ML-Kurs-SS2023/notebooks/03_ml_basics_display_Clothing.ipynb

123 lines
2.8 KiB
Plaintext
Raw Permalink Normal View History

2023-04-03 13:08:49 +02:00
{
"cells": [
{
"cell_type": "markdown",
"id": "8f9f0e7b",
"metadata": {},
"source": [
"Display fashion_mnist dataset of clothes from Zalando"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cc829d9a",
"metadata": {},
"outputs": [],
"source": [
"import tensorflow as tf\n",
"from tensorflow import keras\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "63348efe",
"metadata": {},
"outputs": [],
"source": [
"# Load the MNIST Fashion dataset\n",
"(x_train, y_train), (x_test, y_test) = keras.datasets.fashion_mnist.load_data()\n",
"# Set the class names\n",
"class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', \n",
" 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a6c86027",
"metadata": {},
"outputs": [],
"source": [
"# print the shape of the numpy arrays\n",
"print ('Print shape of pixel data')\n",
"print(x_train.shape)\n",
"print ('Print shape of labels')\n",
"print(y_train.shape)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cc58b142",
"metadata": {},
"outputs": [],
"source": [
"# Normalize pixel values to between 0 and 1\n",
"x_train = x_train.astype(\"float32\") / 255.0\n",
"x_test = x_test.astype(\"float32\") / 255.0"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c7976111",
"metadata": {},
"outputs": [],
"source": [
"# choose an image num to print\n",
"num = 20\n",
"image = x_train[num]\n",
"label = y_train[num]\n",
"\n",
"print ('Print normailzed pixel data of image ',num, ' :')\n",
"print(x_train[num])\n",
"print ('Print label of image ',num , ' :' )\n",
"print(y_train[num])\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "64a46625",
"metadata": {},
"outputs": [],
"source": [
"plt.figure(figsize=(10,10))\n",
"for i in range(25):\n",
" plt.subplot(5,5,i+1)\n",
" plt.xticks([])\n",
" plt.yticks([])\n",
" plt.grid(False)\n",
" plt.imshow(x_train[i], cmap=plt.cm.binary)\n",
" plt.xlabel(class_names[y_train[i]])\n",
"plt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}