
Physikalisches Institut

Ruprecht-Karls

Universität Heidelberg

Beam Position Monitor

Technical description

1 / 97 Michał Dziewiecki 2019

Beam Position Monitor

A bundle of random information

Author(s): Michał Dziewiecki

Document revision: 1.0 (issue 1)

Hardware version: 1+2, mainly 2

Date: 2019-12-12

Beam Position Monitor

Technical description
rev. 1.1

2 / 97 Michał Dziewiecki 2019

Revision history:

Document version Description

1.0 (issue 1)
Primary issue. Don’t expect that you find answers for your questions!

Don’t even expect that everything is true!

MIONTECH Triode Gun Modulator MiTwo

3 / 97 Michał Dziewiecki 2019

CONTENTS:

1. Introduction...5

1.1. General..5

1.2. Project directory description...5

2. Hardware description..6

2.1. What it actually does...6

2.2. ... and how...8

2.3. The Electronics ...8

2.3.1. Overview..8

2.3.2. Frontend Schematics..10

2.3.3. Assembly drawings..19

2.3.4. Component list...21

2.3.5. Debug-time updates ...24

2.3.6. Further remarks..24

2.3.7. Connections and controls...25

2.4. Details on synchronization..29

2.5. The FPGA ...32

2.5.1. General...32

2.5.2. Block system design ..32

2.5.3. The QSYS..33

2.5.4. Custom code ..36

2.5.5. Additional information ..44

2.6. Internal processor firmware ..45

2.6.1. General...45

2.6.2. Socket server..46

2.6.3. Control task..47

2.6.4. TCP control protocol ...48

2.6.5. HAL for custom components...51

2.7. Brief description of v.1 ...51

2.7.1. Comparison to v.2..51

2.7.2. Connectors and controls...52

2.8. External hardware components...53

2.8.1. Synchro board ..54

2.8.2. Timestamper ..55

2.8.3. Ethernet switch ..56

2.8.4. Power supplies ...56

3. PC software...57

3.1. DAQ software ...57

3.1.1. General overview...57

3.1.2. Basic concepts..57

3.1.3. Deeper into the code ..58

3.1.4. Output data format ...59

3.2. Timestamper ...60

3.3. Offline software ..60

3.3.1. Matlab functions ..60

3.3.2. ROOT interface..72

4. User’s manual ...75

4.1. Hardware preparation ...75

4.2. Setting up software ...75

Beam Position Monitor

Technical description
rev. 1.1

4 / 97 Michał Dziewiecki 2019

4.2.1. Configuring host IP..76

4.2.2. Configuring device list...76

4.2.3. Setting up timing and sensor gain ..77

4.3. Data acquisition.. 78

4.4. Data post-processing .. 79

4.4.1. Post-processing in Matlab..79

4.4.2. Post-processing in ROOT ..80

5. Cloning the setup ... 81

5.1. Preparing hardware .. 81

5.1.1. The FPGA board ..81

5.1.2. The frontend board...81

5.2. First run .. 82

5.3. Setting up the software... 82

5.4. Equalizing delays ... 82

6. Troubleshooting ... 84

6.1. Debug port.. 84

6.2. Common problems... 84

6.2.1. Connection-related problems ...84

6.2.2. Problems with signal integrity ...85

6.2.3. Problems with noise ...87

7. Known issues ... 91

7.1. Even/odd channel swapped.. 91

7.2. EVB loosing synchronization – dropping packets ... 91

7.3. Trigger configuration ... 92

8. Index of terms .. 93

9. List of figures ... 94

10. List of tables... 95

11. References .. 97

MIONTECH Triode Gun Modulator MiTwo

5 / 97 Michał Dziewiecki 2019

1. Introduction

1.1. General

This document is a description of the electronics hardware design and software for the

Beam Position Monitor project. It covers basic information about the schematics, all

firmware and PC software. It does not include mechanical documentation.

It focuses on version 2 of the DAQ system (FPGA-based). Version 1 (Microcontroller-

based) is mentioned where it’s needed to describe system interfacing.

1.2. Project directory description

A simplified directory structure of the project is shown below (many second-importance

directories are omitted).

In this manual, short names (below in red) will be used. The majority of relevant files are

placed in [v2], while matlab post-processing scripts (common for both versions) can be

found in [v1].

+---application
+---beamplanner
+---DAQ2017 [v1]
| +---code
| +---matlab_offline [matlab]
| +---matlab_online
| +---pcb
| +---reports
| +---root
| +---soft
| +---step
+---documents
+---patent
+---pdf
+---timestamper [timestamper]
+---udpterm
\---v2.0 [v2]
 +---doc [doc]
 +---fpga [fpga]
 | +---output_files
 | \---software [firmware]
 | +---hit20_v3
 | +---hit20_v3_bsp
 +---pads [pcb]
 | +---assembly
 | \---gerber
 +---pdf
 +---soft
 | \---hit2017 [pcsoft]
 \---root [root]

Beam Position Monitor

Technical description
rev. 1.1

6 / 97 Michał Dziewiecki 2019

2. Hardware description

2.1. What it actually does...

Shortly speaking, it collects data from sensors and sends them to a PC.

Now more details:

The measurement setup may contain one or more boards, each containing up to 2 (version

1) or 5 (version 2) sensors. We want the boards to collect signal from sensors in a regular,

synchronous manner (in form of frames) and transmit them to a PC.

Each of the 5 sensors (Hamamatsu S11865-64[5]) is an array of 64 photodiodes with an

integration/readout circuit. This circuit allows simultaneous integration of photodiode

currents for some period and sending it out as a series of voltage pulses over a single wire.

To perform this, it needs some constant-level signals:

 a clean power supply of 5V

 an extremly clean reference voltage of 4.5V (nom.)

 a photodiode bias voltage (essentially, the same signal as above)

Further, it needs two digital waveforms:

 a clock, which should be no more than 4 MHz

 an integration window signal (called RESET by Hamamatsu, don’t ask why...)

Having these signals, it will produce the output signals:

 the Video signal – a series of analog pulses referred to the reference voltage

(mentioned above) with negative polarity

 the Trig and EOS signals, which we don’t use.

Fig. 2-1 Sensor's waveforms [5]

So, our task is now:

 Produce a valid clock signal

 Produce a valid Reset signal

 Collect Video pulses at right times and ADC them.

MIONTECH Triode Gun Modulator MiTwo

7 / 97 Michał Dziewiecki 2019

Again, an ADC (with an SPI interface) needs its own reference, clock and trigger, and a

data line.

At the end, we should have 5·64 samples of sensor data somewhere in our memory. Now

we can pack these data into a UDP packet and send it over Ethernet to a PC.

Simple? Not really. If we have multiple boards, we need to synchronize them. This is done

by a synchronization link on two levels:

 frame-level synchronization,

 fine synchronization

The goal for the frame-level synchronization is to match corresponding frames from

different boards. To do it, one of the boards (we call it master board, in contrast to slave

boards) sends a number over the synchronization link after collecting each frame. This

number automatically advances after each frame, giving a unique identifier. Now, it is

received by all boards (including the master, over its internal loopback) and concatenated

with the frame data.

Some technical details: the number is 9 bits wide and is sent over a RS-485 link with a

baud rate of 1 Mbps, 1 stop bit, no parity.

This number, called the global frame counter, is then used by the event builder (a part of

the PC software) to put together data from different boards. There are also 16-bit-wide,

unsynchronized local frame counters which might be helpful to monitor lost frames.

The task of the fine synchronization is to match integration window for all sensors and

boards within some dozens of nanoseconds. This is done by another signal in the

synchronization link, the frame clock signal. So, as for the frame-level synchronization, the

trigger is produced by the master board and received by all of them. In this case, the signal

has a form of a pulse (for version 1) or a square wave (for version 2). The duty cycle is

actually unimportant; all devices trigger on the rising edge.

