119 lines
2.4 KiB
Plaintext
119 lines
2.4 KiB
Plaintext
|
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"id": "df1f5eb3",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"# demonstration of broadcasting in tensorflow"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"id": "1d61c70a",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"import tensorflow as tf"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"id": "38bca1cf",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"# Define two tensors with different shapes\n",
|
||
|
"a = tf.constant([[1, 2, 3], [4, 5, 6]])\n",
|
||
|
"b = tf.constant([10, 20, 30])"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"id": "c3f382e3",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"# Perform element-wise multiplication using broadcasting\n",
|
||
|
"c = a * b\n",
|
||
|
"# Print the result\n",
|
||
|
"print(c)\n"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"id": "95683fe5",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"# Broadcasting scalar to tensor\n",
|
||
|
"x = tf.constant([1, 2, 3])\n",
|
||
|
"y = 2\n",
|
||
|
"z = x + y # equivalent to tf.add(x, y)\n",
|
||
|
"print(z.numpy()) # [3 4 5]"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"id": "8ed98565",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"# Broadcasting vector to matrix\n",
|
||
|
"x = tf.constant([[1, 2], [3, 4]])\n",
|
||
|
"y = tf.constant([1, 2])\n",
|
||
|
"z = x + y # equivalent to tf.add(x, y)\n",
|
||
|
"print(z.numpy()) # [[2 4], [4 6]]"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"id": "41f4196f",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"# Broadcasting matrix to tensor\n",
|
||
|
"x = tf.constant([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])\n",
|
||
|
"y = tf.constant([[1], [2]])\n",
|
||
|
"z = x + y # equivalent to tf.add(x, y)\n",
|
||
|
"print(z.numpy()) # [[[2 3], [4 5]], [[7 8], [9 10]]]"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"id": "76a5108d",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": []
|
||
|
}
|
||
|
],
|
||
|
"metadata": {
|
||
|
"kernelspec": {
|
||
|
"display_name": "Python 3 (ipykernel)",
|
||
|
"language": "python",
|
||
|
"name": "python3"
|
||
|
},
|
||
|
"language_info": {
|
||
|
"codemirror_mode": {
|
||
|
"name": "ipython",
|
||
|
"version": 3
|
||
|
},
|
||
|
"file_extension": ".py",
|
||
|
"mimetype": "text/x-python",
|
||
|
"name": "python",
|
||
|
"nbconvert_exporter": "python",
|
||
|
"pygments_lexer": "ipython3",
|
||
|
"version": "3.8.16"
|
||
|
}
|
||
|
},
|
||
|
"nbformat": 4,
|
||
|
"nbformat_minor": 5
|
||
|
}
|