This commit is contained in:
Joerg Marks 2023-04-05 22:03:33 +02:00
parent 85d1ea9747
commit 470ef7a432
3 changed files with 18 additions and 27 deletions

View File

@ -89,7 +89,9 @@
"outputs": [],
"source": [
"# run migrad for minimization\n",
"m.migrad()"
"m.migrad()\n",
"chi2 = m.fval / (len(y) - len(m.values))\n",
"print (\"Chi2/ndof =\" , chi2)"
]
},
{
@ -231,9 +233,9 @@
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"display_name": "Python [conda env:ML]",
"language": "python",
"name": "python3"
"name": "conda-env-ML-py"
},
"language_info": {
"codemirror_mode": {
@ -245,7 +247,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.16"
"version": "3.10.9"
}
},
"nbformat": 4,

View File

@ -116,6 +116,7 @@
"metadata": {},
"outputs": [],
"source": [
"m.fixed[\"c\"] = True\n",
"m.migrad()"
]
},
@ -154,13 +155,6 @@
"m.covariance"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copy covariance information to numpy arrays"
]
},
{
"cell_type": "markdown",
"metadata": {},
@ -192,7 +186,7 @@
"metadata": {},
"outputs": [],
"source": [
"m.draw_mncontour('a', 'b')"
"m.draw_mncontour('a', 'b', cl=[1,2,3,4])"
]
},
{
@ -209,6 +203,9 @@
"outputs": [],
"source": [
"print(m.values,m.errors)\n",
"print (m.merrors['a'])\n",
"print (m.merrors['a'].lower)\n",
"print (m.merrors['a'].upper)\n",
"a_fit = m.values[\"a\"]\n",
"b_fit = m.values[\"b\"]\n",
"c_fit = m.values[\"c\"]"
@ -251,20 +248,13 @@
"plt.xlim(-0.1, 4.1)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"display_name": "Python [conda env:ML]",
"language": "python",
"name": "python3"
"name": "conda-env-ML-py"
},
"language_info": {
"codemirror_mode": {
@ -276,7 +266,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.16"
"version": "3.10.9"
}
},
"nbformat": 4,

View File

@ -306,7 +306,7 @@ Fit process with the minuit package
# limit the range of b and fix parameter c
m = Minuit(fcn,a=1,b=-0.7,c=1)
m.migrad() # run minimizer
m.fixed["c"] = True # fix or release parameter c
m.fixed["c"] = False / True # fix or release parameter c
m.migrad() # rerun minimizer
# Might be useful to fix parameters or limit the range for some applications
@ -341,10 +341,9 @@ Fit process with the minuit package
......
m.hesse() # run covariance estimator
m.matrix() # get covariance matrix
m.matrix(correlation=True) # get full correlation matrix
cov = m.np_matrix() # save matrix to numpy
cor = m.np_matrix(correlation=True)
print(cor[0, 1]) # print correlation between parameter 1 and 2
m.covariance # get full covariance matrix
cov = m.covariance # save matrix to access by numpy
print(cov[0, 1]) # print correlation between parameter 1 and 2
```
\normalsize