Unluckily, every board might have different delay between receiving the signal and

triggering the measurement. On top of it, the synchronization link has its own delays.

Therefore, each device has a programmable delay circuit to equalize all these delays. The

equalization is a nasty, manual process, but fortunately it has to be done only once for each

setup. See chapter 5.4: Equalizing delays for more details.

OK, two remarks about fine synchronization:

 All boards have their own oscillators, which remain unsynchronized. Therefore, the

synchronization accuracy is limited by board’s master clock frequency (which is 90

MHz for version 1 and 50 MHz for version 2). In practice, all boards can be

synchronized within a ≈20 ns window.

 The sensor clock has a frequency of only 4 MHz (version 1) or 3.57 MHz (version

2). As the integration window must be synchronous with this clock, and we don’t

really want to do it (this would deteriorate our 20 ns to 250 ns), we do the opposite:

we synchronize the sensor clock to our trigger (by extending it as needed)

And what if we want to synchronize our system to any external DAQ? There’s yet another

interface on our board: The SMA connector.

The name is historical, it was SMA for version 1; for version 2 it’s an 8-bit parallel, digital

input (in contrast to 1-bit digital input for version 1).

Beam Position Monitor

Technical description
rev. 1.1

8 / 97 Michał Dziewiecki 2019

The idea is very simple: the data on the input is latched and transmitted with every frame.

This way, we can collect any external, binary signal together with our data. This signal can

be used for any purposes, including off-line synchronization. See chapter 3.2: Timestamper

for more details.

Finally we have our data at the PC. They are received by a number of receiver threads (one

per each board), buffered, matched together by the event builder and, last but not least,

written to a disk.

2.2. ... and how

The project has several layers:

1. The hardware. This includes two physical PCBs (one custom, one from stock),

some supporting mechanics (not described here), accompanying electronics (to

provide synchronization, power, Ethernet etc.). One of the boards contains an

FPGA, so:

2. The FPGA design. A project of the hardware layer of the FPGA. This project

includes a software processor, so:

3. The firmware. This is the code for on-FPGA software processor.

4. On-line PC software, i.e. DAQ software.

5. Off-line PC software.

Between the lines are such things as communication protocols which connect various

layers and elements of our system.

As mentioned above, there is also a Timestamper – a device (and related software) for

producing pseudo-random waveform (timestamps) for synchronizing our system with

another DAQ systems, like HIT’s Ethercat. From the point of view of our project, it’s an

external device. Nevertheless, it will be described in this manual.

2.3. The Electronics

2.3.1. Overview

The electrical circuitry is divided into two PCBs, and therefore two main parts: the

FPGA PCB and the frontend PCB. They are both mounted on a common aluminum plate,

which plays a role of a support, shielding, grounding and heat sink.

Additional mechanical components are used for supporting and shielding sensors and for

mounting the whole entity to the detector.

The FPGA PCB is a standard Intel’s developer board for MAX10 devices: the Max10

Development Kit. See [1] for general description of the board and [2] for schematics

diagram.

The frontend PCB includes all the circuitry to bridge sensors to the FPGA. This includes

power regulators, sources of reference voltages, signal buffers, ADCs and interface logic.

MIONTECH Triode Gun Modulator MiTwo

9 / 97 Michał Dziewiecki 2019

It contains five almost identical blocks for five sensors, each including a signal buffer, an

ADC and accompanying logic. They are divided into two groups (sensors 1-3 and 4-5)

sharing common control signals.

Fig. 2-2 The electronics (both boards connected together, without additional shielding on the FPGA board)

Fig. 2-3 Electronics with supporting plate

Power regulators (Fig. 2-11: +8V for analog circuits, +5V for sensors, +3.3V for logic and

+2.5V for ADCs) as well as reference voltage sources (Fig. 2-10: 4.5V for sensors and

4.55V for ADCs) are common for all sensors.

It’s important that the polarity of the sensor output signal is negative, i.e. the signal is close

to reference for dark conditions and close to zero for maximum optical signal. So behaves

the ADC output code, as well.

The difference between sensor reference and ADC reference creates a non-zero baseline

(about 700 below maximum code) in the output signal. This behavior is intentional – zero

baseline would lead to nonlinearities in presence of an additive noise.

The front-end board needs a single power supply of 12V/400mA. Depending on user’s

demands, it can be configured to draw its power from the FPGA board or from an external

connector.

The two boards are connected via an HSMC connector. All digital connections between

boards are LVDS to reduce noise.

Physikalisches Institut

Ruprecht-Karls

Universität Heidelberg

Beam Position Monitor

Technical description

10 / 97 Michał Dziewiecki 2019

2.3.2. Frontend Schematics

<Drawn By>

<Checked By>

<QC By>

<Released By>

<Drawn Date>

<Checked Date>

<QC Date>

<Release Date>

<Company Name>

<Title>

<Code> B <Drawing Number><Revision>

<Scale> 3 9

REV:SIZE:CODE:

DRAWN: DATED:

DATED:CHECKED:

QUALITY CONTROL: DATED:

DATED:RELEASED:

COMPANY:

TITLE:

DRAWING NO:

SHEET: OFSCALE:

REVISION RECORD

APPROVED:ECO NO:

A

B

D

DATE:

123456

D

C

A

B

C

LTR

1
RESET

2
CLK

4
EXTSP

5
VMS

11
VGAIN

9
VIDEO

8
EOS

3
TRIG

1
0

V
R
E
F

1
2

V
P
D

6
V
D
D

7
G
N
D

U6

S11865-64

3
IN+

4
IN-

9
SDI

8
SCK

7
SDO

6
CNV

1
0

V
IO

2
V
D
D1

REF

5
G
N
D

U7

AD7983
C
9

1
0
0
n

C
1
0

1
u

+

-

3

4
1

U8

AD8065

C
1
1

1
0
0
n

C12
100n12

R23

1k

1 2
R24

560

C
1
3

1
0
0
n

1

2
15

U9-A

FIN1048

4

3
14

U9-B

FIN1048

8

7
10

U9-D

FIN1048

5

6
11

U9-C

FIN1048

16
EN

9
EN

U9-E

FIN1048

C
1
5

1
0
0
n

C
1
6

1
0
0
n

2
7

8
U10-A

FIN1027

3
6

5

U10-B

FIN10271
2

R
2
6

1
k

1
2

R
2
7

0

1 2

R28

0

1 2

R29

0

1 2

R30

0

1
2

R
3
1

0

1 2

R33

0

1 2

R34

0

1 2

R35

0

1 2

R40

0

1 2

R25

0

C
1
4

1
0
0
n

1
2

R
3
2

0

D
E
T
G

A
IN

AVDD

A
D
C
R
E
F

D
E
T
R
E
F

A
D
C
V
D
D

D
E
T
V
D
D

DVDD

DVDD

DGND

DGND

DGND

DVDD

SCK123P

SCK123N

CNV123P

CNV123N

SDO2P

SDO2N

CLK123P

CLK123N

RESET123P

RESET123N

TRIG2N

TRIG2P

DGND

D
V
D
D

Fig. 2-4 Schematics diagram 1/9

MIONTECH Triode Gun Modulator MiTwo

11 / 97 Michał Dziewiecki 2019

<Drawn By>

<Checked By>

<QC By>

<Released By>

<Drawn Date>

<Checked Date>

<QC Date>

<Release Date>

<Company Name>

<Title>

<Code> B <Drawing Number><Revisio

<Scale> 2 9

REV:SIZE:CODE:

DRAWN: DATED:

DATED:CHECKED:

QUALITY CONTROL: DATED:

DATED:RELEASED:

COMPANY:

TITLE:

DRAWING NO:

SHEET: OFSCALE:

REVISION RECORD

APPROVED:ECO NO: DATE:LTR

1
RESET

2
CLK

4
EXTSP

5
VMS

11
VGAIN

9
VIDEO

8
EOS

3
TRIG

1
0

V
R
E
F

1
2

V
P
D

6
V
D
D

7
G
N
D

U1

S11865-64

3
IN+

4
IN-

9
SDI

8
SCK

7
SDO

6
CNV

1
0

V
IO

2
V
D
D1

REF

5
G
N
D

U2

AD7983

C
1

1
0
0
n

C
2

1
u

-

+
3

4
1

U3

AD8065

C
3

1
0
0
n

C4
100n12

R9

1k

1 2
R10

560

C
5

1
0
0
n C

6
1
0
0
n

1

2
15

U4-A

FIN1048

4

3
14

U4-B

FIN1048

8

7
10

U4-D

FIN1048

5

6
11

U4-C

FIN1048

16
EN

9
EN

U4-E

FIN1048

C
7

1
0
0
n

C
8

1
0
0
n

2
7

8

U5-A

FIN1027

3
6

5

U5-B

FIN10271
2

R
5

1
k

1
2

R
8 0

1 2

R14

0

1 2

R15

0

1 2

R6

0

1
2

R
7 0

1
2

R
1
1

0

1 2

R12

0

1 2

R13

0

1 2

R16

0

1 2

R22

0

1 2

R17

0

D
E
T
G
A
IN

AVDD

A
D
C
R
E
F

D
E
T
R
E
F

A
D
C
V
D
D

D
V
D
D

D
E
T
V
D
D

DVDD

DVDD

DGND

DGND

DGND

DVDD

SCK123P

SCK123N

CNV123P

CNV123N

SDO1P

SDO1N

CLK123P

CLK123N

RESET123P

RESET123N

TRIG1N

TRIG1P

DGND

Fig. 2-5 Schematics diagram 2/9

Beam Position Monitor

Technical description
rev. 1.1

12 / 97 Michał Dziewiecki 2019

<Drawn By>

<Checked By>

<QC By>

<Released By>

<Drawn Date>

<Checked Date>

<QC Date>

<Release Date>

<Company Name>

<Title>

<Code> B <Drawing Number><Revision>

<Scale> 3 9

REV:SIZE:CODE:

DRAWN: DATED:

DATED:CHECKED:

QUALITY CONTROL: DATED:

DATED:RELEASED:

COMPANY:

TITLE:

DRAWING NO:

SHEET: OFSCALE:

REVISION RECORD

APPROVED:ECO NO:

A

B

D

DATE:

123456

D

C

A

B

C

LTR

1
RESET

2
CLK

4
EXTSP

5
VMS

11
VGAIN

9
VIDEO

8
EOS

3
TRIG

1
0

V
R
E
F

1
2

V
P
D

6
V
D
D

7
G
N
D

U6

S11865-64

3
IN+

4
IN-

9
SDI

8
SCK

7
SDO

6
CNV

1
0

V
IO

2
V
D
D1

REF

5
G
N
D

U7

AD7983

C
9

1
0
0
n

C
1
0

1
u

+

-

3

4
1

U8

AD8065

C
1
1

1
0
0
n

C12
100n12

R23

1k

1 2
R24

560

C
1
3

1
0
0
n

1

2
15

U9-A

FIN1048

4

3
14

U9-B

FIN1048

8

7
10

U9-D

FIN1048

5

6
11

U9-C

FIN1048

16
EN

9
EN

U9-E

FIN1048

C
1
5

1
0
0
n

C
1
6

1
0
0
n

2
7

8
U10-A

FIN1027

3
6

5

U10-B

FIN10271
2

R
2
6

1
k

1
2

R
2
7

0

1 2

R28

0

1 2

R29

0

1 2

R30

0

1
2

R
3
1

0

1 2

R33

0

1 2

R34

0

1 2

R35

0

1 2

R40

0

1 2

R25

0

C
1
4

1
0
0
n

1
2

R
3
2

0

D
E
T
G

A
IN

AVDD

A
D
C
R
E
F

D
E
T
R
E
F

A
D
C
V
D
D

D
E
T
V
D
D

DVDD

DVDD

DGND

DGND

DGND

DVDD

SCK123P

SCK123N

CNV123P

CNV123N

SDO2P

SDO2N

CLK123P

CLK123N

RESET123P

RESET123N

TRIG2N

TRIG2P

DGND

D
V
D
D

Fig. 2-6 Schematics diagram 3/9

MIONTECH Triode Gun Modulator MiTwo

13 / 97 Michał Dziewiecki 2019

<Drawn By>

<Checked By>

<QC By>

<Released By>

<Drawn Date>

<Checked Date>

<QC Date>

<Release Date>

<Company Name>

<Title>

<Code> B <Drawing Number><Revision>

<Scale> 4 9

REV:SIZE:CODE:

DRAWN: DATED:

DATED:CHECKED:

QUALITY CONTROL: DATED:

DATED:RELEASED:

COMPANY:

TITLE:

DRAWING NO:

SHEET: OFSCALE:

REVISION RECORD

APPROVED:ECO NO:

A

B

D

DATE:

123456

D

C

A

B

C

LTR

1
RESET

2
CLK

4
EXTSP

5
VMS

11
VGAIN

9
VIDEO

8
EOS

3
TRIG

1
0

V
R
E
F

1
2

V
P
D

6
V
D
D

7
G
N
D

U11

S11865-64

3
IN+

4
IN-

9
SDI

8
SCK

7
SDO

6
CNV

1
0

V
IO

2
V
D
D1

REF

5
G
N
D

U12

AD7983

C
1
7

1
0
0
n

C
1
8

1
u

+

-

3

4
1

U13

AD8065

C
1
9

1
0
0
n

C20
100n12

R41

1k

1 2
R42

560

C
2
1

1
0
0
n

1

2
15

U14-A

FIN1048

4

3
14

U14-B

FIN1048

8

7
10

U14-D

FIN1048

5

6
11

U14-C

FIN1048

16
EN

9 EN
U14-E

FIN1048

C
2
3

1
0
0
n

C
2
4

1
0
0
n

2
7

8

U15-A

FIN1027

3
6

5

U15-B

FIN10271
2

R
4
4

1
k

1
2

R
4
5

0

1 2

R46

0

1 2

R47

0

1 2

R48

0

1
2

R
4
9

0

1 2

R51

0

1 2

R52

0

1 2

R53

0

1 2

R58

0

1 2

R39

0

C
2
2

1
0
0
n

1
2

R
5
0

0

D
E
T
G
A
IN

AVDD

A
D
C
R
E
F

D
E
T
R
E
F

A
D
C
V
D

D

D
E
T
V
D

D

DVDD

DVDD

DGND

DGND

DGND

DVDD

SCK123P

SCK123N

CNV123P

CNV123N

SDO3P

SDO3N

CLK123P

CLK123N

RESET123P

RESET123N

TRIG3N

TRIG3P

DGND

D
V
D

D

Fig. 2-7 Schematics diagram 4/9

Beam Position Monitor

Technical description
rev. 1.1

14 / 97 Michał Dziewiecki 2019

<Drawn By>

<Checked By>

<QC By>

<Released By>

<Drawn Date>

<Checked Date>

<QC Date>

<Release Date>

<Company Name>

<Title>

<Code> B <Drawing Number><Revision>

<Scale> 5 9

REV:SIZE:CODE:

DRAWN: DATED:

DATED:CHECKED:

QUALITY CONTROL: DATED:

DATED:RELEASED:

COMPANY:

TITLE:

DRAWING NO:

SHEET: OFSCALE:

REVISION RECORD

APPROVED:ECO NO:

A

B

D

DATE:

123456

D

C

A

B

C

LTR

1
RESET

2
CLK

4
EXTSP

5
VMS

11
VGAIN

9
VIDEO

8
EOS

3
TRIG

1
0

V
R
E
F

1
2

V
P
D

6
V
D
D

7
G
N
D

U16

S11865-64

3
IN+

4
IN-

9
SDI

8
SCK

7
SDO

6
CNV

1
0

V
IO

2
V
D
D1

REF

5
G
N
D

U17

AD7983

C
2
5

1
0
0
n

C
2
6

1
u

+

-

3

4
1

U18

AD8065

C
2
7

1
0
0
n

C28
100n12

R59

1k

1 2
R60

560

C
2
9

1
0
0
n

1

2
15

U19-A

FIN1048

4

3
14

U19-B

FIN1048

8

7
10

U19-D

FIN1048

5

6
11

U19-C

FIN1048

16
EN

9
EN
U19-E

FIN1048

C
3
1

1
0
0
n

C
3
2

1
0
0
n

2
7

8
U20-A

FIN1027

3
6

5

U20-B

FIN10271
2

R
6
2

1
k

1
2

R
6
3

0

1 2

R64

0

1 2

R65

0

1 2

R66

0

1
2

R
6
7

0

1 2

R69

0

1 2

R70

0

1 2

R71

0

1 2

R76

0

1 2

R43

0

C
3
0

1
0
0
n

1
2

R
5
5

0

D
E
T
G

A
IN

AVDD

A
D
C
R
E
F

D
E
T
R
E
F

A
D
C
V
D
D

D
E
T
V
D
D

DVDD

DVDD

DGND

DGND

DGND

DVDD

SCK45P

SCK45N

CNV45P

CNV45N

SDO4P

SDO4N

CLK45P

CLK45N

RESET45P

RESET45N

TRIG4N

TRIG4P

DGND

D
V
D
D

Fig. 2-8 Schematics diagram 5/9

MIONTECH Triode Gun Modulator MiTwo

15 / 97 Michał Dziewiecki 2019

<Drawn By>

<Checked By>

<QC By>

<Released By>

<Drawn Date>

<Checked Date>

<QC Date>

<Release Date>

<Company Name>

<Title>

<Code> B <Drawing Number><Revision>

<Scale> 6 9

REV:SIZE:CODE:

DRAWN: DATED:

DATED:CHECKED:

QUALITY CONTROL: DATED:

DATED:RELEASED:

COMPANY:

TITLE:

DRAWING NO:

SHEET: OFSCALE:

REVISION RECORD

APPROVED:ECO NO:

A

B

D

DATE:

123456

D

C

A

B

C

LTR

1
RESET

2
CLK

4
EXTSP

5
VMS

11
VGAIN

9
VIDEO

8
EOS

3
TRIG

1
0

V
R
E
F

1
2

V
P
D

6
V
D
D

7
G
N
D

U21

S11865-64

3
IN+

4
IN-

9
SDI

8
SCK

7
SDO

6
CNV

1
0

V
IO

2
V
D
D1

REF

5
G
N
D

U22

AD7983

C
3
3

1
0
0
n

C
3
4

1
u

+

-

3

4
1

U23

AD8065

C
3
5

1
0
0
n

C36
100n12

R77

1k

1 2
R78

560

C
3
7

1
0
0
n

1

2
15

U24-A

FIN1048

4

3
14

U24-B

FIN1048

8

7
10

U24-D

FIN1048

5

6
11

U24-C

FIN1048

16
EN

9
EN
U24-E

FIN1048

C
3
9

1
0
0
n

C
4
0

1
0
0
n

2
7

8

U25-A

FIN1027

3
6

5

U25-B

FIN10271
2

R
8
0

1
k

1
2

R
8
1

0

1 2

R82

0

1 2

R83

0

1 2

R84

0

1
2

R
8
5

0

1 2

R87

0

1 2

R88

0

1 2

R89

0

1 2

R94

0

1 2

R54

0

C
3
8

1
0
0
n

1
2

R
5
6

0

D
E
T
G
A
IN

AVDD

A
D
C
R
E
F

D
E
T
R
E
F

A
D
C
V
D
D

D
E
T
V
D
D

DVDD

DVDD

DGND

DGND

DGND

DVDD

SCK45P

SCK45N

CNV45P

CNV45N

SDO5P

SDO5N

CLK45P

CLK45N

RESET45P

RESET45N

TRIG5N

TRIG5P

DGND

D
V
D
D

Fig. 2-9 Schematics diagram 6/9

Beam Position Monitor

Technical description
rev. 1.1

16 / 97 Michał Dziewiecki 2019

<Drawn By>

<Checked By>

<QC By>

<Released By>

<Drawn Date>

<Checked Date>

<QC Date>

<Release Date>

<Company Name>

<Title>

<Code> B <Drawing Number><Revision>

<Scale> 7 9

REV:SIZE:CODE:

DRAWN: DATED:

DATED:CHECKED:

QUALITY CONTROL: DATED:

DATED:RELEASED:

COMPANY:

TITLE:

DRAWING NO:

SHEET: OFSCALE:

REVISION RECORD

APPROVED:ECO NO:

A

B

D

DATE:

123456

D

C

A

B

C

LTR

3
SHDN

7
OUT

8
FB

1
V
D
D

6
G
N
D
4

5
G
N
D
3

4
G
N
D
2

2
G
N
D
1

U26

MCP1501
2.5V

-

+

2

3
1

U27-A

LM7322

-

+

6

5
7

U27-B

LM7322

1 2
R57

2.2k

C41
330p

C42
1u

1
2

R
6
1

1
kC43

1u

1
2

R
6
8

2
.2

k

C44
100n

1 2
R72

1.8k

1
2

R
7
3

2
.4

k

C45
100n

1 2
R74

100

1 2
R75

100

C46
100n

1 2
R79

0

1 2
R86

0

3
VIN

2
VOUT

1
G
N
D

U28

MCP1702
5V

1
2

R
9
3

1
k

-

+
1

3
4

U41

LMV331

12

R107

22

1
2

R
1
0
8

1
k

12

R109

110

1 2
R110

1k

12

R111

1k

C64
100n

C
6
5

1
0
0
n

AVDD

A
V
D
D

ADCREF

DETREF

DETGAIN

GAINP

GAINN

DETVDD

DETVDD

Fig. 2-10 Schematics diagram 7/9

MIONTECH Triode Gun Modulator MiTwo

17 / 97 Michał Dziewiecki 2019

<Drawn By>

<Checked By>

<QC By>

<Released By>

<Drawn Date>

<Checked Date>

<QC Date>

<Release Date>

<Company Name>

<Title>

<Code> B <Drawing Number><Revision>

<Scale> 8 9

REV:SIZE:CODE:

DRAWN: DATED:

DATED:CHECKED:

QUALITY CONTROL: DATED:

DATED:RELEASED:

COMPANY:

TITLE:

DRAWING NO:

SHEET: OFSCALE:

REVISION RECORD

APPROVED:ECO NO:

A

B

D

DATE:

123456

D

C

A

B

C

LTR

Ground connections

Mtholes

External power suply

PS routing

Voltage regulators

1 2
R1

0

1 2
R2

0

1 2
R3

0

1 2
R4

0

J4
-1

J5
-1

J6
-1

J7
-1

J8
-1

J9
-1

J1
0
-1

J1
1
-1

1
IN

2

GND

3
OUT

U29

MC78M05CDT

1
IN

2

GND

3
OUT

U30

MC78M08CDT

C47
1u

C48
1u

C49
1u

C50
1u

1
IN

2

GND

3
OUT

U31

MC78M33CDTC51
1u

C52
1u

1 2

L1

IND-MOLDED

???

