FixfrtddeK3Q5w4cP13fffaeEhARt3bpVy5YtswegoUOH6vTp0+rRo4c2btyogwcPaunSperfv7+ysrJUvnx5BQQE6N1339X+/fu1bNkyjRw50mH+r7/+uhYsWKBffvlF+/bt03/+8x8FBwfL399frVu3VosWLdS1a1d99913OnTokNauXavnn39emzdvLpoNCQCwPAJKCWKz2bRw4UKVL19ed911l1q3bq1q1arp008/LXAab29vffPNN9q9e7caN26ssWPH5nt55q+ysrI0dOhQ1alTR/fee69q1aqlGTNmSJJCQ0O1Zs0aZWVlqW3btqpXr56eeuop+fn5ycnJSU5OTlqwYIG2bNmievXqacSIEXr11Vfz1DR58mQ1a9ZMt956qw4dOqTFixfLyclJNptNixcv1l133aX+/furZs2aevjhh3Xo0CEFBQX9840IACgRbObv3KRQzFJTU+Xn56eUlBT5+vo6jLtw4YISEhJUtWpVubu7F1OFuJ7Y5yg1yuoPX5a8jyH8TYV9fufGGRQAAGA5BBQAAGA5BBQAAGA5BBQAAGA5BBQAAGA5BBQAAGA5BBQAAGA5BBQAAGA5BBQAAGA5BBSLi4yM1PDhwyVJVapU0RtvvFGs9QAAcD2UqV8zvt5PkS7qpzdv2rRJXl5eRTtTAAAsqEwFlJKuYsWKxV0CAADXBZd4LCQtLU19+vSRt7e3QkJCNGXKFIfxuS/xxMTEqFKlSnJzc1NoaKiGDRtmH5eZmanRo0frxhtvlJeXl5o3b64ff/zRPv7UqVPq0aOHbrrpJnl6eqp+/fqaP3++w/I+//xz1a9fXx4eHgoICFDr1q2VlpZmHz979mzVqVNH7u7uql27tv0XjwEA+Kc4g2IhzzzzjJYvX66vvvpKwcHB+te//qUtW7aoUaNGefp+/vnnev3117VgwQLdcsstSkpK0vbt2+3j+/Xrp0OHDmnBggUKDQ3VV199pXvvvVc7duxQjRo1dOHCBTVt2lTPPvusfH199b///U+9e/dWtWrV1Lx5c504cUI9evRQXFyc7rvvPp09e1arVq1Szo9fv/feexo/frymT5+uxo0b66efftKgQYPk5eWlRx999HptMgBAaWVKoJSUFCPJpKSk5BmXnp5udu/ebdLT0/OM+/OukOs3XI2zZ88aV1dXs2DBAnvbqVOnjIeHh3nqqaeMMcZUrlzZvP7668YYY6ZMmWJq1qxpMjMz88xr//79xmazmWPHjjm0t2rVyowZM6bAGtq3b2+efvppY4wxW7ZsMZLMoUOH8u0bFhZm5s2b59D20ksvmRYtWlx2XYtaYfscKFGu9x8pqwwoMwr7/M6NMygWceDAAWVmZqpFixb2tgoVKqhWrVr59n/ooYf0xhtvqFq1arr33nvVvn17derUSeXKldPWrVtljFHNmjUdpsnIyFBAQIAkKSsrS6+88oo+/fRTHTt2TBkZGcrIyLDfhNuwYUO1atVK9evXV9u2bRUVFaUHH3xQ5cuX1++//67ExEQNGDBAgwYNss//0qVL8vPzK+pNAwAogwgoFmGu8is/YWFh2rt3r+Lj4/X9998rOjpar776qlasWKHs7Gw5Oztry5YtcnZ2dpjO29tbkjRlyhS9/vrreuONN1S/fn15eXlp+PDhyszMlCQ5OzsrPj5ea9eu1dKlSzVt2jSNHTtWGzZskKenp6Q/L/M0b97cYf65lwcAwN9BQLGIm2++WS4uLlq/fr0qVaokSTpz5oz27duniIiIfKfx8PBQ586d1blzZw0dOlS1a9fWjh071LhxY2VlZSk5OVktW7bMd9pVq1apS5cueuSRRyRJ2dnZ+vXXX1WnTh17H5vNpjvuuEN33HGHxo0bp8qVK+urr77SyJEjdeONN+rgwYPq1atXEW8JAAAIKJbh7e2tAQMG6JlnnlFAQICCgoI0duxYOTnl/0WrOXPmKCsrS82bN5enp6c++ugjeXh4qHLlygoICFCvXr3Up08fTZkyRY0bN9bJkye1bNky1a9fX+3bt9fNN9+sL774QmvXrlX58uU1depUJSUl2QPKhg0b9MMPPygqKkqBgYHasGGDfv/9d/v4mJgYDRs2TL6+vmrXrp0yMjK0efNmnTlzRiNHjrxu2w0AUDoRUCzk1Vdf1blz59S5c2f5+Pjo6aefVkpKSr59/f399corr2jkyJHKyspS/fr19c0339jvMZk9e7YmTpyop59+WseOHVNAQIBatGih9u3bS5JeeOEFJSQkqG3btvL09NRjjz2mrl272pfn6+urlStX6o033lBqaqoqV66sKVOmqF27dpKkgQMHytPTU6+++qpGjx4tLy8v1a9f3/7UWwAA/gmbudqbHywgNTVVfn5+SklJka+vr8O4CxcuKCEhQVWrVpW7u3sxVYjriX2OUuN6P+7aKkrexxD+psI+v3PjQW0AAMByCCgAAMByCCgAAMByCCgAAMBySm1AKYH3/uJvYl8DQOlT6gKKi4uLJOn8+fPFXAmul5x9nbPvAQAlX6l7Doqzs7P8/f2VnJwsSfL09JStrH51r5Qzxuj8+fNKTk6Wv78/j9kHgFKk1AUUSQoODpYke0hB6ebv72/f5wCA0qFUBhSbzaaQkBAFBgbq4sWLxV0OriEXFxfOnABAKVQqA0oOZ2dnPrwAACiBSt1NsgAAoOS76oCycuVKderUSaGhobLZbFq4cKHDeGOMYmJiFBoaKg8PD0VGRmrXrl0OfTIyMvTkk0/qhhtukJeXlzp37qyjR4/+oxUBAAClx1UHlLS0NDVs2FDTp0/Pd3xcXJymTp2q6dOna9OmTQoODlabNm109uxZe5/hw4frq6++0oIFC7R69WqdO3dOHTt2VFZW1t9fEwAAUGr8o18zttls+uqrr9S1a1dJf549CQ0N1fDhw/Xss89K+vNsSVBQkCZPnqzBgwcrJSVFFStW1EcffaTu3btLko4fP66wsDAtXrxYbdu2vexyr+bXEAGgxCirj0TgYYtlRrH9mnFCQoKSkpIUFRVlb3Nzc1NERITWrl0rSdqyZYsuXrzo0Cc0NFT16tWz98ktIyNDqampDgMAACi9ijSgJCUlSZKCgoIc2oOCguzjkpKS5OrqqvLlyxfYJ7fY2Fj5+fnZh7CwsKIsGwAAWMw1+RZP7ie3GmMu+zTXwvqMGTNGKSkp9iExMbHIagUAANZTpAEl52meuc+EJCcn28+qBAcHKzMzU2fOnCmwT25ubm7y9fV1GAAAQOlVpAGlatWqCg4OVnx8vL0tMzNTK1asUHh4uCSpadOmcnFxcehz4sQJ7dy5094HAACUbVf9JNlz585p//799tcJCQnatm2bKlSooEqVKmn48OGaNGmSatSooRo1amjSpEny9PRUz549JUl+fn4aMGCAnn76aQUEBKhChQoaNWqU6tevr9atWxfdmgEAgBLrqgPK5s2bdffdd9tfjxw5UpL06KOPas6cORo9erTS09MVHR2tM2fOqHnz5lq6dKl8fHzs07z++usqV66cunXrpvT0dLVq1Upz5szhsfQAAEDSP3wOSnHhOSgASiWeg4JSrtiegwIAAFAUCCgAAMByCCgAAMByCCgAAMByCCgAAMByCCgAAMByCCgAAMByCCgAAMByCCgAAMByCCgAAMByCCgAAMByCCgAAMByCCgAAMByCCgAAMByCCgAAMByyhV3AQCAss1mK+4KiocxxV2BtXEGBQAAWA4BBQAAWA4BBQAAWA4BBQAAWA4BBQAAWA4BBQAAWA4BBQAAWA4BBQAAWA4BBQAAWA4BBQAAWA4BBQAAWA4BBQAAWA4BBQAAWA4BBQAAWA4BBQAAWA4BBQAAWA4BBQAAWA4BBQAAWA4BBQAAWA4BBQAAWA4BBQAAWA4BBQAAWA4BBQAAWA4BBQAAWA4BBQAAWA4BBQAAWA4BBQAAWA4BBQAAWA4BBQAAWA4BBQAAWA4BBQAAWA4BBQAAWA4BBQAAWA4BBQAAWE6RB5RLly7p+eefV9WqVeXh4aFq1arpxRdfVHZ2tr2PMUYxMTEKDQ2Vh4eHIiMjtWvXrqIuBQAAlFBFHlAmT56smTNnavr06dqzZ4/i4uL06quvatq0afY+cXFxmjp1qqZPn65NmzYpODhYbdq00dmzZ4u6HAAAUAIVeUBZt26dunTpog4dOqhKlSp68MEHFRUVpc2bN0v68+zJG2+8obFjx+r+++9XvXr1NHfuXJ0/f17z5s0r6nIAAEAJVOQB5c4779QPP/ygffv2SZK2b9+u1atXq3379pKkhIQEJSUlKSoqyj6Nm5ubIiIitHbt2qIuBwAAlEDlinqGzz77rFJSUlS7dm05OzsrKytLL7/8snr06CFJSkpKkiQFBQU5TBcUFKTDhw/nO8+MjAxlZGTYX6emphZ12QAAwEKK/AzKp59+qo8//ljz5s3T1q1bNXfuXL322muaO3euQz+bzebw2hiTpy1HbGys/Pz87ENYWFhRlw0AACykyAPKM888o+eee04PP/yw6tevr969e2vEiBGKjY2VJAUHB0v6/zMpOZKTk/OcVckxZswYpaSk2IfExMSiLhsAAFhIkQeU8+fPy8nJcbbOzs72rxlXrVpVwcHBio+Pt4/PzMzUihUrFB4enu883dzc5Ovr6zAAAIDSq8jvQenUqZNefvllVapUSbfccot++uknTZ06Vf3795f056Wd4cOHa9KkSapRo4Zq1KihSZMmydPTUz179izqcgAAQAlU5AFl2rRpeuGFFxQdHa3k5GSFhoZq8ODBGjdunL3P6NGjlZ6erujoaJ05c0bNmzfX0qVL5ePjU9TlAACAEshmjDHFXcTVSk1NlZ+fn1JSUrjcA6D0KOCLAqWdTSXuY6hIlLxP33/uaj6/+S0eAABgOQQUAABgOQQUAABgOQQUAABgOQQUAABgOQQUAABgOQQUAABgOQQUAABgOQQUAABgOQQUAABgOQQUAABgOQQUAABgOQQUAABgOQQUAABgOQQUAABgOQQUAABgOQQUAABgOQQUAABgOQQUAABgOeWKuwDgSthsxV1B8TCmuCsAgOLBGRQAAGA5BBQAAGA5BBQAAGA5BBQAAGA5BBQAAGA5BBQAAGA5BBQAAGA5BBQAAGA5BBQAAGA5BBQAAGA5BBQAAGA5BBQAAGA5BBQAAGA5BBQAAGA5BBQAAGA5BBQAAGA5BBQAAGA5BBQAAGA5BBQAAGA5BBQAAGA5BBQAAGA5BBQAAGA5BBQAAGA5BBQAAGA5BBQAAGA5BBQAAGA5BBQAAGA5BBQAAGA5BBQAAGA5BBQAAGA5BBQAAGA51ySgHDt2TI888ogCAgLk6empRo0aacuWLfbxxhjFxMQoNDRUHh4eioyM1K5du65FKQAAoAQq8oBy5swZ3XHHHXJxcdGSJUu0e/duTZkyRf7+/vY+cXFxmjp1qqZPn65NmzYpODhYbdq00dmzZ4u6HAAAUALZjDGmKGf43HPPac2aNVq1alW+440xCg0N1fDhw/Xss89KkjIyMhQUFKTJkydr8ODBl11Gamqq/Pz8lJKSIl9f36IsHxZlsxV3BcWjaI9OWF4ZfaPbVDbf6GXx+L6az+8iP4OyaNEiNWvWTA899JACAwPVuHFjvffee/bxCQkJSkpKUlRUlL3Nzc1NERERWrt2bVGXAwAASqAiDygHDx7U22+/rRo1aui7777TkCFDNGzYMH344YeSpKSkJElSUFCQw3RBQUH2cbllZGQoNTXVYQAAAKVXuaKeYXZ2tpo1a6ZJkyZJkho3bqxdu3bp7bffVp8+fez9bLlOZRpj8rTliI2N1YQJE4q6VAAAYFFFfgYlJCREdevWdWirU6eOjhw5IkkKDg6WpDxnS5KTk/OcVckxZswYpaSk2IfExMSiLhsAAFhIkQeUO+64Q3v37nVo27dvnypXrixJqlq1qoKDgxUfH28fn5mZqRUrVig8PDzfebq5ucnX19dhAAAApVeRX+IZMWKEwsPDNWnSJHXr1k0bN27Uu+++q3fffVfSn5d2hg8frkmTJqlGjRqqUaOGJk2aJE9PT/Xs2bOoywEAACVQkQeUW2+9VV999ZXGjBmjF198UVWrVtUbb7yhXr162fuMHj1a6enpio6O1pkzZ9