ML-Kurs-SS2023/notebooks/02_fit_ex_3_sol.ipynb

254 lines
5.5 KiB
Plaintext
Raw Normal View History

2023-04-05 16:48:43 +02:00
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Exercise 3: Least square fit with a 3rd order polynomial with iminuit"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import math"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Data x,y and dy\n",
"x = np.array([0.2 , 0.4 , 0.6 , 0.8, 1. , 1.2, 1.4, 1.6, 1.8, 2., 2.2, 2.4, 2.6, 2.8 , 3., 3.2 ,3.4, 3.6, 3.8,4.],dtype='d')\n",
"dy = np.array([0.04,0.021,0.035,0.03,0.029,0.019,0.024,0.018,0.019,0.022,0.02,0.025,0.018,0.024,0.019,0.021,0.03,0.019,0.03,0.024 ], dtype='d')\n",
"y = np.array([1.792,1.695,1.541,1.514,1.427,1.399,1.388,1.270,1.262,1.228,1.189,1.182,1.121,1.129,1.124,1.089,1.092,1.084,1.058,1.057 ], dtype='d')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Define fit functions - a 3rd order polynomial\n",
"def pol3(a0, a1, a2, a3):\n",
" return a0 + x*a1 + a2*x**2 + a3*x**3"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# least-squares function = sum of data residuals squared\n",
"def LSQ(a0, a1, a2, a3):\n",
" return np.sum((y - pol3(a0, a1, a2, a3)) ** 2 / dy ** 2)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# import minuit2 fitting library\n",
"from iminuit import Minuit"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# create instance of Minuit and use LSQ function to minimize\n",
"LSQ.errordef = Minuit.LEAST_SQUARES\n",
"m = Minuit(LSQ,a0=0.01, a1=0.05 ,a2=0.01 ,a3=0.001)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"m.params"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# run migrad for minimization\n",
"m.migrad()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# run covariance \n",
"m.hesse()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#get correlation matrix\n",
"cov = m.covariance\n",
"print (cov)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# access elements of the numpy arrays\n",
"print(cov[0, 1])\n",
"print(cov[0, 2])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# run minos error analysis\n",
"# The Minos algorithm uses the profile likelihood method to compute\n",
"# (generally asymmetric) confidence intervals.\n",
"m.minos()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Get a 2D contour of the function around the minimum for 2 parameters\n",
"# and draw a 2 D contours up to 4 sigma of a1 and a2 \n",
"m.draw_mncontour(\"a1\", \"a2\", cl=[1, 2, 3, 4])\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"m.draw_profile(\"a2\",subtract_min=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# access fit results by parameter name and get minos asymetric errors\n",
"print (m.merrors['a2'].lower)\n",
"print (m.merrors['a2'].upper)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# more print out\n",
"print (m.values,m.errors)\n",
"print (m.errors)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Access fit results\n",
"a0_fit = m.values[\"a0\"]\n",
"a1_fit = m.values[\"a1\"]\n",
"a2_fit = m.values[\"a2\"]\n",
"a3_fit = m.values[\"a3\"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# display fitted function \n",
"x_plot = np.linspace( 0.1, 4.1 , 100 )\n",
"y_fit = a0_fit + a1_fit * x_plot + a2_fit * x_plot**2 + a3_fit * x_plot**3\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plt.figure()\n",
"\n",
"plt.errorbar(x, y, dy , fmt=\"o\")\n",
"plt.plot(x_plot,y_fit ) \n",
"plt.xlabel('x')\n",
"plt.ylabel('f(x)')\n",
"plt.title('iminuit exponential Fit')\n",
"#plt.axis([0,30,-1.2,1.2])\n",
"\n",
"# show the plot\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.16"
}
},
"nbformat": 4,
"nbformat_minor": 4
}