J12-1

J12-2

C54
10u

1 2
R91

0

1 2

L2

IND-MOLDED

???

1 2

L3

IND-MOLDED

???

1 2

L4

IND-MOLDED

???

1 2
R92

0

1 2

L5

IND-MOLDED

???

3
VIN

2
VOUT

1
G
N
D

U32

MCP1702
2.5VC53

1u
C55
1u

FPGAGND DGND

DGND

DGND SHIELD

SHIELD

SHIELD

DETVDD

AVDD

G
N
D

AVDD

DVDD

D
G
N
D

DVDD12V_INT

DGND

12V_EXT

FPGAGND

12V_HSMC 12V_INT

12V_INT

12V_INT

12V_EXT 12V_INT

AVDD ADCVDD

DGND

Fig. 2-11 Schematics diagram 8/9

Beam Position Monitor

Technical description
rev. 1.1

18 / 97 Michał Dziewiecki 2019

<Drawn By>

<Checked By>

<QC By>

<Released By>

<Drawn Date>

<Checked Date>

<QC Date>

<Release Date>

<Company Name>

<Title>

<Code> B <Drawing Number><Revision>

<Scale> 9 9

REV:SIZE:CODE:

DRAWN: DATED:

DATED:CHECKED:

QUALITY CONTROL: DATED:

DATED:RELEASED:

COMPANY:

TITLE:

DRAWING NO:

SHEET: OFSCALE:

REVISION RECORD

APPROVED:ECO NO:

A

B

D

DATE:

123456

D

C

A

B

C

LTR

3
6

5

U33-B

FIN1027

2
7

8

U33-A

FIN1027

1

2
15

U34-A

FIN1048

4

3
14

U34-B

FIN1048

5

6
11

U34-C

FIN1048

8

7
10

U34-D

FIN1048

1
RO

2 RE
3

DE
4

DI

7
B

6
A

U35

MAX485

1
RO

2
RE

3
DE

4
DI

7
B

6
A

U36

MAX485

1
2

R
9
5

1
2
0

1 2
R97

110

1
2

R
9
6

1
2
0

1 2
R98

110

1 2
R99

110

1 2
R100

110

3
6

5

U37-B

FIN1027

2
7

8

U37-A

FIN1027

1

2
15

U38-A

FIN1048

4

3
14

U38-B

FIN1048

5

6
11

U38-C

FIN1048

8

7
10

U38-D

FIN1048

1
RO

2
RE

3
DE

4
DI

7
B

6
A

U39

MAX485

1
RO

2
RE

3
DE

4
DI

7
B

6
A

U40

MAX485

1
2

R
1
0
1

1
2
0

1 2
R102

110

1
2

R
1
0
3

1
2
0

1 2
R104

110

1 2
R105

110

1 2
R106

110

J13-1

J13-2

J13-3

J13-4

J13-5

J13-6

J13-7

J13-8

J13-9

J13-10

J13-11

J13-12

J13-13

J13-14

C
5
7

1
0
0
n

C
5
8

1
0
0
n

C
5
9

1
0
0
n

C
6
0

1
0
0
n

C
6
1

1
0
0
n

C
6
2

1
0
0
n

16
EN

9
EN
U34-E

FIN1048

16
EN

9
EN
U38-E

FIN1048

C
5
6

1
0
0
n

C
6
3

1
0
0
n

LINK2B

LINK2A

LINK3B

LINK3A

LINK3A

LINK3B

LINK2EN

LINK2EP

LINK2TN

LINK2TP

LINK3EN

LINK3EP

LINK3TN

LINK3TP

LINK2RN

LINK2RP

LINK3RN

LINK3RP

LINK0B

LINK0A

LINK1B

LINK1A

LINK1A

LINK1B

LINK0EN

LINK0EP

LINK0TN

LINK0TP

LINK1EN

LINK1EP

LINK1TN

LINK1TP

LINK0RN

LINK0RP

LINK1RN

LINK1RP

SHIELD

LINK3B

LINK3A

LINK2A

LINK0B

LINK0A

LINK2B

LINK1B

LINK1A

DVDD DGND

DVDD

DVDD

DGND

DGND

DVDD

DVDD

DGND

DGND

DVDD DGND

DGND

DVDD

DGND

DVDD

DVDD DGND

DVDD DGND

Fig. 2-12 Schematics diagram 9/9

Physikalisches Institut

Ruprecht-Karls

Universität Heidelberg

Beam Position Monitor

Technical description

19 / 97 Michał Dziewiecki 2019

2.3.3. Assembly drawings

Fig. 2-13 Assembly drawing - top

Beam Position Monitor

Technical description
rev. 1.1

20 / 97 Michał Dziewiecki 2019

Fig. 2-14 Assembly drawing - bottom

Physikalisches Institut

Ruprecht-Karls

Universität Heidelberg

Beam Position Monitor

Technical description

21 / 97 Michał Dziewiecki 2019

2.3.4. Component list

Ref. Part Name Value

U2 AD7983

U7 AD7983

U12 AD7983

U17 AD7983

U22 AD7983

U3 AD8065

U8 AD8065

U13 AD8065

U18 AD8065

U23 AD8065

J1 ASP-122952-01

C1 CAP0603 100n

C3 CAP0603 100n

C4 CAP0603 100n

C5 CAP0603 100n

C6 CAP0603 100n

C7 CAP0603 100n

C8 CAP0603 100n

C9 CAP0603 100n

C11 CAP0603 100n

C12 CAP0603 100n

C13 CAP0603 100n

C14 CAP0603 100n

C15 CAP0603 100n

C16 CAP0603 100n

C17 CAP0603 100n

C19 CAP0603 100n

C20 CAP0603 100n

C21 CAP0603 100n

C22 CAP0603 100n

C23 CAP0603 100n

C24 CAP0603 100n

C25 CAP0603 100n

C27 CAP0603 100n

C28 CAP0603 100n

C29 CAP0603 100n

C30 CAP0603 100n

C31 CAP0603 100n

C32 CAP0603 100n

C33 CAP0603 100n

C35 CAP0603 100n

C36 CAP0603 100n

Ref. Part Name Value

C37 CAP0603 100n

C38 CAP0603 100n

C39 CAP0603 100n

C40 CAP0603 100n

C41 CAP0603 330p

C42 CAP0603 1u

C43 CAP0603 1u

C44 CAP0603 100n

C45 CAP0603 100n

C46 CAP0603 100n

C56 CAP0603 100n

C57 CAP0603 100n

C58 CAP0603 100n

C59 CAP0603 100n

C60 CAP0603 100n

C61 CAP0603 100n

C62 CAP0603 100n

C63 CAP0603 100n

C64 CAP0603 100n

C65 CAP0603 100n

C2 CAP0805 1u

C10 CAP0805 1u

C18 CAP0805 1u

C26 CAP0805 1u

C34 CAP0805 1u

C47 CAP0805 1u

C48 CAP0805 1u

C49 CAP0805 1u

C50 CAP0805 1u

C51 CAP0805 1u

C52 CAP0805 1u

C53 CAP0805 1u

C55 CAP0805 1u

C54 CAP1206 10u

U5 FIN1027

U10 FIN1027

U15 FIN1027

U20 FIN1027

U25 FIN1027

U33 FIN1027

U37 FIN1027

U4 FIN1048

Beam Position Monitor

Technical description
rev. 1.1

22 / 97 Michał Dziewiecki 2019

Ref. Part Name Value

U9 FIN1048

U14 FIN1048

U19 FIN1048

U24 FIN1048

U34 FIN1048

U38 FIN1048

J12 HEADER02

L1 IND-MOLDED ???

