diff --git a/notebooks/03_ml_basics_ex_3_mlp_clothing.ipynb b/notebooks/03_ml_basics_ex_3_mlp_clothing.ipynb deleted file mode 100644 index a66819c..0000000 --- a/notebooks/03_ml_basics_ex_3_mlp_clothing.ipynb +++ /dev/null @@ -1,236 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "id": "6c180d4b", - "metadata": {}, - "outputs": [], - "source": [ - "# Exercise 3\n", - "# fashion mnist data\n", - "# MLP model with two hidden layers, each with a ReLU activation function.\n", - "# Input data is flattened to a 1D array and passed to the model." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "b0e31b9c", - "metadata": {}, - "outputs": [], - "source": [ - "import tensorflow as tf\n", - "from tensorflow import keras\n", - "import matplotlib.pyplot as plt\n", - "import numpy as np" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "1ae1412e", - "metadata": {}, - "outputs": [], - "source": [ - "# Load the MNIST Fashion dataset\n", - "(x_train, y_train), (x_test, y_test) = keras.datasets.fashion_mnist.load_data()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "f8814914", - "metadata": {}, - "outputs": [], - "source": [ - "# Normalize pixel values to between 0 and 1\n", - "x_train = x_train.astype(\"float32\") / 255.0\n", - "x_test = x_test.astype(\"float32\") / 255.0" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "2810da39", - "metadata": {}, - "outputs": [], - "source": [ - "# MNIST dataset images have a shape of (28, 28). The images are flattened\n", - "# into a 1D array of length 784 \n", - "x_train = x_train.reshape(-1, 784)\n", - "x_test = x_test.reshape(-1, 784)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "96f7ff8a", - "metadata": {}, - "outputs": [], - "source": [ - "# The model is defined here with three dense (fully connected) layers\n", - "# The first layer is a Dense layer with 128 units and a ReLU activation\n", - "# function with an input shape of (784,). This layer serves as the input\n", - "# layer of the model.\n", - "# The second layer is also a Dense layer with 64 units and a ReLU activation\n", - "# function. This layer takes the output of the previous layer as input, and\n", - "# applies a non-linear transformation to it to produce a new set of features\n", - "# that the next layer can use.\n", - "# The third is another Dense layer, one for each class in the output. The\n", - "# output is raw scores or logits for each class since there is no activation\n", - "# function . This layer is responsible for producing the final output of the\n", - "# model, which can then be used to make predictions.\n", - "# With Dropout(0.2) 20 % of the input is randomly droped, this should reduce overfitting\n", - "model = keras.Sequential([\n", - " keras.layers.Dense(128, activation='relu', input_shape=(784,)),\n", - " # keras.layers.Dropout(0.2),\n", - " keras.layers.Dense(64, activation='relu'),\n", - " keras.layers.Dense(10)\n", - "])\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "a3fe609c", - "metadata": {}, - "outputs": [], - "source": [ - "# Compile the model\n", - "# adam = specifies the optimizer to use during training\n", - "# loss function to use during training, SparseCategoricalCrossentropy loss\n", - "# is commonly used for multi-class classification problems.\n", - "# from_logits=True indicates that the model's output is a raw score\n", - "# for each class and not a probability distribution.\n", - "model.compile(optimizer='adam',\n", - " loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),\n", - " metrics=['accuracy'])" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "cf6c978d", - "metadata": {}, - "outputs": [], - "source": [ - "# Train the model\n", - "history = model.fit(x_train, y_train, epochs=10, validation_split=0.2)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "97fc2313", - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "# Evaluate the model on the test set\n", - "test_loss, test_acc = model.evaluate(x_test, y_test, verbose=2)\n", - "print(\"Test accuracy:\", test_acc)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "ef5f19d0", - "metadata": {}, - "outputs": [], - "source": [ - "# Plot the training and validation accuracy and loss over time\n", - "plt.figure(figsize=(10, 4))\n", - "plt.subplot(1, 2, 1)\n", - "plt.plot(history.history[\"accuracy\"])\n", - "plt.plot(history.history[\"val_accuracy\"])\n", - "plt.title(\"Model accuracy\")\n", - "plt.ylabel(\"Accuracy\")\n", - "plt.xlabel(\"Epoch\")\n", - "plt.legend([\"Train\", \"Validation\"], loc=\"lower right\")\n", - "\n", - "plt.subplot(1, 2, 2)\n", - "plt.plot(history.history[\"loss\"])\n", - "plt.plot(history.history[\"val_loss\"])\n", - "plt.title(\"Model loss\")\n", - "plt.ylabel(\"Loss\")\n", - "plt.xlabel(\"Epoch\")\n", - "plt.legend([\"Train\", \"Validation\"], loc=\"upper right\")\n", - "\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "c0ebddc4", - "metadata": {}, - "outputs": [], - "source": [ - "# Plot a confusion matrix of the test set predictions\n", - "test_preds = np.argmax(model.predict(x_test), axis=1)\n", - "conf_mat = tf.math.confusion_matrix(y_test, test_preds)\n", - "plt.imshow(conf_mat, cmap=\"Blues\")\n", - "plt.xlabel(\"Predicted labels\")\n", - "plt.ylabel(\"True labels\")\n", - "plt.xticks(np.arange(10))\n", - "plt.yticks(np.arange(10))\n", - "plt.colorbar()\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "9175d533", - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "# Make predictions on the test set\n", - "y_pred = model.predict(x_test)\n", - "y_pred = np.argmax(y_pred, axis=1)\n", - "\n", - "# Plot some examples from the test set and their predictions\n", - "fig, axes = plt.subplots(4, 4, figsize=(18, 18))\n", - "for i, ax in enumerate(axes.ravel()):\n", - " ax.matshow(x_test[i].reshape(28, 28), cmap='gray')\n", - " ax.set_title(\"True: %d\\nPredict: %d\" % (y_test[i], y_pred[i]))\n", - " ax.axis(\"off\")\n", - "\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "4a6e85be", - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.16" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -}