135 lines
2.9 KiB
Plaintext
135 lines
2.9 KiB
Plaintext
|
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"id": "3644475e",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"# Display hand writing dataset"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"id": "8125479b",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"import tensorflow as tf\n",
|
||
|
"import numpy as np\n",
|
||
|
"import matplotlib.pyplot as plt"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"id": "d45b964f",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"# Load training dataset of 60000 images with greyscale values in 28 x 28\n",
|
||
|
"# and labels \n",
|
||
|
"(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"id": "fa8ae2a6",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"# print the shape of the numpy arrays\n",
|
||
|
"print ('Print shape of pixel data')\n",
|
||
|
"print(x_train.shape)\n",
|
||
|
"print ('Print shape of labels')\n",
|
||
|
"print(y_train.shape)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"id": "be70973e",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"# normalize pixel to 0-1\n",
|
||
|
"x_train = x_train / 255\n",
|
||
|
"x_test = x_test / 255"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"id": "55f457d5",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"# choose an image num to display and print\n",
|
||
|
"num = 20\n",
|
||
|
"\n",
|
||
|
"image = x_train[num]\n",
|
||
|
"label = y_train[num]"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"id": "149788b7",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"# plot the image using imshow\n",
|
||
|
"plt.imshow(image, cmap='gray')\n",
|
||
|
"# set the title\n",
|
||
|
"plt.title(\"Label: %d\" % label )\n",
|
||
|
"# remove the axis labels and ticks\n",
|
||
|
"plt.axis('off')\n",
|
||
|
"# show the plot\n",
|
||
|
"plt.show()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"id": "232ef6ca",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"# Plot 16 examples from the numpy array which was read in above\n",
|
||
|
"# and display it\n",
|
||
|
"fig, axes = plt.subplots(4, 4, figsize=(10, 10))\n",
|
||
|
"for i , ax in enumerate(axes.ravel()):\n",
|
||
|
" ax.imshow(x_train[num+i], cmap='gray')\n",
|
||
|
" ax.set_title(\"Label: %d\" % y_train[num+i])\n",
|
||
|
" ax.axis('off')\n",
|
||
|
"plt.suptitle(\"Examples of training set images\")\n",
|
||
|
"plt.show()"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"metadata": {
|
||
|
"kernelspec": {
|
||
|
"display_name": "Python 3 (ipykernel)",
|
||
|
"language": "python",
|
||
|
"name": "python3"
|
||
|
},
|
||
|
"language_info": {
|
||
|
"codemirror_mode": {
|
||
|
"name": "ipython",
|
||
|
"version": 3
|
||
|
},
|
||
|
"file_extension": ".py",
|
||
|
"mimetype": "text/x-python",
|
||
|
"name": "python",
|
||
|
"nbconvert_exporter": "python",
|
||
|
"pygments_lexer": "ipython3",
|
||
|
"version": "3.8.16"
|
||
|
}
|
||
|
},
|
||
|
"nbformat": 4,
|
||
|
"nbformat_minor": 5
|
||
|
}
|