ML-Kurs-SS2023/notebooks/03_ml_basics_tf_differentiate.ipynb

103 lines
1.9 KiB
Plaintext
Raw Permalink Normal View History

2023-04-03 13:08:49 +02:00
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "eefe7571",
"metadata": {},
"outputs": [],
"source": [
"# show differentiation in Tensorflow"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a9d7c185",
"metadata": {},
"outputs": [],
"source": [
"import tensorflow as tf"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "584384f1",
"metadata": {},
"outputs": [],
"source": [
"# Define a function to differentiate\n",
"def f(x):\n",
" return x ** 2 + 2 * x + 1"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "70430402",
"metadata": {},
"outputs": [],
"source": [
"# Create a TensorFlow variable\n",
"x = tf.Variable(2.0)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "45ea0a33",
"metadata": {},
"outputs": [],
"source": [
"# Use tf.GradientTape to record the gradients\n",
"with tf.GradientTape() as tape:\n",
" y = f(x)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f6b1ff27",
"metadata": {},
"outputs": [],
"source": [
"# Calculate the gradient of y with respect to x\n",
"dy_dx = tape.gradient(y, x)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4f581817",
"metadata": {},
"outputs": [],
"source": [
"# Print the result\n",
"print(dy_dx)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}