HITDAQ/FPGA_firmware/sensor_algo_qsys/bkg_subtraction_pipe.v
2024-10-11 14:49:54 +02:00

313 lines
9.1 KiB
Verilog

//background subtraction module
//tested with algo_top_cl_cali_tb.v with bkg_subtraction_pipe
//tested with bkg_subtraction_pipe_tb
//okay... it is not really pipe.... has to read a ram after use the previous output of this ram
module bkg_subtraction_pipe #(parameter BKG_FRAME = 4)(
//clock and reset
input wire clk,
input wire rst, // connect to rst_run
//avalon ST(Streaming) sink: 0 readlatency and 0 readallowence // 163 word = 3 header + 160 data
input wire [31:0] data_in_data, // st.data
output wire data_in_ready, // .ready
input wire data_in_valid, // .valid
input wire [1:0] data_in_empty, // .empty
input wire data_in_endofpacket, // .endofpacket
input wire data_in_startofpacket, // .startofpacket
//avalon ST(Streaming) source: 0 readlatency and 0 readallowence //160 word only with data
output wire [31:0] data_out_data, // st.data
input wire data_out_ready, // .ready
output wire data_out_valid, // .valid
output wire [1:0] data_out_empty, // .empty
output wire data_out_endofpacket, // .endofpacket
output wire data_out_startofpacket, // .startofpacket
output wire bkg_sub_on,
//avalon ST(Streaming) source: 0 readlatency and 0 readallowence //3 headers
output wire [31:0] to_udp_data, // st.data
input wire to_udp_ready, // .ready
output wire to_udp_valid, // .valid
output wire [1:0] to_udp_empty, // .empty
output wire to_udp_endofpacket, // .endofpacket
output wire to_udp_startofpacket // .startofpacket
//output rst_frame // I have to think about this rst_frame when is a good timing! or do I need it? 26.June. 2024
);
localparam SHIFT_BIT = $clog2(BKG_FRAME);
wire rst_frame = data_in_startofpacket;
wire data_out_ready_for3header = to_udp_ready;
/************************* Frame Counter***********************************/
/*
This is a frame counter;
frameID +1 at the rising edge of data_in_startofpacket
if frame increase at 10kHz, the 27-bit frameID can count 3.72 hour frame
*/
reg [26:0] frameID;
reg data_in_startofpacket_last;
always @(posedge clk or posedge rst)
begin
if (rst)
begin
data_in_startofpacket_last <= 1'b0;
frameID<= 27'b0;
end
else
begin
data_in_startofpacket_last <= data_in_startofpacket;
if (~data_in_startofpacket_last && data_in_startofpacket)
frameID<= frameID + 1'b1;
end
end
//**********************bkg_subtraction or not *****************
reg[1:0] state_bkg;
localparam STATE_BKG_IDLE = 0;
localparam STATE_RAM_RST = 1;
localparam STATE_BKG_ADD = 3;
localparam STATE_BKG_OUT = 2;
assign bkg_sub_on = (state_bkg == STATE_BKG_OUT)? 1'b1:1'b0;
always @(posedge clk or posedge rst)
begin
if (rst)
state_bkg <= STATE_BKG_IDLE;
else if (frameID <=27'd1)
state_bkg <= STATE_RAM_RST;
else if (frameID >BKG_FRAME+1)
state_bkg <= STATE_BKG_OUT;
else
state_bkg <= STATE_BKG_ADD;
end
/************** bkg RAM ****************************/
/*
for prepare the bkg signal by two RAM;
one for data_in_data[31:16]; the other for data_in_data[15:0]
the signal after bkg subtraction is 16 bit signed; the LSM bit is dropped out; (it's not important with current noise level)
*/
reg[8:0] rdaddress; //for read ram
reg[8:0] wraddress;
wire wren;
//data_in_data + ram0_q
reg[31:0] ram0_data;
reg[31:0] ram1_data;
wire[31:0] ram0_q;
wire[31:0] ram1_q;
ram4bkg ram4bkg0 (
.data(ram0_data), //32 bits
.rdaddress(rdaddress),
.clock(clk),
.wraddress(wraddress),
.wren(wren),
.q(ram0_q) //32 bits
);
ram4bkg ram4bkg1 (
.data(ram1_data), //32 bits
.rdaddress(rdaddress),
.clock(clk),
.wraddress(wraddress),
.wren(wren),
.q(ram1_q) //32 bits
);
wire[15:0] bkg0;
wire[15:0] bkg1;
assign bkg0 = bkg_sub_on?ram0_q[SHIFT_BIT+15:SHIFT_BIT]:16'b0;
assign bkg1 = bkg_sub_on?ram1_q[SHIFT_BIT+15:SHIFT_BIT]:16'b0;
//data_in_data - bkg0
reg[16:0] data0_sub;
reg[16:0] data1_sub;
//data_in_data
wire[15:0] data0_in_data;
wire[15:0] data1_in_data;
//reverse the polarity of ADC signal for calculation => no for simulation
assign data0_in_data = ~data_in_data[31:16];
assign data1_in_data = ~data_in_data[15:0];
// *********************** ST interface ***********************