S8eXMtXbpUPj4+RV0OAAAogYr8OSjXA89BKXvK6OMhyuRzEsq0MvpG5zkoZUexPgcFAADgnyKgAAAAyyGgAAAAyyGgAAAAyyGgAAAAyyGgAAAAyyGgAAAAyyGgAAAAyyGgAAAAyyGgAAAAyyGgAAAAyyGgAAAAyyGgAAAAyyGgAAAAyyGgAAAAyyGgAAAAyyGgAAAAyyGgAAAAyyGgAAAAyyGgAAAAyyGgAAAAyyGgAAAAyyGgAAAAyyGgAAAAyyGgAAAAyyGgAAAAyyGgAAAAyyGgAAAAyyGgAAAAyyGgAAAAyyGgAAAAyyGgAAAAyyGgAAAAyyGgAAAAyyGgAAAAyyGgAAAAyyGgAAAAyyGgAAAAyyGgAAAAyyGgAAAAyyGgAAAAyyGgAAAAyyGgAAAAyyGgAAAAyyGgAAAAyyGgAAAAyyGgAAAAyyGgAAAAyyGgAAAAyyGgAAAAyyGgAAAAy7nmASU2NlY2m03Dhw+3txljFBMTo9DQUHl4eCgyMlK7du261qUAAIAS4poGlE2bNundd99VgwYNHNrj4uI0depUTZ8+XZs2bVJwcLDatGmjs2fPXstyAABACXHNAsq5c+fUq1cvvffeeypfvry93RijN954Q2PHjtX999+vevXqae7cuTp//rzmzZt3rcoBAAAlyDULKEOHDlWHDh3UunVrh/aEhAQlJSUpKirK3ubm5qaIiAitXbs233llZGQoNTXVYQAAAKVXuWsx0wULFmjr1q3atGlTnnFJSUmSpKCgIIf2oKAgHT58ON/5xcbGasKECUVfKAAAsKQiP4OSmJiop556Sh9//LHc3d0L7Gez2RxeG2PytOUYM2aMUlJS7ENiYmKR1gwAAKylyM+gbNmyRcnJyWratKm9LSsrSytXrtT06dO1d+9eSX+eSQkJCbH3SU5OznNWJYebm5vc3NyKulQAAGBRRX4GpVWrVtqxY4e2bdtmH5o1a6ZevXpp27ZtqlatmoKDgxUfH2+fJjMzUytWrFB4eHhRlwMAAEqgIj+D4uPjo3r16jm0eXl5KSAgwN4+fPhwTZo0STVq1FCNGjU0adIkeXp6qmfPnkVdDgAAKIGuyU2ylzN69Gilp6crOjpaZ86cUfPmzbV06VL5+PgURzkAAMBibMYYU9xFXK3U1FT5+fkpJSVFvr6+xV0OroMC7p8u9Ure0Yl/pIy+0W0qm2/0snh8X83nN7/FAwAALIeAAgAALIeAAgAALIeAAgAALIeAAgAALIeAAgAALIeAAgAALIeAAgAALIeAAgAALIeAAgAALIeAAgAALIeAAgAALIeAAgAALIeAAgAALIeAAgAALIeAAgAALIeAAgAALIeAAgAALIeAAgAALIeAAgAALIeAAgAALIeAAgAALIeAAgAALIeAAgAALIeAAgAALIeAAgAALIeAAgAALIeAAgAALIeAAgAALIeAAgAALIeAAgAALIeAAgAALIeAAgAALIeAAgAALIeAAgAALIeAAgAALIeAAgAALIeAAgAALIeAAgAALIeAAgAALIeAAgAALIeAAgAALIeAAgAALKdccReAq2SzFXcFxcQUdwEAgOuIMygAAMByCCgAAMByCCgAAMByCCgAAMByCCgAAMByCCgAAMByCCgAAMByijygxMbG6tZbb5WPj48CAwPVtWtX7d2716GPMUYxMTEKDQ2Vh4eHIiMjtWvXrqIuBQAAlFBFHlBWrFihoUOHav369YqPj9elS5cUFRWltLQ0e5+4uDhNnTpV06dP16ZNmxQcHKw2bdro7NmzRV0OAAAogWzGmGv6iM7ff/9dgYGBWrFihe666y4ZYxQaGqrhw4fr2WeflSRlZGQoKChIkydP1uDBgy87z9TUVPn5+SklJUW+vr7XsnzrKaNPkrWV0SfJXtujE5bD8V2mlMXj+2o+v6/5PSgpKSmSpAoVKkiSEhISlJSUpKioKHsfNzc3RUREaO3atfnOIyMjQ6mpqQ4DAAAova5pQDHGaOTIkbrzzjtVr149SVJSUpIkKSgoyKFvUFCQfVxusbGx8vPzsw9hYWHXsmwAAFDMrmlAeeKJJ/Tzzz9r/vz5ecbZcp3KNMbkacsxZswYpaSk2IfExMRrUi8AALCGa/Zrxk8++aQWLVqklStX6qabbrK3BwcHS/rzTEpISIi9PTk5Oc9ZlRxubm5yc3O7VqUCAACLKfIzKMYYPfHEE/ryyy+1bNkyVa1a1WF81apVFRwcrPj4eHtbZmamVqxYofDw8KIuBwAAlEBFfgZl6NChmjdvnr7++mv5+PjY7yvx8/OTh4eHbDabhg8frkmTJqlGjRqqUaOGJk2aJE9PT/Xs2bOoywEAACVQkQeUt99+W5IUGRnp0D579mz17dtXkjR69Gilp6crOjpaZ86cUfPmzbV06VL5+PgUdTkAAKAEuubPQbkWeA5K2cNzElAmcHyXKWXx+LbUc1AAAACuFgEFAABYDgEFAABYDgEFAABYDgEFAABYDgEFAABYDgEFAABYDgEFAABYDgEFAABYDgEFAABYDgEFAABYDgEFAABYDgEFAABYDgEFAABYDgEFAABYDgEFAABYDgEFAABYDgEFAABYDgEFAABYDgEFAABYDgEFAABYDgEFAABYDgEFAABYDgEFAABYDgEFAABYDgEFAABYDgEFAABYDgEFAABYDgEFAABYDgEFAABYDgEFAABYDgEFAABYDgEFAABYDgEFAABYDgEFAABYDgEFAABYDgEFAABYDgEFAABYDgEFAABYDgEFAABYDgEFAABYDgEFAABYDgEFAABYDgEFAABYDgEFAABYDgEFAABYDgEFAABYDgEFAABYDgEFAABYDgEFAABYTrEGlBkzZqhq1apyd3dX06ZNtWrVquIsBwAAWESxBZRPP/1Uw4cP19ixY/XTTz+pZcuWateunY4cOVJcJQEAAIuwGWNMcSy4efPmatKkid5++217W506ddS1a1fFxsYWOm1qaqr8/PyUkpIiX1/fa12qtdhsxV1BsbCpWN6mxa54jk4UG47vMqUsHt9X8/ldLGdQMjMztWXLFkVFRTm0R0VFae3atcVREgAAsJByxbHQkydPKisrS0FBQQ7tQUFBSkpKytM/IyNDGRkZ9tcpKSmS/kxiKCvK5r7mLY6yoWy+0cvi8Z3zuX0lF2+KJaDksOU6nWmMydMmSbGxsZowYUKe9rCwsGtWG6zGr7gLKBZ+ZXO1UeaUzTd6WT6+z549K7/LbIBiCSg33HCDnJ2d85wtSU5OznNWRZLGjBmjkSNH2l9nZ2fr9OnTCggIyDfQoHRJTU1VWFiYEhMTy949R0Apx/FdthhjdPbsWYWGhl62b7EEFFdXVzVt2lTx8fG677777O3x8fHq0qVLnv5ubm5yc3NzaPP397/WZcJifH19+QMGlFIc32XH5c6c5Ci2SzwjR45U79691axZM7Vo0ULvvvuujhw5oiFDhhRXSQAAwCKKLaB0795dp06d0osvvqgTJ06oXr16Wrx4sSpXrlxcJQEAAIso1ptko6OjFR0dXZwloARwc3PT+PHj81zmA1DycXyjIMX2oDYAAICC8GOBAADAcggoAADAcggoAADAcggoAADAcggoAADAcor1a8ZAfo4ePaq3335ba9euVVJSkmw2m4KCghQeHq4hQ4bwG0wAUAbwNWNYyurVq9WuXTuFhYUpKipKQUFBMsYoOTlZ8fHxSkxM1JIlS3THHXcUd6kAroHExESNHz9es2bNKu5SUMwIKLCUW2+9VXfeeadef/31fMePGDFCq1ev1qZNm65zZQCuh+3bt6tJkybKysoq7lJQzAgosBQPDw9t27ZNtWrVynf8L7/8osaNGys9Pf06VwagKCxatKjQ8QcPHtTTTz9NQAH3oMBaQkJCtHbt2gIDyrp16xQSEnKdqwJQVLp27SqbzabC/m9ss9muY0WwKgIKLGXUqFEaMmSItmzZojZt2igoKEg2m01JSUmKj4/X+++/rzfeeKO4ywTwN4WEhOitt95S165d8x2/bds2NW3a9PoWBUsioMBSoqOjFRAQoNdff13vvPOO/TSvs7OzmjZtqg8//FDdunUr5ioB/F1NmzbV1q1bCwwolzu7grKDe1BgWRcvXtTJkyclSTfccINcXFyKuSIA/9SqVauUlpame++9N9/xaWlp2rx5syIiIq5zZbAaAgoAALAcniQLAAAsh4ACAAAsh4ACAAAsh4ACWNQHH3ygqKio4i7DkubMmSN/f//iLsOSfvzxR9lsNv3xxx9XPM2tt96qL7/88toVBfwNBBSgEMnJyRo8eLAqVaokNzc3BQcHq23btlq3bt01XW5GRobGjRunF154waH9iy++UN26deXm5qa6devqq6++uqZ1HDp0SDabLc/wyCOPXNPlFpennnpKTZs2lZubmxo1anRdlhkZGSmbzaZXXnklz7j27dvLZrMpJibmmtbwwgsv6LnnnlN2dvY1XQ5wNQgoQCEeeOABbd++XXPnztW+ffu0aNEiRUZG6vTp09d0uV988YW8vb3VsmVLe9u6devUvXt39e7dW9u3b1fv3r3VrVs3bdiw4ZrWIknff/+9Tpw4YR/eeuuta77M4mCMUf/+/dW9e/frutywsDDNnj3boe348eNatmzZdXlycocOHZSSkqLvvvvumi8LuFIEFKAAf/zxh1avXq3Jkyfr7rvvVuXKlXXbbbdpzJgx6tChg71fSkqKHnvsMQUGBsrX11f33HOPtm/fLkn6/fffFRwcrEmTJtn7b9iwQa6urlq6dGmBy16wYIE6d+7s0PbGG2+oTZs2GjNmjGrXrq0xY8aoVatW1+XJugEBAQoODrYPfn5+kgpfd0mKiYlRo0aNNGvWLFWqVEne3t56/PHHlZWVpbi4OAUHByswMFAvv/yyw/KmTp2q+vXry8vLS2FhYYqOjta5c+cKrfGbb75R06ZN5e7urmrVqmnChAm6dOnSVa3nm2++qaFDh6patWpXNd0/1bFjR506dUpr1qyxt82ZM0dRUVEKDAx06Pvxxx+rWbNm8vHxUXBwsHr27Knk5ORC57927Vrddddd8vDwUFhYmIYNG6a0tDT7eGdnZ7Vv317z588v2hUD/gECClAAb29veXt7a+HChcrIyMi3jzFGHTp0UFJSkhYvXqwtW7aoSZMmatWqlU6fPq2KFStq1qxZiomJ0ebNm3Xu3Dk98sgjio6OLvT+klWrVqlZs2YObevWrcszTdu2bbV27doC53PkyBH7ehQ0DBky5Cq2ypWve44DBw5oyZIl+vbbbzV//nzNmjVLHTp00NGjR7VixQpNnjxZzz//vNavX2+fxsnJSW+++aZ27typuXPnatmyZRo9enSBtXz33Xd65JFHNGzYMO3evVvvvPOO5syZkyf4XAvt2rW77Da+HFdXV/Xq1cvhLMqcOXPUv3//PH0zMzP10ksvafv27Vq4cKESEhLUt2/fAue9Y8cOtW3bVvfff79+/vlnffrpp1q9erWeeOIJh3633XabVq1adeUrDlxrBkCBPv/8c1O+fHnj7u5uwsPDzZgxY8z27dvt43/44Qfj6+trLly44DBd9erVzTvvvGN/HR0dbWrWrGl69epl6tWrZ9LT0wtc5pkzZ4wks3LlSod2FxcX88knnzi0ffLJJ8bV1bXAeV28eNH8+uuvhQ6//fZbgdMnJCQYScbDw8N4eXnZh61bt17Ruo8fP954enqa1NRU+/i2bduaKlWqmKysLHtbrVq1TGxsbIF1fPbZZyYgIMD+evbs2cbPz8/+umXLlmbSpEkO03z00UcmJCSkwHkWZvz48aZhw4ZX1Pfo0aOX3caFiYiIME899ZTZvn278fHxMefOnTMrVqwwgYGBJjMz0zRs2NCMHz++wOk3btxoJJmzZ88aY4xZvny5kWTOnDljjDGmd+/e5rHHHnOYZtWqVcbJycnhffj1118bJycnh/0CFCd+iwcoxAMPPKAOHTpo1apVWrdunb799lvFxcXp/fffV9++fbVlyxadO3dOAQEBDtOlp6frwIED9tevvfaa6tWrp88++0ybN2+Wu7t7gctMT0+XpHz75P6VV2NMob/8Wq5cOd18881XtK6F+fTTT1WnTh3767CwML355ptXtO5VqlSRj4+P/XVQUJCcnZ3l5OTk0PbXyxTLly/XpEmTtHv3bqWmpurSpUu6cOGC0tLS5OXllae+LVu2aNOmTQ5nTLKysnThwgWdP39enp6e/2wDFOLGG28skvk0aNBANWrU0Oeff67ly5erd+/e+f68w08//aSYmBht27ZNp0+ftt/YeuTIEdWtWzdP/y1btmj//v365JNP7G3GGGVnZyshIcG+Xz08PJSdna2MjAx5eHgUyToB/wQBBbgMd3d3tWnTRm3atNG4ceM0cOBAjR8/Xn379lV2drZCQkL0448/5pnur1+DPXjwoI4fP67s7GwdPnxYDRo0KHB5AQEBstlsOnPmjEN7cHCwkpKSHNqSk5MVFBRU4LwK+tD6q0ceeUQzZ84stE9YWFieoHOl6577Q9Zms+XblvNBe/jwYbVv315DhgzRSy+9pAoVKmj16tUaMGCALl68mG992dnZmjBhgu6///484woLg0WhXbt2l700crn7Z3L0799fb731lnbv3q2NGzfmGZ+WlqaoqChFRUXp448/VsWKFXXkyBG1bdtWmZmZ+c4zOztbgwcP1rBhw/KMq1Spkv3fp0+flqenJ+EElkFAAa5S3bp1tXDhQklSkyZNlJSUpHLlyqlKlSr59s/MzFSvXr3UvXt31a5dWwMGDNCOHTsKDBaurq6qW7eudu/e7XDPSYsWLRQfH68RI0bY25YuXarw8PACaw0NDdW2bdsKXR9fX99CxxfkStb979i8ebMuXbqkKVOm2M+yfPbZZ5etZe/evUVytuhqvf/++/azXv9Uz549NWrUKDVs2DDfYPnLL7/o5MmTeuWVVxQWFibpz+1VmCZNmmjXrl2X3TY7d+5UkyZN/n7xQBEjoAAFOHXqlB566CH1799fDRo0kI+PjzZv3qy4uDh16dJFktS6dWu1aNFCXbt21eTJk1WrVi0dP35cixcvVteuXdWsWTONHTtWKSkpevPNN+Xt7a0lS5ZowIAB+u9//1vgstu2bavVq1dr+PDh9rannnpKd911lyZPnqwuXbro66+/1vfff6/Vq1cXOJ+iusSTnytZ97+jevXqunTpkqZNm6ZOnTppzZo1lz3DM27cOHXs2FFhYWF66KGH5OTkpJ9//lk7duzQxIkTr3jZ+/fv17lz55SUlKT09HR7uKtbt65cXV3znaaoLvFIUvny5XXixIkCf7m7UqVKcnV11bRp0zRkyBDt3LlTL730UqHzfPbZZ3X77bdr6NChGjRokLy8vLRnzx7Fx8dr2rRp9n6rVq3iwYCwluK+CQawqgsXLpjnnnvONGnSxPj5+RlPT09Tq1Yt8/zzz5vz58/b+6Wmpponn3zShIaGGhcXFxMWFmZ69epljhw5YpYvX27KlStnVq1aZe9/+PBh4+fnZ2bMmFHgsvfs2WM8PDzMH3/84dD+n//8x9SqVcu4uLiY2rVrmy+++KLoV/wvcm6S/emnn/IdX9i6G5P/zaaPPvqo6dKli0Nbzo2iOaZOnWpCQkKMh4eHadu2rfnwww8dbvzMfZOsMcZ8++23Jjw83Hh4eBhfX19z2223mXfffddhuREREYWub0REhJGUZ0hISCh0un8i97rnlvsm2Xnz5pkqVaoYNzc306JFC7No0SKHfZT7Jllj/ryRtk2bNsbb29t4eXmZBg0amJdfftk+/ujRo8bFxcUkJiYW8doBf5/NGGOKLR0BKFC3bt3UuHFjjRkzprhLKRUiIyMVGRl5zZ/KWhI988wzSklJ0bvvvlvcpQB2PAcFsKhXX331ip6hgcs7e/asDhw4oFGjRhV3KZYUGBh42UtFwPXGGRQAAGA5nEEBAACWQ0ABAACWQ0ABAACWQ0ABAACWQ0ABAACWQ0ABAACWQ0ABAACWQ0ABAACWQ0ABAACWQ0ABAACW83+CZ5HHqp2ebQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Plot sex and target in one histogramm via crosstab\n", "pd.crosstab(df.sex,df.target).plot(kind=\"bar\",color=['red','blue' ])\n", "plt.title('Heart Disease distribution according to Sex')\n", "plt.xlabel('Sex (0 = Female, 1 = Male)')\n", "plt.legend([\"no disease\", \"disease\"])" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "Text(0, 0.5, 'Frequency of Disease or Not')" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABNYAAAIhCAYAAACCMjckAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABg0klEQVR4nO3deZxO9f//8edl9p2xzJhmMBhbtiwJFcKUsZWiorIvIYSkfBOS3UT5WJIsRZbsFZnssu8lHyKMbbLvzDBzfn/0m+vjamaY67jGdeFxv92u2815n/c553Wd65ozzbP3OW+LYRiGAAAAAAAAANglm7MLAAAAAAAAAB5EBGsAAAAAAACACQRrAAAAAAAAgAkEawAAAAAAAIAJBGsAAAAAAACACQRrAAAAAAAAgAkEawAAAAAAAIAJBGsAAAAAAACACQRrAAAAAAAAgAkEawCA+2rKlCmyWCzaunVruuvr1aunAgUK3N+ibvPTTz+pX79+me7fokULWSwW68vPz08FChRQgwYNNHnyZCUmJqbZpnr16qpevbrjinZR/fr1szk3vr6+Cg8P1/PPP68vvvhCly9fTrNNixYt7P78T5w4oX79+mnnzp12bZfesSwWizp37mzXfu5m7NixmjJlSpr2w4cPy2KxpLvufurevbssFovq1avn1DruRep37XYFChRQixYtnFLH3V73+vP/999/q3fv3ipVqpT8/f3l7e2tqKgode3aVX/++ae1X4sWLeTv73+P78o+165dU79+/bRq1apM9U/9OUh9ZcuWTTlz5lRMTIw2bNhg9/HT+y6Y9e/re0av+/09AwC4FndnFwAAgCv56aef9J///MeucM3Hx0crVqyQJF2/fl1Hjx7VkiVL1LZtW40cOVJLly5VeHi4tf/YsWMdXbZLW7p0qYKCgpSUlKQTJ05o+fLl6tWrl4YPH67FixerTJky1r4fffSRunbtatf+T5w4of79+6tAgQIqW7Zsprczcywzxo4dq1y5cqX54ztv3rzasGGDChUqlOU1ZOTmzZv69ttvJf3zOR0/flyPPfaY0+pxpPnz5yswMPC+HrNNmzZ64YUXrMsnT55Uo0aN9M4776hp06bW9nupa/PmzapXr54Mw1Dnzp1VuXJleXp6at++ffr222/15JNP6vz58/f0Pu7FtWvX1L9/f0myK0BMPUfJycnas2eP+vfvrxo1amjDhg164oknMr2ff38G9+Kjjz5Shw4drMvbt29Xp06dNGjQINWoUcPanjt3boccDwDwYCJYAwBA//wx6Ovra2rbbNmy6amnnrJpe+utt9SyZUvVq1dPr7zyijZu3GhdV6JEiXuq9UFTvnx55cqVy7r82muvqXPnzqpWrZoaNGig/fv3y8vLS5LuS8iU+lk7M9CSJC8vrzTfm/tt4cKFOn36tOrWrasff/xRU6dO1YcffujUmtKTnJysW7duWb8nmWFPGOMo4eHhNiH64cOHJUn58uVzyGd96dIlNWzYUN7e3lq/fr3NsapXr6727dvr+++/v+fjOMPt56hq1aoqXLiwatasqbFjx2rixImZ3s+/P4N7UahQIZvrxI0bNyRJUVFRTv/ZBQC4Dm4FBQC4PMMwNHbsWJUtW1Y+Pj7KkSOHXnnlFf311182/eLi4tSwYUOFh4fL29tbhQsXVvv27XXmzBmbfqm3Cm3fvl2vvPKKcuTIoUKFCqlFixb6z3/+I0k2t/mk/nFsr+joaLVt21abNm3SmjVrrO3p3Qo6btw4lSlTRv7+/goICFCxYsXSBBwJCQlq3769wsPD5enpqcjISPXv31+3bt2y6de/f39VqlRJwcHBCgwMVLly5TRp0iQZhmHTb8WKFapevbpy5swpHx8f5cuXTy+//LKuXbtm7ZOUlKSBAweqWLFi8vLyUu7cudWyZUudPn3a1DlJVaZMGfXp00fx8fGaNWuWtT292zPnzJmjSpUqKSgoSL6+vipYsKBatWolSVq1apUqVqwoSWrZsqX1M0sdcZh6K9xvv/2m6OhoBQQEqGbNmhkeK9WECRNUpEgReXl5qUSJEpo5c6bN+oxuN0u91Tn1O1OgQAHt2bNHq1evttaWesyMbgVdt26datasqYCAAPn6+qpKlSr68ccf0z3OypUr9fbbbytXrlzKmTOnGjVqpBMnTqT7ntIzadIkeXp6avLkyYqIiNDkyZPTfE8k6b///a9ef/11hYSEyMvLS/ny5dNbb71lc6vz8ePH1a5dO0VERMjT01NhYWF65ZVX9Pfff1v7xMfH64033lCePHnk5eWl4sWLa+TIkUpJSbH2ST0vw4YN08CBAxUZGSkvLy+tXLlSkvTjjz+qbNmy8vLyUmRkpEaMGJHue/v3raCrVq2SxWLRd999pz59+igsLEyBgYGqVauW9u3bZ7OtYRgaNGiQ8ufPL29vb1WoUEFxcXEOu4170aJFqly5snx9fRUQEKDatWtn6rbHiRMnKiEhQcOGDcswPHrllVfStB04cEAxMTHy9/dXRESEevTokeY29cz+rN/punH48GHr6K3+/fvf062SqcHVkSNHJEmzZs1SdHS08ubNKx8fHxUvXly9e/fW1atXbbbL6LbgevXqaenSpSpXrpx8fHxUrFgxff3113bXdbu1a9dav1P/Nm3aNFksFm3ZskXS/65Fe/bsUc2aNeXn56fcuXOrc+fONtdcKfO/8wAAroFgDQDgFKkjUP79Su+P+vbt26tbt26qVauWFixYoLFjx2rPnj2qUqWKzR/tBw8eVOXKlTVu3DgtW7ZMffv21aZNm/T000/r5s2bafbbqFEjFS5cWHPmzNH48eP10UcfWf8o3bBhg/WVN29e0++zQYMGkmQTrP3bzJkz1bFjR1WrVk3z58/XggUL9O6779r8wZiQkKAnn3xSP//8s/r27aslS5aodevWGjx4sNq2bWuzv8OHD6t9+/aaPXu25s2bZ70V7ZNPPrHpU7duXXl6eurrr7/W0qVLNWTIEPn5+SkpKUmSlJKSooYNG2rIkCFq2rSpfvzxRw0ZMsQaMFy/ft30ecnsudmwYYNeffVVFSxYUDNnztSPP/6ovn37WsPEcuXKafLkyZKk//u//7N+Zm3atLHuIykpSQ0aNNBzzz2nhQsXWm9Ty8iiRYv0+eefa8CAAfr++++VP39+vf7666ZGAs2fP18FCxbUE088Ya1t/vz5GfZfvXq1nnvuOV28eFGTJk3Sd999p4CAANWvX98mgEzVpk0beXh4aMaMGRo2bJhWrVqlN954I1O1HTt2TMuWLVPDhg2VO3duNW/eXAcOHEjzeezatUsVK1bUxo0bNWDAAC1ZskSDBw9WYmKi9bty/PhxVaxYUfPnz1f37t21ZMkSjRo1SkFBQdbbEk+fPq0qVapo2bJl+uSTT7Ro0SLVqlVLPXv2TPe5dp9//rlWrFihESNGaMmSJSpWrJiWL1+uhg0bKiAgQDNnztTw4cM1e/Zs63cgMz788EMdOXJEX331lb788kv9+eefql+/vpKTk619+vTpoz59+uiFF17QwoUL1aFDB7Vp00b79+/P9HEyMmPGDDVs2FCBgYH67rvvNGnSJJ0/f17Vq1fXunXr7rjtsmXL5Obmpvr162f6eDdv3lSDBg1Us2ZNLVy4UK1atdJnn32moUOHWvtk9mf9bteNvHnzaunSpZKk1q1bW7/zH330kd3n6cCBA5L+d5vln3/+qZiYGE2aNElLly5Vt27dNHv27Eyfi127dqlHjx569913tXDhQpUuXVqtW7e+4/Xnbp555hk98cQT1v8hc7sxY8aoYsWK1uBf+ueziImJUc2aNbVgwQJ17txZEyZM0KuvvmqzbWZ/5wEAXIQBAMB9NHnyZEPSHV/58+e39t+wYYMhyRg5cqTNfo4ePWr4+PgYvXr1Svc4KSkpxs2bN40jR44YkoyFCxda13388ceGJKNv375ptuvUqZNhz6/H5s2bG35+fhmu37t3ryHJePvtt61t1apVM6pVq2Zd7ty5s5E9e/Y7Hqd9+/aGv7+/ceTIEZv2ESNGGJKMPXv2pLtdcnKycfPmTWPAgAFGzpw5jZSUFMMwDOP77783JBk7d+7M8JjfffedIcmYO3euTfuWLVsMScbYsWPvWHPqeT59+nS6669fv25IMurUqWNta968uc3nn/r+Lly4kOFxUuuZPHlymnXNmzc3JBlff/11uutuP5ZhGIYkw8fHx0hISLC23bp1yyhWrJhRuHDhNO/t31K/34cOHbK2Pf744zafd6pDhw6lqfupp54y8uTJY1y+fNnm+CVLljTCw8Otn1/qcTp27Gizz2HDhhmSjJMnT6Y53r8NGDDAkGQsXbrUMAzD+OuvvwyLxWK8+eabNv2ee+45I3v27MapU6cy3FerVq0MDw8P448//siwT+/evQ1JxqZNm2za3377bcNisRj79u0zDON/56VQoUJGUlKSTd9KlSoZYWFhxvXr161tly5dMoKDg9N8Hvnz5zeaN29uXV65cqUhyYiJibHpN3v2bEOSsWHDBsMwDOPcuXOGl5eX8eqrr9r0S70WpfdZZiT1vQwfPtwwjH9+HsPCwoxSpUoZycnJ1n6XL1828uTJY1SpUuWO+ytWrJgRGhqa6eOnfv9nz55t0x4TE2MULVrUupzZn/XMXDdOnz5tSDI+/vjjTNWYeo6GDh1q3Lx507hx44axbds2o2LFioYk48cff0yzTer1ffXq1YYkY9euXdZ16f1s5s+f3/D29ra5fl6/ft0IDg422rdvn6k6DeN/36E5c+ZY21J/Fnfs2GFt27x5syHJmDp1qrUt9bMYPXq0zT4//fRTQ5Kxbt06wzDM/84DADgPI9YAAE4xbdo0bdmyJc3r6aeftun3ww8/yGKx6I033rAZ2RYaGqoyZcrYzDx36tQpdejQQREREXJ3d5eHh4fy588vSdq7d2+aGl5++eUsfY+S0h2B929PPvmkLly4oNdff10LFy5Mc+uq9M95qFGjhsLCwmzOQ506dST9M9Ip1YoVK1SrVi0FBQXJzc1NHh4e6tu3r86ePatTp05JksqWLStPT0+1a9dOU6dOTfcWox9++EHZs2dX/fr1bY5ZtmxZhYaGZnrWv4xk5tykjvZo0qSJZs+erePHj5s6lj2fdc2aNRUSEmJddnNz06uvvqoDBw7o2LFjpo6fGVevXtWmTZv0yiuv2Mzk6ObmpjfffFPHjh1Lc8ti6qi/VKVLl5b0v9vnMmIYhvX2z9q1a0uSIiMjVb16dc2dO1eXLl2S9M/z6FavXq0mTZrc8QHtS5YsUY0aNVS8ePEM+6xYsUIlSpTQk08+adPeokULGYZhnQDk9vfm4eFhXb569aq2bNmiRo0aydvb29qeOqIvs+52zjZu3KjExEQ1adLEpt9TTz11zzMW79u3TydOnNCbb76pbNn+95/h/v7+evnll7Vx48Y0twXeK4vFkub8lC5d2uY7ktmf9cxcN8x6//335eHhIW9vb5UvX17x8fGaMGGCYmJiJEl//fWXmjZtqtDQUOt1rVq1apLSv77/W9myZZUvXz7rsre3t4oUKXLXn5W7ef3115UnTx6bUWtffPGFcufOnWYkmiQ1a9bMZjl1UovUW53t+Z0HAHANBGsAAKcoXry4KlSokOYVFBRk0+/vv/+WYRgKCQmRh4eHzWvjxo3WEColJUXR0dGaN2+eevXqpeXLl2vz5s3WSQPSu23xXm7xzKzUP9rCwsIy7PPmm2/q66+/1pEjR/Tyyy8rT548qlSpkuLi4qx9/v77by1evDjNOXj88cclyXoeNm/erOjoaEn/PI/p119/1ZYtW9SnTx9J/zsPhQoV0i+//KI8efKoU6dO1od0jx492uaYFy5ckKenZ5rjJiQkpBsAOvrcPPvss1qwYIFu3bqlt956S+Hh4SpZsmS6zzTKiK+vr12zMIaGhmbYdvbs2Uzvx17nz5+XYRjpfi9Tz9G/j58zZ06b5dSH+9/tNt0VK1bo0KFDaty4sS5duqQLFy7owoULatKkia5du2Y9v+fPn1dycvJdHwZ/+vTpu/Y5e/asXe/t333Pnz+vlJSUO34+mXG3c5Zax+3haqr02uyRuu+MzkNKSsodZ/TMly+fTp8+nea5Ynfi6+trE0RK/7zn1AfxS5n/Wc/MdcOsrl27asuWLdq2bZsOHjyokydPql27dpKkK1eu6JlnntGmTZs0cOBArVq1Slu2bNG8efMk3f37LqX93FPPw73e0u7l5aX27dtrxowZunDhgk6fPq3Zs2erTZs2aSbbcHd3T1PHv68tmf2dBwBwHcwKCgBwably5ZLFYtHatWvTnREwte3333/Xrl27NGXKFDVv3ty6PvU5PelJ7+HzjrZo0SJJuusDz1u2bKmWLVvq6tWrWrNmjT7++GPVq1dP+/fvV/78+ZUrVy6VLl1an376abrbp4YTM2fOlIeHh3744QebP6YXLFiQZptnnnlGzzzzjJKTk7V161Z98cUX6tatm0JCQvTaa69ZH4if+sykfwsICMjEGchYZs9Nw4YN1bBhQyUmJmrjxo0aPHiwmjZtqgIFCqhy5cp3PY69n3NCQkKGbal/FKee28TERJvv5b380ZsjRw5ly5ZNJ0+eTLMudUKC22dXvReTJk2SJMXGxio2Njbd9e3bt1dwcLDc3NzuOlIvd+7cd+2TM2dOu97bvz+3HDlyyGKx3PHzcYTUzzi9Z1klJCTc06i11H1ndB6yZcumHDlyZLj9888/r2XLlmnx4sV67bXXTNfxb/b8rN/tumFWeHi4KlSokO66FStW6MSJE1q1apV1lJokXbhwwfTxHOntt9/WkCFD9PXXX+vGjRu6deuWOnTokKbfrVu3dPbsWZtw7d/Xlsz+zgMAuA5GrAEAXFq9evVkGIaOHz+e7gi3UqVKSfrfH+H//qNjwoQJdh0vsyN+MiMuLk5fffWVqlSpkuYW14z4+fmpTp066tOnj5KSkrRnzx5J/5yH33//XYUKFUr3PKQGaxaLRe7u7nJzc7Pu8/r16/rmm28yPKabm5sqVapkvZVp+/bt1mOePXtWycnJ6R6zaNGips6L9M+DxAcNGqQCBQqkueUuI15eXqpWrZr1oes7duywtqe+T0dYvny5TaiSnJysWbNmqVChQtZRWanhyu7du222Xbx4cbp1Z6Y2Pz8/VapUSfPmzbPpn5KSom+//Vbh4eEqUqSImbdk4/z585o/f76qVq2qlStXpnk1a9ZMW7Zs0e+//y4fHx9Vq1ZNc+bMuWNoWKdOHa1cuTLNraq3q1mzpv744w/r9ytV6uyJNWrUuGPdfn5+evLJJzVv3jyb0VaXL19O97ybValSJXl5eaWZLGLjxo33fNtg0aJF9dhjj2nGjBk2t0JfvXpVc+fOtc4UmpHWrVsrNDRUvXr1yvC26NRRXPYw87Oe0XXD0T+PkuOu71klb968aty4scaOHavx48erfv36Nred3m769Ok2yzNmzJD0v//BkNnfeQAA18GINQCAS6tataratWunli1bauvWrXr22Wfl5+enkydPat26dSpVqpTefvttFStWTIUKFVLv3r1lGIaCg4O1ePFim9spMyP1j5ahQ4eqTp06cnNzU+nSpeXp6ZnhNikpKdZbThMTExUfH68lS5Zo9uzZKl68uGbPnn3HY7Zt21Y+Pj6qWrWq8ubNq4SEBA0ePFhBQUHWZ4wNGDBAcXFxqlKlirp06aKiRYvqxo0bOnz4sH766SeNHz9e4eHhqlu3rmJjY9W0aVO1a9dOZ8+e1YgRI9L8QTp+/HitWLFCdevWVb58+XTjxg19/fXXkqRatWpJkl577TVNnz5dMTEx6tq1q5588kl5eHjo2LFjWrlypRo2bKiXXnrprud027ZtCgoK0s2bN3XixAktX75c33zzjfLkyaPFixff8dz27dtXx44dU82aNRUeHq4LFy5o9OjRNs9XKlSokHx8fDR9+nQVL15c/v7+CgsLu+MtpneSK1cuPffcc/roo4/k5+ensWPH6r///a9mzpxp7RMTE6Pg4GC1bt1aAwYMkLu7u6ZMmaKjR4+m2V+pUqU0c+ZMzZo1SwULFpS3t3eGfxwPHjxYtWvXVo0aNdSzZ095enpq7Nix+v333/Xdd985ZJTl9OnTdePGDXXp0iXd0YI5c+bU9OnTNWnSJH322WeKjY3V008/rUqVKql3794qXLiw/v77by1atEgTJkxQQECAdbbQZ599Vh9++KFKlSqlCxcuaOnSperevbuKFSumd999V9OmTVPdunU1YMAA5c+fXz/++KPGjh2rt99+O1Oh4SeffKIXXnhBtWvXVo8ePZScnKyhQ4fKz89P586du+dzI0nBwcHq3r27Bg8erBw5cuill17SsWPH1L9/f+XNm9fm2Wj2ypYtm4YNG6ZmzZqpXr16at++vRITEzV8+HBduHBBQ4YMueP2QUFBWrhwoerVq6cnnnhCnTt3VuXKleXp6ak///xT3377rXbt2qVGjRrZVVdmf9Yzc90ICAhQ/vz5tXDhQtWsWVPBwcHKlSvXPY30q1KlinLkyKEOHTro448/loeHh6ZPn65du3aZ3qejde3aVZUqVZKkDGep9fT01MiRI3XlyhVVrFhR69ev18CBA1WnTh3r/3zJ7O88AIALcdKkCQCAR1TqDGpbtmxJd33dunXTzNRoGIbx9ddfG5UqVTL8/PwMHx8fo1ChQsZbb71lbN261drnjz/+MGrXrm0EBAQYOXLkMBo3bmzEx8enmaHuTrNVJiYmGm3atDFy585tWCyWNDM8/lvqTG+pLx8fHyNfvnxG/fr1ja+//tpITExMs82/ZwWdOnWqUaNGDSMkJMTw9PQ0wsLCjCZNmhi7d++22e706dNGly5djMjISMPDw8MIDg42ypcvb/Tp08e4cuWKzbkqWrSo4eXlZRQsWNAYPHiwMWnSJJv3smHDBuOll14y8ufPb3h5eRk5c+Y0qlWrZixatMjmmDdv3jRGjBhhlClTxvD29jb8/f2NYsWKGe3btzf+/PPPDM/L7ec59eXl5WXkzZvXiI6ONkaPHm1cunQp3fN5++f/ww8/GHXq1DEee+wxw9PT08iTJ48RExNjrF271ma77777zihWrJjh4eFh83nfadbWjGYF7dSpkzF27FijUKFChoeHh1GsWDFj+vTpabbfvHmzUaVKFcPPz8947LHHjI8//tj46quv0nxnDh8+bERHRxsBAQE2s96mNyuoYRjG2rVrjeeee876XX/qqaeMxYsX2/TJ6OcoddbClStXpvueDcMwypYta+TJkyfd72aqp556ysiVK5e1zx9//GE0btzYyJkzp+Hp6Wnky5fPaNGihXHjxg3rNkePHjVatWplhIaGGh4eHtbv8d9//23tc+TIEaNp06ZGzpw5DQ8PD6No0aLG8OHDbWbI/PdMmv+2aNEio3Tp0tY6hgwZkuFMkOnNCnr7jI63H+/2zyElJcUYOHCgER4ebnh6ehqlS5c2fvjhB6NMmTLGSy+9lOF5+7eM3suCBQuMSpUqGd7e3oafn59Rs2ZN49dff830fhMSEoz333/fePzxxw1fX1/Dy8vLKFy4sNG+fXvjt99+s/bL6Puf3vnKzM96Zq8bv/zyi/HEE08YXl5ehiSbzyGz5+jf1q9fb1SuXNnw9fU1cufObbRp08bYvn17ms8uo+9C3bp10+zz39fiu8noO5SqQIECRvHixdNdl/pZ7N6926hevbrh4+NjBAcHG2+//bbN9TtVZn7nAQBcg8UwMjElFwAAAPAIO3TokIoVK6aPP/5YH374obPLgYvZvXu3ypQpo//85z/q2LFjmvUtWrTQ999/rytXrjihOgBAVuJWUAAAAOA2u3bt0nfffacqVaooMDBQ+/bt07BhwxQYGKjWrVs7uzy4kIMHD+rIkSP68MMPlTdvXrVo0cLZJQEA7jOCNQAAAOA2fn5+2rp1qyZNmqQLFy4oKChI1atX16effqqQkBBnlwcX8sknn+ibb75R8eLFNWfOnDtOPgEAeDhxKygAAAAAAABggvlpjQAAAAAAAIBHGMEaAAAAAAAAYALBGgAAAAAAAGACkxdISklJ0YkTJxQQECCLxeLscgAAAAAAAOAkhmHo8uXLCgsLU7Zsdx6TRrAm6cSJE4qIiHB2GQAAAAAAAHARR48eVXh4+B37EKxJCggIkPTPCQsMDHRyNQAAAAAAAHCWS5cuKSIiwpoX3QnBmmS9/TMwMJBgDQAAAAAAAJl6XBiTFwAAAAAAAAAmEKwBAAAAAAAAJhCsAQAAAAAAACbwjDUAAAAAAADYSE5O1s2bN51dRpbx8PCQm5vbPe+HYA0AAAAAAABWV65c0bFjx2QYhrNLyTIWi0Xh4eHy9/e/p/0QrAEAAAAAAEDSPyPVjh07Jl9fX+XOnTtTM2M+aAzD0OnTp3Xs2DFFRUXd08g1gjUAAAAAAABIkm7evCnDMJQ7d275+Pg4u5wskzt3bh0+fFg3b968p2CNyQsAAAAAAABg42EcqXY7R70/gjUAAAAAAADABII1AAAAAAAAwASCNQAAAAAAAMAEgjUAAAAAAADYpXr16urWrZuzy7ByVj0EawAAAAAAALjvkpKSnF3CPSNYAwAAAAAAQKa1aNFCq1ev1ujRo2WxWGSxWHTw4EG1bt1akZGR8vHxUdGiRTV69Og027344osaPHiwwsLCVKRIEUnS+vXrVbZsWXl7e6tChQpasGCBLBaLdu7cad32jz/+UExMjPz9/RUSEqI333xTZ86cybCew4cP35dz4X5fjgIAAAAAAICHwujRo7V//36VLFlSAwYMkCTlyJFD4eHhmj17tnLlyqX169erXbt2yps3r5o0aWLddvny5QoMDFRcXJwMw9Dly5dVv359xcTEaMaMGTpy5EiaWzpPnjypatWqqW3btoqNjdX169f1/vvvq0mTJlqxYkW69eTOnfu+nAuCNQAAAAAAAGRaUFCQPD095evrq9DQUGt7//79rf+OjIzU+vXrNXv2bJtgzc/PT1999ZU8PT0lSePHj5fFYtHEiRPl7e2tEiVK6Pjx42rbtq11m3HjxqlcuXIaNGiQte3rr79WRESE9u/fryJFiqRbz/1AsAYAAAAAAIB7Nn78eH311Vc6cuSIrl+/rqSkJJUtW9amT6lSpayhmiTt27dPpUuXlre3t7XtySeftNlm27ZtWrlypfz9/dMc8+DBg9ZbSp2BYA0AAAAAAAD3ZPbs2Xr33Xc1cuRIVa5cWQEBARo+fLg2bdpk08/Pz89m2TAMWSyWNG23S0lJUf369TV06NA0x82bN6+D3oE5BGsAAAAAAACwi6enp5KTk63La9euVZUqVdSxY0dr28GDB++6n2LFimn69OlKTEyUl5eXJGnr1q02fcqVK6e5c+eqQIECcndPP8r6dz33C8EaMi14xhxnl+DSzjVt7OwSAAAAAAC4LwoUKKBNmzbp8OHD8vf3V+HChTVt2jT9/PPPioyM1DfffKMtW7YoMjLyjvtp2rSp+vTpo3bt2ql3796Kj4/XiBEjJMk6kq1Tp06aOHGiXn/9db333nvKlSuXDhw4oJkzZ2rixIlyc3NLU09wcLCyZcuW5ech648AAAAAAACAh0rPnj3l5uamEiVKKHfu3HrhhRfUqFEjvfrqq6pUqZLOnj1rM3otI4GBgVq8eLF27typsmXLqk+fPurbt68kWZ+7FhYWpl9//VXJycl6/vnnVbJkSXXt2lVBQUHW8Ozf9cTHx2fdm7+Nxfj3jauPoEuXLikoKEgXL15UYGCgs8txWYxYuzNGrAEAAAAAHnQ3btzQoUOHFBkZaTOhwP00ffp0tWzZUhcvXpSPj0+WHONO79OenIhbQQEAAAAAAOA006ZNU8GCBfXYY49p165dev/999WkSZMsC9UciWANAAAAAAAATpOQkKC+ffsqISFBefPmVePGjfXpp586u6xMIVgDAAAAAACA0/Tq1Uu9evVydhmmMHkBAAAAAAAAYALBGgAAAAAAAGACwRoAAAAAAABgAsEaAAAAAAAAYALBGgAAAAAAAGACwRoAAAAAAABggruzCwAAAAAAAIBrC54x574e71zTxvf1eGY5dcTamjVrVL9+fYWFhclisWjBggU26w3DUL9+/RQWFiYfHx9Vr15de/bssemTmJiod955R7ly5ZKfn58aNGigY8eO3cd3AQAAAAAAAFcwduxYRUZGytvbW+XLl9fatWuz9HhODdauXr2qMmXKaMyYMemuHzZsmGJjYzVmzBht2bJFoaGhql27ti5fvmzt061bN82fP18zZ87UunXrdOXKFdWrV0/Jycn3620AAAAAAADAyWbNmqVu3bqpT58+2rFjh5555hnVqVNH8fHxWXZMpwZrderU0cCBA9WoUaM06wzD0KhRo9SnTx81atRIJUuW1NSpU3Xt2jXNmDFDknTx4kVNmjRJI0eOVK1atfTEE0/o22+/1W+//aZffvnlfr8dAAAAAAAAOElsbKxat26tNm3aqHjx4ho1apQiIiI0bty4LDumy05ecOjQISUkJCg6Otra5uXlpWrVqmn9+vWSpG3btunmzZs2fcLCwlSyZElrn/QkJibq0qVLNi8AAAAAAAA8mJKSkrRt2zabjEiSoqOj75gR3SuXDdYSEhIkSSEhITbtISEh1nUJCQny9PRUjhw5MuyTnsGDBysoKMj6ioiIcHD1AAAAAAAAuF/OnDmj5OTkO+ZIWcFlg7VUFovFZtkwjDRt/3a3Ph988IEuXrxofR09etQhtQIAAAAAAMB5zORI98Jlg7XQ0FBJSpMqnjp1ypo+hoaGKikpSefPn8+wT3q8vLwUGBho8wIAAAAAAMCDKVeuXHJzc7tjjpQVXDZYi4yMVGhoqOLi4qxtSUlJWr16tapUqSJJKl++vDw8PGz6nDx5Ur///ru1DwAAAAAAAB5unp6eKl++vE1GJElxcXFZmhG5Z9meM+HKlSs6cOCAdfnQoUPauXOngoODlS9fPnXr1k2DBg1SVFSUoqKiNGjQIPn6+qpp06aSpKCgILVu3Vo9evRQzpw5FRwcrJ49e6pUqVKqVauWs94WAAAAAAAA7rPu3bvrzTffVIUKFVS5cmV9+eWXio+PV4cOHbLsmE4N1rZu3aoaNWpYl7t37y5Jat68uaZMmaJevXrp+vXr6tixo86fP69KlSpp2bJlCggIsG7z2Wefyd3dXU2aNNH169dVs2ZNTZkyRW5ubvf9/QAAAAAAADyMzjVt7OwS7urVV1/V2bNnNWDAAJ08eVIlS5bUTz/9pPz582fZMS2GYRhZtvcHxKVLlxQUFKSLFy/yvLU7CJ4xx9kluLQH4SIDAAAAAMCd3LhxQ4cOHVJkZKS8vb2dXU6WudP7tCcnctlnrAEAAAAAAACujGANAAAAAAAAMIFgDQAAAAAAADCBYA0AAAAAAAAwgWANAAAAAAAAMIFgDQAAAAAAADCBYA0AAAAAAAAwgWANAAAAAAAAMIFgDQAAAAAAADDB3dkFAAAAAAAAwLXNCR59X4/X+FzX+3o8sxixBgAAAAAAgAfemjVrVL9+fYWFhclisWjBggVZfkyCNQAAAAAAADzwrl69qjJlymjMmDH37ZjcCgoAAAAAAIAHXp06dVSnTp37ekxGrAEAAAAAAAAmEKwBAAAAAAAAJhCsAQAAAAAAACYQrAEAAAAAAAAmEKwBAAAAAAAAJjArKAAAAAAAAB54V65c0YEDB6zLhw4d0s6dOxUcHKx8+fJlyTEJ1gAAAAAAAHBHjc91dXYJd7V161bVqFHDuty9e3dJUvPmzTVlypQsOSbBGgAAAAAAAB541atXl2EY9/WYPGMNAAAAAAAAMIFgDQAAAAAAADCBYA0AAAAAAAAwgWANAAAAAAAAMIFgDQAAAAAAADbu9yQA95uj3h/BGgAAAAAAACRJbm5ukqSkpCQnV5K1Ut9f6vs1y90RxQAAAAAAAODB5+7uLl9fX50+fVoeHh7Klu3hG5OVkpKi06dPy9fXV+7u9xaNEawBAAAAAABAkmSxWJQ3b14dOnRIR44ccXY5WSZbtmzKly+fLBbLPe2HYA0AAAAAAABWnp6eioqKeqhvB/X09HTIaDyCNQAAAAAAANjIli2bvL29nV2Gy3v4bpQFAAAAAAAA7gOCNQAAAAAAAMAEgjUAAAAAAADABII1AAAAAAAAwASCNQAAAAAAAMAEgjUAAAAAAADABII1AAAAAAAAwASCNQAAAAAAAMAEgjUAAAAAAADABII1AAAAAAAAwASCNQAAAAAAAMAEgjUAAAAAAADABII1AAAAAAAAwASCNQAAAAAAAMAEgjUAAAAAAADABII1AAAAAAAAwASCNQAAAAAAAMAEgjUAAAAAAADABII1AAAAAAAAwASCNQAAAAAAAMAEgjUAAAAAAADABII1AAAAAAAAwASCNQAAAAAAAMAEgjUAAAAAAADABII1AAAAAAAAwASCNQAAAAAAAMAEgjUAAAAAAADABII1AAAAAAAAwASCNQAAAAAAAMAEgjUAAAAAAADABII1AAAAAAAAwASCNQAAAAAAAMAEgjUAAAAAAADABII1AAAAAAAAwASCNQAAAAAAAMAEgjUAAAAAAADABII1AAAAAAAAwASCNQAAAAAAAMAEgjUAAAAAAADABII1AAAAAAAAwASCNQAAAAAAAMAEgjUAAAAAAADABJcO1m7duqX/+7//U2RkpHx8fFSwYEENGDBAKSkp1j6GYahfv34KCwuTj4+Pqlevrj179jixagAAAAAAADwKXDpYGzp0qMaPH68xY8Zo7969GjZsmIYPH64vvvjC2mfYsGGKjY3VmDFjtGXLFoWGhqp27dq6fPmyEysHAAAAAADAw86lg7UNGzaoYcOGqlu3rgoUKKBXXnlF0dHR2rp1q6R/RquNGjVKffr0UaNGjVSyZElNnTpV165d04wZM5xcPQAAAAAAAB5mLh2sPf3001q+fLn2798vSdq1a5fWrVunmJgYSdKhQ4eUkJCg6Oho6zZeXl6qVq2a1q9fn+F+ExMTdenSJZsXAAAAAAAAYA93ZxdwJ++//74uXryoYsWKyc3NTcnJyfr000/1+uuvS5ISEhIkSSEhITbbhYSE6MiRIxnud/Dgwerfv3/WFQ4AAAAAAICHnkuPWJs1a5a+/fZbzZgxQ9u3b9fUqVM1YsQITZ061aafxWKxWTYMI03b7T744ANdvHjR+jp69GiW1A8AAAAAAICHl0uPWHvvvffUu3dvvfbaa5KkUqVK6ciRIxo8eLCaN2+u0NBQSf+MXMubN691u1OnTqUZxXY7Ly8veXl5ZW3xAAAAAAAAeKi59Ii1a9euKVs22xLd3NyUkpIiSYqMjFRoaKji4uKs65OSkrR69WpVqVLlvtYKAAAAAACAR4tLj1irX7++Pv30U+XLl0+PP/64duzYodjYWLVq1UrSP7eAduvWTYMGDVJUVJSioqI0aNAg+fr6qmnTpk6uHgAAAAAAAA8zlw7WvvjiC3300Ufq2LGjTp06pbCwMLVv3159+/a19unVq5euX7+ujh076vz586pUqZKWLVumgIAAJ1YOAAAAAACAh53FMAzD2UU426VLlxQUFKSLFy8qMDDQ2eW4rOAZc5xdgks717Sxs0sAAAAAAAD3yJ6cyKWfsQYAAAAAAAC4KoI1AAAAAAAAwASCNQAAAAAAAMAEgjUAAAAAAADABLuDtQEDBujatWtp2q9fv64BAwY4pCgAAAAAAADA1dkdrPXv319XrlxJ037t2jX179/fIUUBAAAAAAAArs7uYM0wDFksljTtu3btUnBwsEOKAgAAAAAAAFyde2Y75siRQxaLRRaLRUWKFLEJ15KTk3XlyhV16NAhS4oEAAAAAAAAXE2mg7VRo0bJMAy1atVK/fv3V1BQkHWdp6enChQooMqVK2dJkQAAAAAAAICryXSw1rx5c0lSZGSkqlSpIg8PjywrCgAAAAAAAHB1mQ7WUlWrVk3JycmaO3eu9u7dK4vFohIlSqhBgwZyc3PLihoBAAAAAAAAl2N3sHbgwAHFxMTo+PHjKlq0qAzD0P79+xUREaEff/xRhQoVyoo6AQAAAAAAAJdi96ygXbp0UaFChXT06FFt375dO3bsUHx8vCIjI9WlS5esqBEAAAAAAABwOXaPWFu9erU2btyo4OBga1vOnDk1ZMgQVa1a1aHFAQAAAAAAAK7K7hFrXl5eunz5cpr2K1euyNPT0yFFAQAAAAAAAK7O7mCtXr16ateunTZt2iTDMGQYhjZu3KgOHTqoQYMGWVEjAAAAAAAA4HLsDtY+//xzFSpUSJUrV5a3t7e8vb1VtWpVFS5cWKNHj86KGgEAAAAAAACXY/cz1rJnz66FCxfqzz//1H//+18ZhqESJUqocOHCWVEfAAAAAAAA4JLsDtZSRUVFKSoqypG1AAAAAAAAAA+MTAdrAwYMyFS/vn37mi4GAAAAAAAAeFBkOlibP39+hussFov27dunGzduEKwBAAAAAADgkZDpYG3Hjh3ptu/cuVO9e/fW77//rrZt2zqsMAAAAAAAAMCV2T0raKpDhw7pjTfeUMWKFRUUFKQ9e/Zo/PjxjqwNAAAAAAAAcFl2B2tnzpzRO++8o2LFiunkyZNav369Zs2axUQGAAAAAAAAeKRk+lbQq1evasSIEYqNjVXhwoW1ePFiRUdHZ2VtAAAAAAAAgMvKdLBWqFAhXb58We+8845ef/11WSwW7d69O02/0qVLO7RAAAAAAAAAwBVZDMMwMtMxW7b/3TVqsVh0+2apyxaLRcnJyY6vMotdunRJQUFBunjxogIDA51djssKnjHH2SW4tHNNGzu7BAAAAAAAcI/syYkyPWLt0KFD91wYAAAAAAAA8LDIdLCWP3/+rKwDAAAAAAAAeKDYPSsoAAAAAAAAAII1AAAAAAAAwBSCNQAAAAAAAMAEu4I1wzB05MgRXb9+PavqAQAAAAAAAB4IdgdrUVFROnbsWFbVAwAAAAAAADwQ7ArWsmXLpqioKJ09ezar6gEAAAAAAAAeCHY/Y23YsGF677339Pvvv2dFPQAAAAAAAMADwd3eDd544w1du3ZNZcqUkaenp3x8fGzWnzt3zmHFAQAAAAAAAK7K7mBt1KhRWVAGAAAAAAAA8GCxO1hr3rx5VtQBAAAAAAAAPFDsDtYkKTk5WQsWLNDevXtlsVhUokQJNWjQQG5ubo6uDwAAAAAAAHBJdgdrBw4cUExMjI4fP66iRYvKMAzt379fERER+vHHH1WoUKGsqBMAAADAA2BO8Ghnl+DyGp/r6uwSAAAOYvesoF26dFGhQoV09OhRbd++XTt27FB8fLwiIyPVpUuXrKgRAAAAAAAAcDl2j1hbvXq1Nm7cqODgYGtbzpw5NWTIEFWtWtWhxQEAAAAAAACuyu4Ra15eXrp8+XKa9itXrsjT09MhRQEAAAAAAACuzu5grV69emrXrp02bdokwzBkGIY2btyoDh06qEGDBllRIwAAAAAAAOBy7A7WPv/8cxUqVEiVK1eWt7e3vL29VbVqVRUuXFijR/OgUgAAAAAAADwa7H7GWvbs2bVw4UIdOHBAe/fulWEYKlGihAoXLpwV9QEAAAAAAAAuye5gLVXhwoUJ0wAAAAAAAPDIsvtWUAAAAAAAAAAEawAAAAAAAIApBGsAAAAAAACACQRrAAAAAAAAgAmmgrW1a9fqjTfeUOXKlXX8+HFJ0jfffKN169Y5tDgAAAAAAADAVdkdrM2dO1fPP/+8fHx8tGPHDiUmJkqSLl++rEGDBjm8QAAAAAAAAMAV2R2sDRw4UOPHj9fEiRPl4eFhba9SpYq2b9/u0OIAAAAAAAAAV2V3sLZv3z49++yzadoDAwN14cIFR9QEAAAAAAAAuDy7g7W8efPqwIEDadrXrVunggULOqQoAAAAAAAAwNXZHay1b99eXbt21aZNm2SxWHTixAlNnz5dPXv2VMeOHbOiRgAAAAAAAMDluNu7Qa9evXTx4kXVqFFDN27c0LPPPisvLy/17NlTnTt3zooaAQAAAAAAAJdjd7AmSZ9++qn69OmjP/74QykpKSpRooT8/f0dXRsAAAAAAADgsuy+FTSVr6+vKlSooGLFiumXX37R3r17HVkXAAAAAAAA4NLsDtaaNGmiMWPGSJKuX7+uihUrqkmTJipdurTmzp3r8AIBAAAAAAAAV2R3sLZmzRo988wzkqT58+crJSVFFy5c0Oeff66BAwc6vEAAAAAAAADAFdkdrF28eFHBwcGSpKVLl+rll1+Wr6+v6tatqz///NPhBQIAAAAAAACuyO5gLSIiQhs2bNDVq1e1dOlSRUdHS5LOnz8vb29vhxcIAAAAAAAAuCK7ZwXt1q2bmjVrJn9/f+XPn1/Vq1eX9M8toqVKlXJ0fQAAAAAAAIBLsjtY69ixoypVqqT4+HjVrl1b2bL9M+itYMGCPGMNAAAAAAAAjwy7gzVJKl++vMqXL2/TVrduXYcUBAAAAAAAADwITAVrx44d06JFixQfH6+kpCSbdbGxsQ4pDAAAAAAAAHBldgdry5cvV4MGDRQZGal9+/apZMmSOnz4sAzDULly5bKiRgAAAAAAAMDl2D0r6AcffKAePXro999/l7e3t+bOnaujR4+qWrVqaty4cVbUCAAAAAAAALgcu4O1vXv3qnnz5pIkd3d3Xb9+Xf7+/howYICGDh3q8AIBAAAAAAAAV2R3sObn56fExERJUlhYmA4ePGhdd+bMGcdVBgAAAAAAALgwu5+x9tRTT+nXX39ViRIlVLduXfXo0UO//fab5s2bp6eeeioragQAAAAAAABcjt0j1mJjY1WpUiVJUr9+/VS7dm3NmjVL+fPn16RJkxxe4PHjx/XGG28oZ86c8vX1VdmyZbVt2zbresMw1K9fP4WFhcnHx0fVq1fXnj17HF4HAAAAAAAAcDu7R6wVLFjQ+m9fX1+NHTvWoQXd7vz586patapq1KihJUuWKE+ePDp48KCyZ89u7TNs2DDFxsZqypQpKlKkiAYOHKjatWtr3759CggIyLLaAAAAAAAA8GizO1iTpAsXLuj777/XwYMH9d577yk4OFjbt29XSEiIHnvsMYcVN3ToUEVERGjy5MnWtgIFClj/bRiGRo0apT59+qhRo0aSpKlTpyokJEQzZsxQ+/btHVYLAAAAAAAAcDu7bwXdvXu3ihQpoqFDh2rEiBG6cOGCJGn+/Pn64IMPHFrcokWLVKFCBTVu3Fh58uTRE088oYkTJ1rXHzp0SAkJCYqOjra2eXl5qVq1alq/fn2G+01MTNSlS5dsXgAAAAAAAIA97A7WunfvrhYtWujPP/+Ut7e3tb1OnTpas2aNQ4v766+/NG7cOEVFRennn39Whw4d1KVLF02bNk2SlJCQIEkKCQmx2S4kJMS6Lj2DBw9WUFCQ9RUREeHQugEAAAAAAPDwsztY27JlS7q3WD722GN3DLPMSElJUbly5TRo0CA98cQTat++vdq2batx48bZ9LNYLDbLhmGkabvdBx98oIsXL1pfR48edWjdAAAAAAAAePjZHax5e3une+vkvn37lDt3bocUlSpv3rwqUaKETVvx4sUVHx8vSQoNDZWkNIHeqVOn0oxiu52Xl5cCAwNtXgAAAAAAAIA97A7WGjZsqAEDBujmzZuS/hktFh8fr969e+vll192aHFVq1bVvn37bNr279+v/PnzS5IiIyMVGhqquLg46/qkpCStXr1aVapUcWgtAAAAAAAAwO3sDtZGjBih06dPK0+ePLp+/bqqVaumwoULKyAgQJ9++qlDi3v33Xe1ceNGDRo0SAcOHNCMGTP05ZdfqlOnTpL+CfW6deumQYMGaf78+fr999/VokUL+fr6qmnTpg6tBQAAAAAAALidu70bBAYGat26dVqxYoW2b99ufQ5arVq1HF5cxYoVrbONDhgwQJGRkRo1apSaNWtm7dOrVy9dv35dHTt21Pnz51WpUiUtW7ZMAQEBDq8HAAAAAAAASGUxDMO4151cuHBB2bNnd0A5znHp0iUFBQXp4sWLPG/tDoJnzHF2CS7tXNPGzi4BAADA6eYEj3Z2CS6v8bmuzi4BAHAH9uREdt8KOnToUM2aNcu63KRJE+XMmVOPPfaYdu3aZX+1AAAAAAAAwAPI7mBtwoQJioiIkCTFxcUpLi5OS5YsUZ06dfTee+85vEAAAAAAAADAFdn9jLWTJ09ag7UffvhBTZo0UXR0tAoUKKBKlSo5vEAAAAAAAADAFdk9Yi1Hjhw6evSoJGnp0qXWSQsMw1BycrJjqwMAAAAAAABclN0j1ho1aqSmTZsqKipKZ8+eVZ06dSRJO3fuVOHChR1eIAAAAAAAAOCK7A7WPvvsMxUoUEBHjx7VsGHD5O/vL+mfW0Q7duzo8AIBAAAAAAAAV2R3sObh4aGePXumae/WrZsj6gEAAAAAAAAeCJkK1hYtWqQ6derIw8NDixYtumPfBg0aOKQwAAAAAAAAwJVlKlh78cUXlZCQoDx58ujFF1/MsJ/FYmECAwAAAAAAADwSMhWspaSkpPtvAAAAAAAA4FGVzdkFAAAAAAAAAA8iuyYvSElJ0ZQpUzRv3jwdPnxYFotFkZGReuWVV/Tmm2/KYrFkVZ0AAAAAAACAS8n0iDXDMNSgQQO1adNGx48fV6lSpfT444/ryJEjatGihV566aWsrBMAAAAAAABwKZkesTZlyhStWbNGy5cvV40aNWzWrVixQi+++KKmTZumt956y+FFAgAAAAAAAK4m0yPWvvvuO3344YdpQjVJeu6559S7d29Nnz7docUBAAAAAAAArirTwdru3bv1wgsvZLi+Tp062rVrl0OKAgAAAAAAAFxdpoO1c+fOKSQkJMP1ISEhOn/+vEOKAgAAAAAAAFxdpoO15ORkubtn/Eg2Nzc33bp1yyFFAQAAAAAAAK4u05MXGIahFi1ayMvLK931iYmJDisKAAAAAAAAcHWZDtaaN29+1z7MCAoAAAAAAIBHRaaDtcmTJ2dlHQAAAAAAAMADJdPPWAMAAAAAAADwPwRrAAAAAAAAgAkEawAAAAAAAIAJBGsAAAAAAACACZkK1sqVK6fz589LkgYMGKBr165laVEAAAAAAACAq8tUsLZ3715dvXpVktS/f39duXIlS4sCAAAAAAAAXJ17ZjqVLVtWLVu21NNPPy3DMDRixAj5+/un27dv374OLRAAAAAAAABwRZkK1qZMmaKPP/5YP/zwgywWi5YsWSJ397SbWiwWgjUAAAAAAAA8EjIVrBUtWlQzZ86UJGXLlk3Lly9Xnjx5srQwAAAAAAAAwJVlKli7XUpKSlbUAQAAAAAAADxQ7A7WJOngwYMaNWqU9u7dK4vFouLFi6tr164qVKiQo+sDAAAAAAAAXFKmZgW93c8//6wSJUpo8+bNKl26tEqWLKlNmzbp8ccfV1xcXFbUCAAAAAAAALgcu0es9e7dW++++66GDBmSpv39999X7dq1HVYcAAAAAAAA4KrsHrG2d+9etW7dOk17q1at9McffzikKAAAAAAAAMDV2R2s5c6dWzt37kzTvnPnTmYKBQAAAAAAwCPD7ltB27Ztq3bt2umvv/5SlSpVZLFYtG7dOg0dOlQ9evTIihoBAAAAAAAAl2N3sPbRRx8pICBAI0eO1AcffCBJCgsLU79+/dSlSxeHFwgAAAAAAAC4IruDNYvFonfffVfvvvuuLl++LEkKCAhweGEAAAAAAACAK7M7WLsdgRoAAAAAAAAeVXZPXgAAAAAAAACAYA0AAAAAAAAwhWANAAAAAAAAMMHuYO3QoUNZUQcAAAAAAADwQLE7WCtcuLBq1Kihb7/9Vjdu3MiKmgAAAAAAAACXZ3ewtmvXLj3xxBPq0aOHQkND1b59e23evDkragMAAAAAAABclt3BWsmSJRUbG6vjx49r8uTJSkhI0NNPP63HH39csbGxOn36dFbUCQAAAAAAALgU05MXuLu766WXXtLs2bM1dOhQHTx4UD179lR4eLjeeustnTx50pF1AgAAAAAAAC7FdLC2detWdezYUXnz5lVsbKx69uypgwcPasWKFTp+/LgaNmzoyDoBAAAAAAAAl+Ju7waxsbGaPHmy9u3bp5iYGE2bNk0xMTHKlu2fjC4yMlITJkxQsWLFHF4sAAAAAAAA4CrsDtbGjRunVq1aqWXLlgoNDU23T758+TRp0qR7Lg4AAAAAAABwVXYHa3/++edd+3h6eqp58+amCgIAAAAAAAAeBHY/Y23y5MmaM2dOmvY5c+Zo6tSpDikKAAAAAAAAcHV2B2tDhgxRrly50rTnyZNHgwYNckhRAAAAAAAAgKuzO1g7cuSIIiMj07Tnz59f8fHxDikKAAAAAAAAcHV2B2t58uTR7t2707Tv2rVLOXPmdEhRAAAAAAAAgKuzO1h77bXX1KVLF61cuVLJyclKTk7WihUr1LVrV7322mtZUSMAAAAAAADgcuyeFXTgwIE6cuSIatasKXf3fzZPSUnRW2+9xTPWAAAAAAAA8MiwO1jz9PTUrFmz9Mknn2jXrl3y8fFRqVKllD9//qyoDwAAAAAAAHBJdgdrqYoUKaIiRYo4shYAAAAAAADggWF3sJacnKwpU6Zo+fLlOnXqlFJSUmzWr1ixwmHFAQAAAAAAAK7K7mCta9eumjJliurWrauSJUvKYrFkRV0AAAAAAACAS7M7WJs5c6Zmz56tmJiYrKgHAAAAAAAAeCBks3cDT09PFS5cOCtqAQAAAAAAAB4YdgdrPXr00OjRo2UYRlbUAwAAAAAAADwQ7L4VdN26dVq5cqWWLFmixx9/XB4eHjbr582b57DiAAAAAAAAAFdld7CWPXt2vfTSS1lRCwAAAAAAAPDAsDtYmzx5clbUAQAAAAAAADxQ7H7GmiTdunVLv/zyiyZMmKDLly9Lkk6cOKErV644tDgAAAAAAADAVdk9Yu3IkSN64YUXFB8fr8TERNWuXVsBAQEaNmyYbty4ofHjx2dFnQAAAAAAAIBLsXvEWteuXVWhQgWdP39ePj4+1vaXXnpJy5cvd2hxAAAAAAAAgKsyNSvor7/+Kk9PT5v2/Pnz6/jx4w4rDAAAAAAAAHBldo9YS0lJUXJycpr2Y8eOKSAgwCFFAQAAAAAAAK7O7hFrtWvX1qhRo/Tll19KkiwWi65cuaKPP/5YMTExDi8QAABk3pzg0c4uwaU1PtfV2SUAAADgIWL3iLXPPvtMq1evVokSJXTjxg01bdpUBQoU0PHjxzV06NCsqNFq8ODBslgs6tatm7XNMAz169dPYWFh8vHxUfXq1bVnz54srQMAAAAAAACwe8RaWFiYdu7cqe+++07bt29XSkqKWrdurWbNmtlMZuBoW7Zs0ZdffqnSpUvbtA8bNkyxsbGaMmWKihQpooEDB6p27drat28ft6YCAAAAAAAgy9gdrEmSj4+PWrVqpVatWjm6nnRduXJFzZo108SJEzVw4EBru2EYGjVqlPr06aNGjRpJkqZOnaqQkBDNmDFD7du3T3d/iYmJSkxMtC5funQpa98AAAAAAAAAHjp2B2vTpk274/q33nrLdDEZ6dSpk+rWratatWrZBGuHDh1SQkKCoqOjrW1eXl6qVq2a1q9fn2GwNnjwYPXv39/hdQIAAAAAAODRYXew1rWr7UN/b968qWvXrsnT01O+vr4OD9Zmzpyp7du3a8uWLWnWJSQkSJJCQkJs2kNCQnTkyJEM9/nBBx+oe/fu1uVLly4pIiLCQRUDAAAAAADgUWB3sHb+/Pk0bX/++afefvttvffeew4pKtXRo0fVtWtXLVu2TN7e3hn2s1gsNsuGYaRpu52Xl5e8vLwcVicAAAAAAAAePXbPCpqeqKgoDRkyJM1otnu1bds2nTp1SuXLl5e7u7vc3d21evVqff7553J3d7eOVEsduZbq1KlTaUaxAQAAAAAAAI7kkGBNktzc3HTixAlH7U6SVLNmTf3222/auXOn9VWhQgU1a9ZMO3fuVMGCBRUaGqq4uDjrNklJSVq9erWqVKni0FoAAAAAAACA29l9K+iiRYtslg3D0MmTJzVmzBhVrVrVYYVJUkBAgEqWLGnT5ufnp5w5c1rbu3XrpkGDBikqKkpRUVEaNGiQfH191bRpU4fWAtzNnODRzi7B5TU+59hRrQAAAAAAOJPdwdqLL75os2yxWJQ7d24999xzGjlypKPqyrRevXrp+vXr6tixo86fP69KlSpp2bJlCggIuO+1AAAAAAAA4NFhd7CWkpKSFXVk2qpVq2yWLRaL+vXrp379+jmlHgAAAAAAADyaHPaMNQAAAAAAAOBRYveIte7du2e6b2xsrL27BwAAAAAAAB4IdgdrO3bs0Pbt23Xr1i0VLVpUkrR//365ubmpXLly1n4Wi8VxVQIAAAAAAAAuxu5grX79+goICNDUqVOVI0cOSdL58+fVsmVLPfPMM+rRo4fDiwQAAAAAAABcjd3PWBs5cqQGDx5sDdUkKUeOHBo4cKBTZgUFAAAAAAAAnMHuYO3SpUv6+++/07SfOnVKly9fdkhRAAAAAAAAgKuzO1h76aWX1LJlS33//fc6duyYjh07pu+//16tW7dWo0aNsqJGAAAAAAAAwOXY/Yy18ePHq2fPnnrjjTd08+bNf3bi7q7WrVtr+PDhDi8QAAAAAAAAcEV2B2u+vr4aO3ashg8froMHD8owDBUuXFh+fn5ZUR8AAAAAAADgkuy+FTTVyZMndfLkSRUpUkR+fn4yDMORdQEAAAAAAAAuze5g7ezZs6pZs6aKFCmimJgYnTx5UpLUpk0b9ejRw+EFAgAAAAAAAK7I7mDt3XfflYeHh+Lj4+Xr62ttf/XVV7V06VKHFgcAAAAAAAC4KrufsbZs2TL9/PPPCg8Pt2mPiorSkSNHHFYYAAAAAAAA4MrsHrF29epVm5Fqqc6cOSMvLy+HFAUAAAAAAAC4OruDtWeffVbTpk2zLlssFqWkpGj48OGqUaOGQ4sDAAAAAAAAXJXdt4IOHz5c1atX19atW5WUlKRevXppz549OnfunH799desqBEAAAAAAABwOXaPWCtRooR2796tJ598UrVr19bVq1fVqFEj7dixQ4UKFcqKGgEAAAAAAACXY9eItZs3byo6OloTJkxQ//79s6omAAAAAAAAwOXZNWLNw8NDv//+uywWS1bVAwAAAAAAADwQ7L4V9K233tKkSZOyohYAAAAAAADggWH35AVJSUn66quvFBcXpwoVKsjPz89mfWxsrMOKAwAAAAAAAFyV3cHa77//rnLlykmS9u/fb7OOW0QBAAAAAADwqMh0sPbXX38pMjJSK1euzMp6AAAAAAAAgAdCpp+xFhUVpdOnT1uXX331Vf39999ZUhQAAAAAAADg6jIdrBmGYbP8008/6erVqw4vCAAAAAAAAHgQ2D0rKAAAAAAAAAA7gjWLxZJmcgImKwAAAAAAAMCjKtOTFxiGoRYtWsjLy0uSdOPGDXXo0EF+fn42/ebNm+fYCgEAAAAAAAAXlOlgrXnz5jbLb7zxhsOLAQAAAAAAAB4UmQ7WJk+enJV1AAAAAAAAAA8UJi8AAAAAAAAATCBYAwAAAAAAAEwgWAMAAAAAAABMIFgDAAAAAAAATCBYAwAAAAAAAEwgWAMAAAAAAABMIFgDAAAAAAAATCBYAwAAAAAAAEwgWAMAAAAAAABMIFgDAAAAAAAATCBYAwAAAAAAAEwgWAMAAAAAAABMIFgDAAAAAAAATCBYAwAAAAAAAEwgWAMAAAAAAABMIFgDAAAAAAAATCBYAwAAAAAAAEwgWAMAAAAAAABMIFgDAAAAAAAATCBYAwAAAAAAAEwgWAMAAAAAAABMIFgDAAAAAAAATCBYAwAAAAAAAEwgWAMAAAAAAABMIFgDAAAAAAAATCBYAwAAAAAAAEwgWAMAAAAAAABMIFgDAAAAAAAATCBYAwAAAAAAAEwgWAMAAAAAAABMIFgDAAAAAAAATCBYAwAAAAAAAEwgWAMAAAAAAABMIFgDAAAAAAAATCBYAwAAAAAAAEwgWAMAAAAAAABMIFgDAAAAAAAATCBYAwAAAAAAAEwgWAMAAAAAAABMIFgDAAAAAAAATCBYAwAAAAAAAEwgWAMAAAAAAABMIFgDAAAAAAAATHDpYG3w4MGqWLGiAgIClCdPHr344ovat2+fTR/DMNSvXz+FhYXJx8dH1atX1549e5xUMQAAAAAAAB4VLh2srV69Wp06ddLGjRsVFxenW7duKTo6WlevXrX2GTZsmGJjYzVmzBht2bJFoaGhql27ti5fvuzEygEAAAAAAPCwc3d2AXeydOlSm+XJkycrT5482rZtm5599lkZhqFRo0apT58+atSokSRp6tSpCgkJ0YwZM9S+fXtnlA0AAAAAAIBHgEuPWPu3ixcvSpKCg4MlSYcOHVJCQoKio6Otfby8vFStWjWtX78+w/0kJibq0qVLNi8AAAAAAADAHg9MsGYYhrp3766nn35aJUuWlCQlJCRIkkJCQmz6hoSEWNelZ/DgwQoKCrK+IiIisq5wAAAAAAAAPJQemGCtc+fO2r17t7777rs06ywWi82yYRhp2m73wQcf6OLFi9bX0aNHHV4vAAAAAAAAHm4u/Yy1VO+8844WLVqkNWvWKDw83NoeGhoq6Z+Ra3nz5rW2nzp1Ks0ottt5eXnJy8sr6woGAAAAAADAQ8+lR6wZhqHOnTtr3rx5WrFihSIjI23WR0ZGKjQ0VHFxcda2pKQkrV69WlWqVLnf5QIAAAAAAOAR4tIj1jp16qQZM2Zo4cKFCggIsD43LSgoSD4+PrJYLOrWrZsGDRqkqKgoRUVFadCgQfL19VXTpk2dXD0AAAAAAAAeZi4drI0bN06SVL16dZv2yZMnq0WLFpKkXr166fr16+rYsaPOnz+vSpUqadmyZQoICLjP1QIAAAAAAOBR4tLBmmEYd+1jsVjUr18/9evXL+sLAgAAAAAAAP4/l37GGgAAAAAAAOCqCNYAAAAAAAAAE1z6VlAAAADA1QTPmOPsElzaBGcXAADAfcSINQAAAAAAAMAEgjUAAAAAAADABII1AAAAAAAAwASCNQAAAAAAAMAEgjUAAAAAAADABII1AAAAAAAAwASCNQAAAAAAAMAEd2cXAAAAAAAA4Ehzgkc7uwSX1/hcV2eX8FBgxBoAAAAAAABgAsEaAAAAAAAAYALBGgAAAAAAAGACwRoAAAAAAABgAsEaAAAAAAAAYALBGgAAAAAAAGACwRoAAAAAAABgAsEaAAAAAAAAYALBGgAAAAAAAGACwRoAAAAAAABgAsEaAAAAAAAAYALBGgAAAAAAAGACwRoAAAAAAABgAsEaAAAAAAAAYALBGgAAAAAAAGACwRoAAAAAAABgAsEaAAAAAAAAYALBGgAAAAAAAGACwRoAAAAAAABgAsEaAAAAAAAAYALBGgAAAAAAAGACwRoAAAAAAABgAsEaAAAAAAAAYALBGgAAAAAAAGACwRoAAAAAAABgAsEaAAAAAAAAYALBGgAAAAAAAGACwRoAAAAAAABgAsEaAAAAAAAAYIK7swsAACCzgmfMcXYJLm+CswsAAAAAHiGMWAMAAAAAAABMIFgDAAAAAAAATCBYAwAAAAAAAEwgWAMAAAAAAABMIFgDAAAAAAAATCBYAwAAAAAAAEwgWAMAAAAAAABMcHd2AQAAAAAAIPOCZ8xxdgkub4KzC8AjgxFrAAAAAAAAgAkEawAAAAAAAIAJBGsAAAAAAACACQRrAAAAAAAAgAkEawAAAAAAAIAJBGsAAAAAAACACQRrAAAAAAAAgAkEawAAAAAAAIAJBGsAAAAAAACACQRrAAAAAAAAgAkEawAAAAAAAIAJBGsAAAAAAACACQRrAAAAAAAAgAkEawAAAAAAAIAJBGsAAAAAAACACQRrAAAAAAAAgAkEawAAAAAAAIAJBGsAAAAAAACACQRrAAAAAAAAgAkEawAAAAAAAIAJBGsAAAAAAACACQRrAAAAAAAAgAkEawAAAAAAAIAJBGsAAAAAAACACQRrAAAAAAAAgAkPTbA2duxYRUZGytvbW+XLl9fatWudXRIAAAAAAAAeYg9FsDZr1ix169ZNffr00Y4dO/TMM8+oTp06io+Pd3ZpAAAAAAAAeEg9FMFabGysWrdurTZt2qh48eIaNWqUIiIiNG7cOGeXBgAAAAAAgIeUu7MLuFdJSUnatm2bevfubdMeHR2t9evXp7tNYmKiEhMTrcsXL16UJF26dCnrCn0IGNeuObsEl3bNuOHsElweP2O4V1yH7o5