add example
This commit is contained in:
parent
8dfac275b3
commit
34d677ba8d
@ -139,9 +139,12 @@
|
||||
"dense_weights = model.layers[2].get_weights()[0]\n",
|
||||
"\n",
|
||||
"# Plot the weights as a heatmap\n",
|
||||
"plt.imshow(dense_weights, cmap='coolwarm')\n",
|
||||
"plt.colorbar()\n",
|
||||
"plt.title('weights in the output layer')\n",
|
||||
"fig, ax = plt.subplots(figsize=(12, 36))\n",
|
||||
"im = ax.imshow(dense_weights, cmap='coolwarm')\n",
|
||||
"plt.colorbar(im, ax=ax)\n",
|
||||
"ax.set_title('Weights in the Output Layer')\n",
|
||||
"ax.set_xlabel('Neurons in the Output Layer')\n",
|
||||
"ax.set_ylabel('Neurons in the Previous Layer')\n",
|
||||
"plt.show()"
|
||||
]
|
||||
},
|
||||
@ -186,6 +189,25 @@
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "e882afea",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Plot a confusion matrix of the test set predictions\n",
|
||||
"test_preds = np.argmax(model.predict(x_test), axis=1)\n",
|
||||
"conf_mat = tf.math.confusion_matrix(y_test.argmax(axis=1), test_preds)\n",
|
||||
"plt.imshow(conf_mat, cmap=\"Blues\")\n",
|
||||
"plt.xlabel(\"Predicted labels\")\n",
|
||||
"plt.ylabel(\"True labels\")\n",
|
||||
"plt.xticks(np.arange(10))\n",
|
||||
"plt.yticks(np.arange(10))\n",
|
||||
"plt.colorbar()\n",
|
||||
"plt.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
@ -214,6 +236,14 @@
|
||||
"\n",
|
||||
"plt.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "71f1cb93",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
|
227
notebooks/05_neural_networks_tf_CNN_mnist_digits.ipynb
Normal file
227
notebooks/05_neural_networks_tf_CNN_mnist_digits.ipynb
Normal file
@ -0,0 +1,227 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "abe24003",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Use a Convolutional Neural Net to classify the MNIST data of digits"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "6c95fefb",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import tensorflow as tf\n",
|
||||
"import numpy as np\n",
|
||||
"import matplotlib.pyplot as plt"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "280c5099",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# load the data\n",
|
||||
"(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "8c3fc1b2",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Normalize the pixel values to be between 0 and 1\n",
|
||||
"x_train = x_train / 255\n",
|
||||
"x_test = x_test / 255"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "3a9686ff",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Convert the labels into one-hot encoded arrays\n",
|
||||
"y_train = tf.keras.utils.to_categorical(y_train, num_classes=10)\n",
|
||||
"y_test = tf.keras.utils.to_categorical(y_test, num_classes=10)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "e80e582c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Define the model\n",
|
||||
"model = tf.keras.models.Sequential()\n",
|
||||
"model.add(tf.keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))\n",
|
||||
"model.add(tf.keras.layers.MaxPooling2D((2, 2)))\n",
|
||||
"model.add(tf.keras.layers.Conv2D(64, (3, 3), activation='relu'))\n",
|
||||
"model.add(tf.keras.layers.MaxPooling2D((2, 2)))\n",
|
||||
"model.add(tf.keras.layers.Flatten())\n",
|
||||
"model.add(tf.keras.layers.Dense(64, activation='relu'))\n",
|
||||
"model.add(tf.keras.layers.Dense(10, activation='softmax'))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "aff6c38a",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Compile the model\n",
|
||||
"model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "049f9d49",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Train the model and record the history, the data is split in batches\n",
|
||||
"history = model.fit(x_train, y_train, epochs=10, batch_size=64, validation_data=(x_test, y_test))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "f7a8baea",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Get the weights of the Dense layer\n",
|
||||
"# plot the weights as a heatmap or image, where the weights are represented\n",
|
||||
"# as pixel values.\n",
|
||||
"last_layer_weights = model.layers[-1].get_weights()[0]\n",
|
||||
"# Plot the weights as a heatmap\n",
|
||||
"plt.imshow(last_layer_weights, cmap='coolwarm')\n",
|
||||
"plt.colorbar()\n",
|
||||
"plt.title('weights in the output layer')\n",
|
||||
"plt.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "6cc4d04b",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Plot loss and accuracy\n",
|
||||
"plt.figure(figsize=(12, 4))\n",
|
||||
"\n",
|
||||
"# Plot the loss during training\n",
|
||||
"plt.subplot(1, 2, 1)\n",
|
||||
"plt.plot(history.history['loss'], label='training loss')\n",
|
||||
"plt.plot(history.history['val_loss'], label='validation loss')\n",
|
||||
"plt.xlabel('Epoch')\n",
|
||||
"plt.ylabel('Loss')\n",
|
||||
"plt.legend()\n",
|
||||
"\n",
|
||||
"plt.subplot(1, 2, 2)\n",
|
||||
"plt.plot(history.history['accuracy'])\n",
|
||||
"plt.plot(history.history['val_accuracy'])\n",
|
||||
"plt.xlabel('Epoch')\n",
|
||||
"plt.ylabel('Accuracy')\n",
|
||||
"plt.legend()\n",
|
||||
"\n",
|
||||
"plt.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "dcdef199",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Plot a confusion matrix of the test set predictions\n",
|
||||
"test_preds = np.argmax(model.predict(x_test), axis=1)\n",
|
||||
"conf_mat = tf.math.confusion_matrix(y_test.argmax(axis=1), test_preds)\n",
|
||||
"\n",
|
||||
"plt.imshow(conf_mat, cmap=\"Blues\")\n",
|
||||
"plt.xlabel(\"Predicted labels\")\n",
|
||||
"plt.ylabel(\"True labels\")\n",
|
||||
"plt.xticks(np.arange(10))\n",
|
||||
"plt.yticks(np.arange(10))\n",
|
||||
"plt.colorbar()\n",
|
||||
"plt.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "8f28f1ea",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Evaluate the model on the test set\n",
|
||||
"test_loss, test_acc = model.evaluate(x_test, y_test)\n",
|
||||
"print('Test accuracy:', test_acc)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "50c0f27a",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Make predictions on the test set\n",
|
||||
"y_pred = model.predict(x_test)\n",
|
||||
"y_pred = np.argmax(y_pred, axis=1)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "f781bef8",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Plot some examples from the test set and their predictions\n",
|
||||
"fig, axes = plt.subplots(4, 4, figsize=(10, 10))\n",
|
||||
"for i, ax in enumerate(axes.ravel()):\n",
|
||||
" ax.imshow(x_test[i].reshape(28, 28), cmap='gray')\n",
|
||||
" ax.set_title(\"True: %d\\nPred: %d\" % (np.argmax(y_test[i]), y_pred[i]))\n",
|
||||
" ax.axis('off')\n",
|
||||
"plt.suptitle(\"Examples of test set images and their predictions\")\n",
|
||||
"plt.show()\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.8.16"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
Loading…
Reference in New Issue
Block a user