L2 IND-MOLDED ???

L3 IND-MOLDED ???

L4 IND-MOLDED ???

L5 IND-MOLDED ???

U27 LM7322

U41 LMV331

U35 MAX485

U36 MAX485

U39 MAX485

U40 MAX485

U29 MC78M05CDT

U30 MC78M08CDT

U31 MC78M33CDT

U26 MCP1501

U28 MCP1702

U32 MCP1702

R5 RES0603 1k

R6 RES0603 0

R7 RES0603 0

R8 RES0603 0

R9 RES0603 1k

R10 RES0603 560

R11 RES0603 0

R12 RES0603 0

R13 RES0603 0

R14 RES0603 0

R15 RES0603 0

R16 RES0603 0

R17 RES0603 0

R18 RES0603 110

R19 RES0603 110

R20 RES0603 110

R21 RES0603 110

R22 RES0603 0

R23 RES0603 1k

R24 RES0603 560

R25 RES0603 0

Ref. Part Name Value

R26 RES0603 1k

R27 RES0603 0

R28 RES0603 0

R29 RES0603 0

R30 RES0603 0

R31 RES0603 0

R32 RES0603 0

R33 RES0603 0

R34 RES0603 0

R35 RES0603 0

R36 RES0603 110

R37 RES0603 110

R38 RES0603 110

R39 RES0603 0

R40 RES0603 0

R41 RES0603 1k

R42 RES0603 560

R43 RES0603 0

R44 RES0603 1k

R45 RES0603 0

R46 RES0603 0

R47 RES0603 0

R48 RES0603 0

R49 RES0603 0

R50 RES0603 0

R51 RES0603 0

R52 RES0603 0

R53 RES0603 0

R54 RES0603 0

R55 RES0603 0

R56 RES0603 0

R57 RES0603 2.2k

R58 RES0603 0

R59 RES0603 1k

R60 RES0603 560

R61 RES0603 1k

R62 RES0603 1k

R63 RES0603 0

R64 RES0603 0

R65 RES0603 0

R66 RES0603 0

R67 RES0603 0

R68 RES0603 2.2k

R69 RES0603 0

R70 RES0603 0

MIONTECH Triode Gun Modulator MiTwo

23 / 97 Michał Dziewiecki 2019

Ref. Part Name Value

R71 RES0603 0

R72 RES0603 1.8k

R73 RES0603 2.4k

R74 RES0603 100

R75 RES0603 100

R76 RES0603 0

R77 RES0603 1k

R78 RES0603 560

R79 RES0603 0

R80 RES0603 1k

R81 RES0603 0

R82 RES0603 0

R83 RES0603 0

R84 RES0603 0

R85 RES0603 0

R86 RES0603 0

R87 RES0603 0

R88 RES0603 0

R89 RES0603 0

R90 RES0603 110

R93 RES0603 1k

R94 RES0603 0

R95 RES0603 120

R96 RES0603 120

R97 RES0603 110

R98 RES0603 110

R99 RES0603 110

R100 RES0603 110

R101 RES0603 120

R102 RES0603 110

R103 RES0603 120

R104 RES0603 110

R105 RES0603 110

R106 RES0603 110

R107 RES0603 22

R108 RES0603 1k

R109 RES0603 110

R110 RES0603 1k

R111 RES0603 1k

R1 RES0805 0

R2 RES0805 0

R3 RES0805 0

R4 RES0805 0

R91 RES0805 0

Ref. Part Name Value

R92 RES0805 0

J13 RJ45_FRJAE-488

U1 S11865-64

U6 S11865-64

U11 S11865-64

U16 S11865-64

U21 S11865-64

Table 2-1 Components summary

Physikalisches Institut

Ruprecht-Karls

Universität Heidelberg

Beam Position Monitor

Technical description

24 / 97 Michał Dziewiecki 2019

2.3.5. Debug-time updates

The following table summarizes all changes to component values done during device

debugging.

No Component Change Explanation

1 R57
2.2k → 2.2k || 10k =

1.8k

Change ADC reference from 5.0V to

4.55V

2 C44 100n → 100n + 1u Reduce noise

3 R73
2.4k → 2.4k || 36 k =

2.25k

Change detector reference from

4.375V to 4.5V

4 R74, R75 100 → 10k

5
U27A IN+, U27B

IN+
Add 10uF to ground

Make LP filters which significantly

reduce reference noise

6 R109 100 → 10k Reduce diff pair current (it's not LVDS)

7 C52 1u → 1u + 10u
Extinguish oscillations of a power

regulator

8
C4, C12, C20, C28,

C36
100n → 100n + 1u Reduce noise

9
C1, C9, C17, C25,

C33
100n → 100n + 1u Reduce noise

10
C6, C14, C22, C30,

C38
100n → 100n + 1u Reduce noise

Table 2-2 Debug-time updates summary

2.3.6. Further remarks

 The power source of the FPGA board can be configured using R91 (0Ω):

o Remove R91 to use external power supply over J12.

o Install R91 to use HSMC power supply from the FPGA board.

 A number of further 0Ω resistors are intended for debug purposes: they can be

replaced by EMI chokes or resistors to decrease noise level. Anyway, an extensive

research has been already done on it and for these 0Ωs which are finally not

replaced, there was no evident improvement in noise figure.

 By default, the LVDS receive lines are not terminated at the FPGA boards. It’s

essential to install the termination resistors when cloning the setup.

 There are some LEDs on the FPGA board. They should be all optically isolated or

completely removed to avoid parasitic light in the detector box.

 The FPGA and power regulators dissipate significant amount of heat. A total power

dissipation of ca 10W is expected.

 The device is equipped with two Ethernet ports. However, currently only one (the

bottom one) is configured. Do not connect anything to the other connector.

MIONTECH Triode Gun Modulator MiTwo

25 / 97 Michał Dziewiecki 2019

2.3.7. Connections and controls

2.3.7.1. Switches

Fig. 2-15 Important DIP-switches

There are two important DIP-switches on the FPGA PCB back side (metal shield must be

removed to access them). Their setting is summarized in the tables below.

Nr Description Default setting

SW1.1 OFF

SW1.2 OFF

SW1.3 OFF

SW1.4

IP setting:

Device IP is 10.0.7.16 + switch setting:

0 0 0 0 for 10.0.7.16

1 1 1 1 for 10.0.7.31 OFF

SW2.1 DHCP enable (should be always off) OFF

SW2.2 CONFIG_SEL ON

SW2.3 VTAP_BYPASS OFF

SW2.4 HSMC_BYPASS ON

Table 2-3 On-board DIP-switches

Beam Position Monitor

Technical description
rev. 1.1

26 / 97 Michał Dziewiecki 2019

2.3.7.2. LEDs

Fig. 2-16 LED placement

There are five debug LEDs on-board. During normal operation, they should be covered by

a piece of sticky tape or painted black or removed. Anyway, they should be all turned off

by software during run.

Remark: There are plenty of other LEDs on board and in the Ethernet socket. They should

be all covered, painted black or removed (the LEDs or their series resistors). There is no

way to switch off all of them by software.

LED nr Description

0 Debug LED

1 Unused

2 Unused

3 Unused

4 Blinking if chip OK. Switched off for detector run.

Table 2-4 On-board LEDs

MIONTECH Triode Gun Modulator MiTwo

27 / 97 Michał Dziewiecki 2019

2.3.7.3. Sockets and connectors

Fig. 2-17 Important connectors

All important connectors are marked in the figure above. Their function and pin-outs are

described below.