reg [3:0] state; //State of the state machine
localparam STATE_IDLE = 4'd0; //waiting for SOP
localparam STATE_WORD0 = 4'd1; //sending first word :
localparam STATE_WORD1 = 4'd2; //sending second word:
localparam STATE_WORD2 = 4'd3; //sending third word :
localparam STATE_RDRAM0 = 4'd4; //wait to read the first channel of ram
localparam STATE_INPUT0 = 4'd5; //data_in_ready do sub and sum
localparam STATE_RDRAM1 = 4'd6; //data_in_data is ready to output, data_out_startofpacket is high; read next ram
localparam STATE_INPUT = 4'd7; //data_in_ready do sub and sum for next
localparam STATE_RDRAM = 4'd8;
localparam STATE_OUTPUT_LAST = 4'd9; //output last, data_out_endofpacket is high
localparam STATE_LOC = 4'd10; //
wire state_bkg_valid;
wire state_data_valid;
// Check if state_bkg is either STATE_RAM_RST or STATE_BKG_ADD for write
assign state_bkg_valid = (state_bkg == STATE_RAM_RST) || (state_bkg == STATE_BKG_ADD);
// Check if state is STATE_DATA and both data_in_valid and data_out_ready are true
assign state_data_valid = (state == STATE_RDRAM1 || state == STATE_RDRAM || state == STATE_OUTPUT_LAST);
// Final wren assignment combining the conditions
assign wren = (state_bkg_valid && state_data_valid)? 1'b1 : 1'b0;
//The state machine
always @(posedge clk or posedge rst)
begin
if (rst)
begin
state <= STATE_IDLE;
end
else
case(state)
STATE_IDLE:
begin
rdaddress <= 0;
wraddress <= 0;
if (data_in_startofpacket)
begin
state <= STATE_WORD0;
end
end
STATE_WORD0:
begin
if (data_in_valid && data_out_ready_for3header)
begin
state <= STATE_WORD1;
end
end
STATE_WORD1:
begin
if (data_in_valid && data_out_ready_for3header)
begin
state <= STATE_WORD2;
end
end
STATE_WORD2:
begin
if (data_in_valid && data_out_ready_for3header)
begin
state <= STATE_RDRAM0;
rdaddress <= 0;
end
end
STATE_RDRAM0:
begin
state <= STATE_INPUT0;
end
STATE_INPUT0:
begin
if (data_in_valid)
begin
state <= STATE_RDRAM1;
rdaddress <= rdaddress + 1'b1;
data0_sub <= data0_in_data - bkg0;
data1_sub <= data1_in_data - bkg1;
if (state_bkg == STATE_BKG_ADD)
begin
ram0_data <= data0_in_data + ram0_q;
ram1_data <= data1_in_data + ram1_q;
end else
begin
ram0_data <= 0;
ram1_data <= 0;
end
end
end
STATE_RDRAM1:
begin
if (data_out_ready)
state <= STATE_INPUT;
end
STATE_INPUT:
begin
if (data_in_valid)
begin
if (data_in_endofpacket)
state <= STATE_OUTPUT_LAST;
else
state <= STATE_RDRAM;
rdaddress <= rdaddress + 1'b1;
wraddress <= wraddress + 1'b1;
data0_sub <= data0_in_data - bkg0;
data1_sub <= data1_in_data - bkg1;
if (state_bkg == STATE_BKG_ADD)
begin
ram0_data <= data0_in_data + ram0_q;
ram1_data <= data1_in_data + ram1_q;
end else
begin
ram0_data <= 0;
ram1_data <= 0;
end
end
end
STATE_RDRAM:
begin
if (data_out_ready)
state <= STATE_INPUT;
end
STATE_OUTPUT_LAST:
begin
if (data_out_ready)
state <= STATE_LOC;
end
STATE_LOC:
begin
state <= STATE_IDLE;
end
default:
begin
state <= STATE_IDLE;
end
endcase
end
//output 160 words
assign data_in_ready = ((state == STATE_WORD0 || state == STATE_WORD1 || state == STATE_WORD2) && data_out_ready_for3header) || (state == STATE_INPUT) ||(state == STATE_INPUT0);
assign data_out_valid = (state == STATE_RDRAM1 || state == STATE_RDRAM || state == STATE_OUTPUT_LAST) ? 1'b1 : 1'b0;
assign data_out_data = (state == STATE_RDRAM1 || state == STATE_RDRAM || state == STATE_OUTPUT_LAST)? (bkg_sub_on? {data0_sub[16:1],data1_sub[16:1]}: {data0_sub[15:0],data1_sub[15:0]}):0;
assign data_out_startofpacket = (state == STATE_RDRAM1)? 1'b1: 1'b0;
assign data_out_endofpacket = (state == STATE_OUTPUT_LAST) ? 1'b1 : 1'b0;
assign data_out_empty = 0;
//output the 3 header to upd
assign to_udp_data = (state == STATE_WORD0 || state == STATE_WORD1 || state == STATE_WORD2)? data_in_data:0;
assign to_udp_valid = (state == STATE_WORD0 || state == STATE_WORD1 || state == STATE_WORD2)? data_in_valid: 1'b0;
assign to_udp_empty = (state == STATE_WORD0 || state == STATE_WORD1 || state == STATE_WORD2)? data_in_empty: 2'b0;
assign to_udp_startofpacket = data_in_startofpacket;
assign to_udp_endofpacket = (state == STATE_WORD2)?data_in_valid: 1'b0;
endmodule