ML-Kurs-SS2023/notebooks/03_ml_basics_ex_4_mlp_clothing.ipynb

237 lines
6.7 KiB
Plaintext
Raw Normal View History

2023-04-03 13:08:49 +02:00
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "6c180d4b",
"metadata": {},
"outputs": [],
"source": [
"# Exercise 3\n",
"# fashion mnist data\n",
"# MLP model with two hidden layers, each with a ReLU activation function.\n",
"# Input data is flattened to a 1D array and passed to the model."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b0e31b9c",
"metadata": {},
"outputs": [],
"source": [
"import tensorflow as tf\n",
"from tensorflow import keras\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1ae1412e",
"metadata": {},
"outputs": [],
"source": [
"# Load the MNIST Fashion dataset\n",
"(x_train, y_train), (x_test, y_test) = keras.datasets.fashion_mnist.load_data()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f8814914",
"metadata": {},
"outputs": [],
"source": [
"# Normalize pixel values to between 0 and 1\n",
"x_train = x_train.astype(\"float32\") / 255.0\n",
"x_test = x_test.astype(\"float32\") / 255.0"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2810da39",
"metadata": {},
"outputs": [],
"source": [
"# MNIST dataset images have a shape of (28, 28). The images are flattened\n",
"# into a 1D array of length 784 \n",
"x_train = x_train.reshape(-1, 784)\n",
"x_test = x_test.reshape(-1, 784)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "96f7ff8a",
"metadata": {},
"outputs": [],
"source": [
"# The model is defined here with three dense (fully connected) layers\n",
"# The first layer is a Dense layer with 128 units and a ReLU activation\n",
"# function with an input shape of (784,). This layer serves as the input\n",
"# layer of the model.\n",
"# The second layer is also a Dense layer with 64 units and a ReLU activation\n",
"# function. This layer takes the output of the previous layer as input, and\n",
"# applies a non-linear transformation to it to produce a new set of features\n",
"# that the next layer can use.\n",
"# The third is another Dense layer, one for each class in the output. The\n",
"# output is raw scores or logits for each class since there is no activation\n",
"# function . This layer is responsible for producing the final output of the\n",
"# model, which can then be used to make predictions.\n",
"# With Dropout(0.2) 20 % of the input is randomly droped, this should reduce overfitting\n",
"model = keras.Sequential([\n",
" keras.layers.Dense(128, activation='relu', input_shape=(784,)),\n",
" # keras.layers.Dropout(0.2),\n",
" keras.layers.Dense(64, activation='relu'),\n",
" keras.layers.Dense(10)\n",
"])\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a3fe609c",
"metadata": {},
"outputs": [],
"source": [
"# Compile the model\n",
"# adam = specifies the optimizer to use during training\n",
"# loss function to use during training, SparseCategoricalCrossentropy loss\n",
"# is commonly used for multi-class classification problems.\n",
"# from_logits=True indicates that the model's output is a raw score\n",
"# for each class and not a probability distribution.\n",
"model.compile(optimizer='adam',\n",
" loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),\n",
" metrics=['accuracy'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cf6c978d",
"metadata": {},
"outputs": [],
"source": [
"# Train the model\n",
"history = model.fit(x_train, y_train, epochs=10, validation_split=0.2)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "97fc2313",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"# Evaluate the model on the test set\n",
"test_loss, test_acc = model.evaluate(x_test, y_test, verbose=2)\n",
"print(\"Test accuracy:\", test_acc)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ef5f19d0",
"metadata": {},
"outputs": [],
"source": [
"# Plot the training and validation accuracy and loss over time\n",
"plt.figure(figsize=(10, 4))\n",
"plt.subplot(1, 2, 1)\n",
"plt.plot(history.history[\"accuracy\"])\n",
"plt.plot(history.history[\"val_accuracy\"])\n",
"plt.title(\"Model accuracy\")\n",
"plt.ylabel(\"Accuracy\")\n",
"plt.xlabel(\"Epoch\")\n",
"plt.legend([\"Train\", \"Validation\"], loc=\"lower right\")\n",
"\n",
"plt.subplot(1, 2, 2)\n",
"plt.plot(history.history[\"loss\"])\n",
"plt.plot(history.history[\"val_loss\"])\n",
"plt.title(\"Model loss\")\n",
"plt.ylabel(\"Loss\")\n",
"plt.xlabel(\"Epoch\")\n",
"plt.legend([\"Train\", \"Validation\"], loc=\"upper right\")\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c0ebddc4",
"metadata": {},
"outputs": [],
"source": [
"# Plot a confusion matrix of the test set predictions\n",
"test_preds = np.argmax(model.predict(x_test), axis=1)\n",
"conf_mat = tf.math.confusion_matrix(y_test, test_preds)\n",
"plt.imshow(conf_mat, cmap=\"Blues\")\n",
"plt.xlabel(\"Predicted labels\")\n",
"plt.ylabel(\"True labels\")\n",
"plt.xticks(np.arange(10))\n",
"plt.yticks(np.arange(10))\n",
"plt.colorbar()\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9175d533",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"# Make predictions on the test set\n",
"y_pred = model.predict(x_test)\n",
"y_pred = np.argmax(y_pred, axis=1)\n",
"\n",
"# Plot some examples from the test set and their predictions\n",
"fig, axes = plt.subplots(4, 4, figsize=(18, 18))\n",
"for i, ax in enumerate(axes.ravel()):\n",
" ax.matshow(x_test[i].reshape(28, 28), cmap='gray')\n",
" ax.set_title(\"True: %d\\nPredict: %d\" % (y_test[i], y_pred[i]))\n",
" ax.axis(\"off\")\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4a6e85be",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}