J1: Synchronization connector: RJ-45

Fig. 2-18 RJ-45 pin numbering

Nr Name Function Remarks

1 LINK3B

2 LINK3A
Frame clock

Output for master configuration, input for

slave

3 LINK2A
Synchronization

serial link

Output for master configuration, input for

slave

4 LINK0B

5 LINK0A
unused

6 LINK2B
Synchronization

serial link

Output for master configuration, input for

slave

7 LINK1B

8 LINK1A
unused

Table 2-5 Synchronization connector pinout

Beam Position Monitor

Technical description
rev. 1.1

28 / 97 Michał Dziewiecki 2019

J2: Frontend power connector: 3.5 mm EDG connector

12

Fig. 2-19 Power connector pin numbering

Nr Function

1 Ground

2 +12V

Table 2-6 Frontend power connector pinout

J3: FPGA power connector

Nr Function

Sleeve Ground

Pin +12V

Table 2-7 FPGA power connector pinout

J4: Ethernet connector: RJ-45

Standard 1000Base-TX connector. Use the bottom socket (closer to the PCB)

J5: External synchronization input (PMODA): Intel PMOD connector (NDR)

Fig. 2-20 Pmod connectors pin order

Description Nr Nr Description

In bit 0 (LSB) 1 7 In bit 4

In bit 1 2 8 In bit 5

In bit 2 3 9 In bit 6

In bit 3 4 10 In bit 7 (MSB)

Ground 5 11 Ground

+3.3V 6 12 +3.3V

Table 2-8 External synchronization socket pinout

MIONTECH Triode Gun Modulator MiTwo

29 / 97 Michał Dziewiecki 2019

J6: Debug socket (PMODB): Intel PMOD connector (NDR)

This connector outputs some internal FPGA signals for debug purposes. It’ not intended to

be used in regular runs.

Description Nr Nr Description

int_trig_debouncer_in 1 7 int_sensor_status [2]

int_sensor_in_trg 2 8 int_sensor_status [3]

int_sensor_status [0] 3 9 int_sensor_status [4]

int_sensor_status [1] 4 10 int_sensor_status [5]

Ground 5 11 Ground

+3.3V 6 12 +3.3V

Table 2-9 Debug socket pinout

J7: Debug USB serial port: mini-USB

Standard mini-USB connector.

J8: JTAG programmer connection: mini-USB

Standard mini-USB connector.

2.4. Details on synchronization

As already mentioned, the synchronization between multiple boards is performed on two

levels:

 frame-level synchronization,

 fine synchronization

This is done by synchronization link (J1 connector on the frontend board) using two pairs

of wires, each transmitting one signal in RS-485 standard. The two signals are the frame

clock and the synchronization serial link (see chapter 2.3.7.3, Sockets and connectors).

They may be transmitted either directly between a master and slave board (if there’s only

one slave board in the system) or through a synchronization board, as shown in Fig. 2-21.

The two signal are always produced by the Master board. They are transmitted via RS-485

converters (working as transmitters) outside the board. The same signals are routed to the

sensor interface via debouncers (not shown).

On the slave side, the signals are received by two RS-485 converters (this time working as

receivers) and routed to the sensor interface via debouncers.

The role of the synchro board is to populate synchronization signals to multiple boards.

The RS-485 chain introduces a substantial delay, which needs to be compensated for fine

synchronization. Therefore, the frame trigger is delayed by a programmable time on each

board, as shown in Fig. 2-22. Setting the delay time for each board is user’s responsibility.

The synchronization serial link doesn’t need any time compensation.

Beam Position Monitor

Technical description
rev. 1.1

30 / 97 Michał Dziewiecki 2019

..
.

Fig. 2-21 Simplified diagram of the synchronization system. SSL TX is the transmitter for synchronization

serial link. RS-485 pairs are shown in blue. Debouncers are omitted.

As shown in Fig. 2-23, the data over serial link is transmitted at the same time as the frame

data gets transmitted over Ethernet. It means that new link data is not available (especially

at slave side) when transmitting frame. Therefore, the transmitted link data is always used

only for the next frame, both for master and slave, as shown in the figure.

As an implication, the first frame ever sent, it theoretically remains unsynchronized.

However, as all frame counters are reset before starting a run, this first frame should be

sent with a global frame counter of zero and will by correctly put together by the event

builder.

Physikalisches Institut

Ruprecht-Karls

Universität Heidelberg

Beam Position Monitor

Technical description

31 / 97 Michał Dziewiecki 2019

Fig. 2-22 Basic timing for master/slave synchronization

Fig. 2-23 Details on serial link timing

Physikalisches Institut

Ruprecht-Karls

Universität Heidelberg

Beam Position Monitor

Technical description

32 / 97 Michał Dziewiecki 2019

2.5. The FPGA

2.5.1. General

The FPGA code is derived from Intel’s ‘Simple socket server’ example project, however

it’s deeply modified. It’s based on the QSYS architecture (warning, Intel changes this

name every year, currently it’s System designer or whatever), i.e. a framework for easy

building various computer and computer-like systems.

All the custom code (and all generated code) is written in Verilog.

The FPGA code san be basically found in [fpga] directory. The main file is

[fpga]/m10_rgmii.v.

2.5.2. Block system design

A simplified block diagram of the FPGA is shown in Fig. 2-24. Some signals (clocks,

reset, debug) were omitted.

Most of the logic is incorporated into the QSYS component (described below). All other

blocks are essentially an interface between the QSYS and external hardware. Most of them

are circuits for generating and routing various clocks.

Fig. 2-24 Simplified block diagram of the FPGA

MIONTECH Triode Gun Modulator MiTwo

33 / 97 Michał Dziewiecki 2019

2.5.3. The QSYS

A simplified block diagram of the QSYS is shown in Fig. 2-25. Some second-importance

components have been omitted.

Fig. 2-25 Simplified block diagram of the QSYS

There are variety of memories in the system:

 An external DDR3 RAM. It serves as main program and data memory for the CPU.

 Onchip Flash memory. It’s the storage place for the program code. Upon system

start, the contents of this memory gets loaded to the DDR3 RAM. This allows for

faster program execution.

 External QSPI flash memory. It’s not used now, however it might be helpful in the

future if the program code grows significantly or there’s a need to store a lot of

non-volatile data (e.g. look-up tables for data processing)

 Descriptor-memory. It’s an on-chip static RAM used by DMA controllers for

fetching commands. Use of a static memory speeds-up the DMA operation.

The most important part is to the right of the system bus. It shows the Ethernet interface

(eth_tse) with its DMA controllers (msgdma_tx and msgdma_rx). The controllers use

descriptor memory to fetch commands while the data itself is written to / read from the

Beam Position Monitor

Technical description
rev. 1.1

34 / 97 Michał Dziewiecki 2019

DDR3 RAM. As the UDP generator must send data directly to Ethernet as well, there’s the

tx_multiplexer block which allows this.

The operation of the multiplexer is very simple: the first input which sends a packet start

signal, passes through the multiplexer. If the other input sends its packet start before the

first one finished, it’s backpressed. This simple mechanism doesn’t require any

intervention of the CPU or any external control blocks.

The system includes a pair of general purpose I/O modules (button_pio and output_pio) for

basic user interface (switches and LEDs) and controlling some out-of-QSYS components

of the system.

Further, there are two timers: one (sysclk_timer) is used as clock for the operating system

where another one (frame_timer) is used as frame clock.

Finally, the debug_uart module serves the on-board USB serial port used for debug

purpoes and initial system configuration (see chapter 2.3.7.3: Sockets and connectors).

