219 lines
4.8 KiB
Plaintext
219 lines
4.8 KiB
Plaintext
|
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"Exercise 4: Least square fit to data"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"from matplotlib import pyplot as plt\n",
|
||
|
"plt.rcParams[\"font.size\"] = 20\n",
|
||
|
"import numpy as np"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"# data\n",
|
||
|
"x = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], dtype='d')\n",
|
||
|
"dx = np.array([0.1,0.1,0.5,0.1,0.5,0.1,0.5,0.1,0.5,0.1], dtype='d')\n",
|
||
|
"y = np.array([1.1 ,2.3 ,2.7 ,3.2 ,3.1 ,2.4 ,1.7 ,1.5 ,1.5 ,1.7 ], dtype='d')\n",
|
||
|
"dy = np.array([0.15,0.22,0.29,0.39,0.31,0.21,0.13,0.15,0.19,0.13], dtype='d')"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"# define fit function \n",
|
||
|
"def pol3(a0, a1, a2, a3):\n",
|
||
|
" return a0 + x*a1 + a2*x**2 + a3*x**3"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"# least-squares function = sum of data residuals squared\n",
|
||
|
"def LSQ(a0, a1, a2, a3):\n",
|
||
|
" return np.sum((y - pol3(a0, a1, a2, a3)) ** 2 / dy ** 2)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"# import Minuit object\n",
|
||
|
"from iminuit import Minuit"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"# create instance of Minuit and use LSQ function to minimize\n",
|
||
|
"LSQ.errordef = Minuit.LEAST_SQUARES\n",
|
||
|
"m = Minuit(LSQ,a0=-1.3, a1=2.6 ,a2=-0.24 ,a3=0.005)\n",
|
||
|
"# run migrad \n",
|
||
|
"m.migrad()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"# get function value at the minimum, which is per definition a chi2\n",
|
||
|
"# obtain chi2 / degree of freedom (dof)\n",
|
||
|
"chi2 = m.fval / (len(y) - len(m.values))\n",
|
||
|
"print (\"Chi2/ndof =\" , chi2)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"# run covariance \n",
|
||
|
"m.hesse()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"#get covariance matrix\n",
|
||
|
"m.covariance"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"#get correlation matrix in numpy array\n",
|
||
|
"cov = m.covariance\n",
|
||
|
"print (cov)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"# run minos error analysis\n",
|
||
|
"# The Minos algorithm uses the profile likelihood method to compute\n",
|
||
|
"# (generally asymmetric) confidence intervals.\n",
|
||
|
"m.minos()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"# Get a 2D contour of the function around the minimum for 2 parameters\n",
|
||
|
"# and draw a 2 D contours up to 4 sigma of a1 and a2 \n",
|
||
|
"#m.draw_profile(\"a1\")\n",
|
||
|
"m.draw_mncontour(\"a2\", \"a3\", cl=[1, 2, 3, 4])"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"print(m.values,m.errors)\n",
|
||
|
"a0_fit = m.values[\"a0\"]\n",
|
||
|
"a1_fit = m.values[\"a1\"]\n",
|
||
|
"a2_fit = m.values[\"a2\"]\n",
|
||
|
"a3_fit = m.values[\"a3\"]"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"# display fitted function \n",
|
||
|
"x_plot = np.linspace( 0.1, 10.1 , 200 )\n",
|
||
|
"y_fit = a0_fit + a1_fit * x_plot + a2_fit * x_plot**2 + a3_fit * x_plot**3"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"# plot data \n",
|
||
|
"plt.figure()\n",
|
||
|
"plt.errorbar(x, y, dy , dx, fmt=\"o\")\n",
|
||
|
"plt.plot(x_plot,y_fit )\n",
|
||
|
"plt.title(\"iminuit Fit Test\")\n",
|
||
|
"plt.xlabel('x')\n",
|
||
|
"plt.ylabel('f(x)')\n",
|
||
|
"plt.xlim(-0.1, 10.1)\n",
|
||
|
"\n",
|
||
|
"# show the plot\n",
|
||
|
"plt.show()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": []
|
||
|
}
|
||
|
],
|
||
|
"metadata": {
|
||
|
"kernelspec": {
|
||
|
"display_name": "Python 3 (ipykernel)",
|
||
|
"language": "python",
|
||
|
"name": "python3"
|
||
|
},
|
||
|
"language_info": {
|
||
|
"codemirror_mode": {
|
||
|
"name": "ipython",
|
||
|
"version": 3
|
||
|
},
|
||
|
"file_extension": ".py",
|
||
|
"mimetype": "text/x-python",
|
||
|
"name": "python",
|
||
|
"nbconvert_exporter": "python",
|
||
|
"pygments_lexer": "ipython3",
|
||
|
"version": "3.8.16"
|
||
|
}
|
||
|
},
|
||
|
"nbformat": 4,
|
||
|
"nbformat_minor": 4
|
||
|
}
|