r0Z1xHYIjcC26M65Dd8e1CPeK69DdcS26O65FGUs9N4Zh3LWvxchMLxd24sQJPfbYY/r1119VpUoVa/ugQYM0depU7du3L802/fr1U//+/e9nmQAAAAAAAHiAHD16VOHh4Xfs88CPWEtlsVhslg3DSNOW6oMPPlD37t2tyykpKTp37pxy5syZ4TbAnVy6dEkRERE6evSoAgMDnV0OgEcU1yIAzsZ1CIAr4FqEe2UYhi5fvqywsLC79n3gg7VcuXLJzc1NCQkJNu2nTp1SSEhIutt4eXnJy8vLpi179uxZVSIeIYGBgVy4ATgd1yIAzsZ1CIAr4FqEexEUFJSpfg/85AWenp4qX7684uLibNrj4uJsbg0FAAAAAAAAHOmBH7EmSd27d9ebb76pChUqqHLlyvryyy8VHx+vDh06OLs0AAAAAAAAPKQeimDt1Vdf1dmzZzVgwACdPHlSJUuW1E8//aT8+fM7uzQ8Iry8vPTxxx+nucUYAO4nrkUAnI3rEABXwLUI99MDPysoAAAAAAAA4AwP/DPWAAAAAAAAAGcgWAMAAAAAAABMIFgDAAAAAAAATCBYAwAAAAAAAEwgWAMcYOzYsYqMjJS3t7fKly+vtWvXOrskAI+QNWvWqH79+goLC5PFYtGCBQucXRKAR8zgwYNVsWJFBQQEKE+ePHrxxRe1b98+Z5cF4BEzbtw4lS5dWoGBgQoMDFTlypW1ZMkSZ5eFhxzBGnCPZs2apW7duqlPnz7asWOHnnnmGdWpU0fx8fHOLg3AI+Lq1asqU6aMxowZ4+xSADyiVq9erU6dOmnjxo2Ki4vTrVu3FB0dratXrzq7NACPkPDwcA0ZMkRbt27V1q1b9dxzz6lhw4bas2ePs0vDQ8xiGIbh7CKAB1mlSpVUrlw5jRs3ztpWvHhxvfjiixo8eLATKwPwKLJYLJo/f75efPFFZ5cC4BF2+vRp5cmTR6tXr9azzz7r7HIAPMKCg4M1fPhwtW7d2tml4CHFiDXgHiQlJWnbtm2Kjo62aY+Ojtb69eudVBUAAIBzXbx4UdI/f9ACgDMkJydr5syZunr1qipXruzscvAQc3d2AcCD7MyZM0pOTlZISIhNe0hIiBISEpxUFQAAgPMYhqHu3bvr6aefVsmSJZ1dDoBHzG+//abKlSvrxo0b8vf31/z581WiRAlnl4WHGMEa4AAWi8Vm2TCMNG0AAACPgs6dO2v37t1at26ds0sB8AgqWrSodu7cqQsXLmju3Llq3ry5Vq9eTbiGLEOwBtyDXLlyyc3NLc3otFOnTqUZxQYAAPCwe+edd7Ro0SKtWbNG4eHhzi4HwCPI09NThQsXliRVqFBBW7Zs0ejRozVhwgQnV4aHFc9YA+6Bp6enypcvr7i4OJv2uLg4ValSxUlVAQAA3F+GYahz586aN2+eVqxYocjISGeXBACS/rk+JSYmOrsMPMQYsQbco+7du+vNN99UhQoVVLlyZX355ZeKj49Xhw4dnF0agEfElStXdODAAevyoUOHtHPnTgUHBytfvnxOrAzAo6JTp06aMWOGFi5cqICAAOto/qCgIPn4+Di5OgCPig8//FB16tRRRESELl++rJkzZ2rVqlVaunSps0vDQ8xiGIbh7CKAB93YsWM1bNgwnTx5UiVLltRnn33G1PIA7ptVq1apRo0aadqbN2+uKVOm3P+CADxyMnq27OTJk9WiRYv7WwyAR1br1q21fPlynTx5UkFBQSpdurTef/991a5d29ml4SFGsAYAAAAAAACYwDPWAAAAAAAAABMI1gAAAAAAAAATCNYAAAAAAAAAEwjWAAAAAAAAABMI1gAAAAAAAAATCNYAAAAAAAAAEwjWAAAAAAAAABMI1gAAAAAAAAATCNYAAACykMVi0YIFC5xdxj1btWqVLBaLLly44OxSAAAAXAbBGgAAgEkJCQl65513VLBgQXl5eSkiIkL169fX8uXL71sNLVq00IsvvpipfhaLRRaLRR4eHipYsKB69uypq1evZuo4VapU0cmTJxUUFGSqzn79+lmPn9Hr8OHDpvYNAADgLO7OLgAAAOBBdPjwYVWtWlXZs2fXsGHDVLp0ad28eVM///yzOnXqpP/+97/OLjGNF154QZMnT9bNmze1du1atWnTRlevXtW4cePuuq2np6dCQ0NNH7tnz57q0KGDdblixYpq166d2rZta23LnTu36f0DAAA4AyPWAAAATOjYsaMsFos2b96sV155RUWKFNHjjz+u7t27a+PGjTZ9z5w5o5deekm+vr6KiorSokWLbNb/8ccfiomJkb+/v0JCQvTmm2/qzJkz1vXff/+9SpUqJR8fH+XMmVO1atXS1atX1a9fP02dOlULFy60jvpatWpVhjV7eXkpNDRUERERatq0qZo1a2a9TfXbb79VhQoVFBAQoNDQUDVt2lSnTp2ybvvvW0GnTJmi7Nmz6+eff1bx4sXl7++vF154QSdPnkz32P7+/goNDbW+3NzcrMdatmyZHn/8cd26dctmm5dffllvvfWWpH9GvJUtW1YTJkxQRESEfH191bhx4zS3pk6ePFnFixeXt7e3ihUrprFjx2Z4PgAAAO4VwRoAAICdzp07p6VLl6pTp07y8/NLsz579uw2y/3791eTJk20e/duxcTEqFmzZjp37pwk6eTJk6pWrZrKli2rrVu3aunSpfr777/VpEkT6/rXX39drVq10t69e7Vq1So1atRIhmGoZ8+eatKkiTXQOnnypKpUqZLp9+Hj46ObN29KkpKSkvTJJ59o165dWrBggQ4dOqQWLVrccftr165pxIgR+uabb7RmzRrFx8erZ8+emT5+qsaNGys5OdkmcDxz5ox++OEHtWzZ0tp24MABzZ49W4sXL9bSpUu1c+dOderUybp+4sSJ6tOnjz799FPt3btXgwYN0kcffaSpU6faXRMAAEBmcCsoAACAnQ4cOCDDMFSsWLFM9W/RooVef/11SdKgQYP0xRdfaPPmzXrhhRc0btw4lStXToMGDbL2//rrrxUREaH9+/frypUrunXrlho1aqT8+fNLkkqVKmXt6+Pjo8TERLtv09y8ebNmzJihmjVrSpJatWplXVewYEF9/vnnevLJJ3XlyhX5+/unu4+bN29q/PjxKlSokCSpc+fOGjBggF11pL6Hpk2bavLkyWrcuLEkafr06QoPD1f16tWt/W7cuKGpU6cqPDxckvTFF1+obt26GjlypEJDQ/XJJ59o5MiRatSokSQpMjJSf/zxhyZMmKDmzZvbXRcAAMDdEKwBAADYyTAMSf/M+JkZpUuXtv7bz89PAQEB1tsst23bppUrV6YbXh08eFDR0dGqWbOmSpUqpeeff17R0dF65ZVXlCNHDrvr/uGHH+Tv769bt27p5s2batiwob744gtJ0o4dO9SvXz/t3LlT586dU0pKiiQpPj5eJUqUSHd/vr6+1lBNkvLmzWtz+6g92rZtq4oVK+r48eN67LHHNHnyZOuEC6ny5ctnDdUkqXLlykpJSdG+ffvk5uamo0ePqnXr1jbPbbt165bpCRcAAADuhmANAADATlFRUbJYLNq7d2+mZuT08PCwWbZYLNbgKiUlRfXr19fQoUPTbJc3b165ubkpLi5O69ev17Jly/TFF1+oT58+2rRpkyIjI+2qu0aNGho3bpw8PDwUFhZmrevq1auKjo5WdHS0vv32W+XOnVvx8fF6/vnnlZSUZNf7Sg0d7fXEE0+oTJkymjZtmp5//nn99ttvWrx48R23SQ3dbj+fEydOVKVKlWz6ubm5maoJAADgbgjWAAAA7BQcHKznn39e//nPf9SlS5c0z1m7cOFCmuesZaRcuXKaO3euChQoIHf39P/TzGKxqGrVqqpatar69u2r/Pnza/78+erevbs8PT2VnJycqWP5+fmpcOHCadr/+9//6syZMxoyZIgiIiIkSVu3bs3UPh2pTZs2+uyzz3T8+HHVqlXLWkuq+Ph4nThxQmFhYZKkDRs2KFu2bCpSpIhCQkL02GOP6a+//lKzZs3ue+0AAODRxOQFAAAAJowdO1bJycl68sknNXfuXP3555/au3evPv/8c1WuXDnT++nUqZPOnTun119/XZs3b9Zff/2lZcuWqVWrVkpOTtamTZs0aNAgbd26VfHx8Zo3b55Onz6t4sWLS5IKFCig3bt3a9++fTpz5ox1MgJ75MuXT56envriiy/0119/adGiRfrkk0/s3s+9atasmY4fP66JEyfaPPMtlbe3t5o3b65du3Zp7dq16tKli5o0aWJ9vly/fv00ePBgjR49Wvv379dvv/2myZMnKzY29n6/FQAA8IggWAMAADAhMjJS27dvV40aNdSjRw+VLFlStWvX1vLlyzVu3LhM7ycsLEy//vqrkpOT9fzzz6tkyZLq2rWrgoKClC1bNgUGBmrNmjWKiYlRkSJF9H//938aOXKk6tSpI+mfZ5MVLVpUFSpUUO7cufXrr7/a/V5y586tKVOmaM6cOSpRooSGDBmiESNG2L2fexUYGKiXX35Z/v7+6d5iW7hwYTVq1EgxMTGKjo5WyZIlNXbsWOv6Nm3a6KuvvtKUKVNUqlQpVatWTVOmTLH7llkAAIDMshhmH4QBAAAAOFjt2rVVvHhxff755zbt/fr104IFC7Rz507nFAYAAJAOnrEGAAAApzt37pyWLVumFStWaMyYMc4uBwAAIFMI1gAAAOB05cqV0/nz5zV06FAVLVrU2eUAAABkCreCAgAAAAAAACYweQEAAAAAAABgAsEaAAAAAAAAYALBGgAAAAAAAGACwRoAAAAAAABgAsEaAAAAAAAAYALBGgAAAAAAAGACwRoAAAAAAABgAsEaAAAAAAAAYML/A7TekLFmdEVSAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Plot target and cp in one histogramm via crosstab\n", "pd.crosstab(df.cp,df.target).plot(kind=\"bar\",figsize=(15,6),color=['#11A5AA','#AA1190' ])\n", "plt.title('Heart Disease Distribution According To Chest Pain Type')\n", "plt.xlabel('Chest Pain Type')\n", "plt.xticks(rotation = 0)\n", "plt.ylabel('Frequency of Disease or Not')\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# plot correlations for target\n", "plt.figure()\n", "plt.scatter(x=df.age[df.target==1], y=df.thalach[(df.target==1)], c=\"red\")\n", "plt.scatter(x=df.age[df.target==0], y=df.thalach[(df.target==0)])\n", "plt.title('Age-max Heart Rate Plot')\n", "plt.xlabel('age[years]')\n", "plt.ylabel('max. heart rate')\n", "plt.legend([\"Disease\", \"No Disease\"])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "plt.figure()\n", "plt.scatter(x=df.age[df.target==1], y=df.chol[(df.target==1)], c=\"red\")\n", "plt.scatter(x=df.age[df.target==0], y=df.chol[(df.target==0)])\n", "plt.title('Age-Cholesterol Plot')\n", "plt.xlabel('age[years]')\n", "plt.ylabel('Cholesterol')\n", "plt.legend([\"Disease\", \"No Disease\"])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.16" } }, "nbformat": 4, "nbformat_minor": 4 }