For the ones not familiar with QSYS: the term system bus is a bit misleading. It’s really a

mesh of connections between system components allowing multiple masters accesing

various slaves at the same time. This makes the system faster, but another effect of this

approach is that each master has its own address space.

Currently the system has three masters: the CPU and both DMA controllers. While the

CPU has access to all peripherals, the DMA controllers can access only the DDR3 RAM

and the descriptor memory.

The current address map is given in Table 2-10. But attention: any major change into the

QSYS (like changing memory sizes, adding/removing slaves) will cause a need to re-build

this map. Luckily, on the software side, all devices are called by specific defines, which are

automatically updated after each update to the QSYS.

Physikalisches Institut

Ruprecht-Karls

Universität Heidelberg

Beam Position Monitor

Technical description

35 / 97 Michał Dziewiecki 2019

cpu msgdma_rx msgdma_tx

Device Port data_master instruction_

master

 mm_write descriptor_

read_master

 descriptor_

write_master

 mm_read descriptor_

read_master

 descriptor_

write_master

button_pio s1 0x18123580

cpu
debug_mem_

slave
0x18122800 0x18122800

ddr3_ram avl 0x08000000 0x08000000 0x08000000 0x08000000

debug_uart s1 0x18123420

descriptor_

memory
s1 0x18120000 0x18120000 0x18120000 0x18120000 0x18120000

enet_pll pll_slave

eth_tse control_port 0x18123000

avl_csr 0x18123540
ext_flash

avl_mem 0x14000000 0x14000000

frame_timer s1 0x18123400

csr 0x18123500
msgdma_rx

prefetcher_csr 0x18123480

csr 0x18123520
msgdma_tx

prefetcher_csr 0x181234a0

data 0x18080000 0x18080000
onchip_flash

csr 0x18123590

output_pio s1 0x18123440

sensor_

interface
csr 0x181234c0

sys_clk_timer s1 0x18123460

sysid control_slave 0x18123598

udp_generator csr 0x181234e0

Table 2-10 Memory map of the QSYS

Physikalisches Institut

Ruprecht-Karls

Universität Heidelberg

Beam Position Monitor

Technical description

36 / 97 Michał Dziewiecki 2019

2.5.4. Custom code

Thanks to using QSYS, the amount of custom Verilog code has been minimized. Still,

there are some blocks which were coded from scratch.

2.5.4.1. Sensor interface

The sensor interface was designed as a QSYS component and is responsible for interfacing

sensor and ADC signals, as well as driving these components, collecting data and packing

them into frames together with headers and synchronization data. The output from the

interface has a form of an Avalon-ST link. The module is configured using a number of

registers accessible via an Avalon-MM interface.

The sensor interface itself consists of a number of sub-blocks as shown in Fig. 2-26.

Control registers

Reset control

Avalon-ST

transmitter

Detector gain logic

Trigger delay logic

Sensor clock logic

Sensor RESET

(shutter) logic

ADC trigger logic

ADC logic

Data merger

out_sensor_gain

out_sensor_clk

out_sensor_rst

out_adc_clk

out_adc_cnv

5x in_adc_data

Avalon-ST output

Avalon-MM interface

in_trg

rst_reset

SSL transmitter

SSL receiverserial_rx

serial_tx

Fig. 2-26 Simplified block diagram of the sensor interface. Only most important data and trigger paths have

been shown

Fig. 2-27 shows a simplified, inaccurate and in general false timing scheme of the sensor

interface.

Physikalisches Institut

Ruprecht-Karls

Universität Heidelberg

Beam Position Monitor

Technical description

37 / 97 Michał Dziewiecki 2019

Fig. 2-27 A simplified timing scheme of the sensor interface

Physikalisches Institut

Ruprecht-Karls

Universität Heidelberg

Beam Position Monitor

Technical description

38 / 97 Michał Dziewiecki 2019

It’s the case of long integration time (keeping RESET low as short as possible). For shorter

integration times, the low-to-high RESET transition may appear within the acquisition

phase (ADC convert). It’s an allowed situation. It’s also allowed that early activity

connected to integration or conversion overlaps with data transmission for the previous

cycle. The sensor data is double-buffered and buffer copy is realized during the data

merger active state.

The following detailed information can be useful to understand the Verilog code. Almost

the same is put as comments directly into the Verilog file.

A bank of control registers includes 4 32-bit R/W registers. They are used for setting up

the module and checking its state. Register 0 is a bit different: when read, bits 15-8 (the

status byte) are taken directly from device internals, not from register contents. The bus

can be accessed 32-, 16- or 8-bit-wise.

The following tables summarize the register map of this block and details of the command

and status registers.

Reg. Bits Name Description

7-0 SENSOR_REG_COMMAND Control byte

15-8 SENSOR_REG_STATUS Status byte

23-16 SENSOR_REG_SENSORCLK
divider for producing sensor clock ('4' MHz)

6 of 8 bits used
0

31-24 SESNOR_REG_ADCCNV
time of conversion pulse in ADC clocks

should be > 500 ns

15-0 SENSOR_REG_DELAY
reset signal delay in master clock ticks

12 of 16 bits used
1

31-16 SENSOR_REG_SHUTTER
integration time in sensor clocks

12 of 16 bits used

7-0 SENSOR_REG_SERSPEED
synchro baudrate divider

set 50 for 1 Mbps

15-8
SENSOR_REG_HEADER_

ANYDATA

user data transmitted with SMA state

8 bits SMA + 8 bits anydata 2

31-16
SENSOR_REG_HEADER_

CMD

command field of the command header

transmitted in packet

must be 0x8000

4 15-0 SENSOR_REG RESERVED Reserved

Table 2-11 Register map of the sensor interface

Bitmask Name Description

0x01 SENSOR_CSR_EN_BITMASK enable operation

0x02 SENSOR_CSR_GAIN_BITMASK gain selection

0x04 SENSOR_CSR_ADCK_BITMASK ADC clock divider on/off

0x08 SENSOR_CSR_RESET_BITMASK Reset all logic

Table 2-12 Command byte bitmasks for the sensor interface

MIONTECH Triode Gun Modulator MiTwo

39 / 97 Michał Dziewiecki 2019

Bitmask Name Description

0x01 SENSOR_STATUS_SEND Sending data over Avalon-ST

0x02 SENSOR_STATUS_TRG_WAITING
The frame trigger has come and is being

delayed now

0x04 SENSOR_STATUS_RESET_ACTIVE
The RESET (integration) signal for the

sensor is active now

0x08 SENSOR_STATUS_ADC_ACTIVE

The ADC is converting data (signal high

over all 64 channels) or just finished

and waits for RESET high

0x10 SESNOR_STATUS_ADC_FINISHED The ADC waits for RESET high

0x20 SESNOR_STATUS_TX_ACTIVE Synchronization serial link is sending

0x40 SESNOR_STATUS_RX_ACTIVE Synchronization serial link is receiving

Table 2-13 Status byte bitmasks for the sensor interface

The reset control allows putting the block in a known state. There are two types of reset:

 hardware reset resets everything

 software reset resets everything but registers (and their logic).

The detector gain logic is responsible for controlling the gain setting signal for the sensor.

The trigger delay logic allows for fine synchronization among multiple boards (see

chapter 29). A 12-bit downcounter allows for delaying incoming trigger's rising edge by up

to 4095 50MHz clock cycles, i.e. 81.9 us.

Note: A further delay of one sensor clock will be added in the sensor clock generation

logic.

The sensor clock logic generates a clock of max. 4 MHz, which is needed by sensors. The

actual clock speed is configurable by a register with a formula: Fs = Fi/2/(div+1), where Fs

is the sensor clock, Fi is input clock (50 MHz master clock nom.) and div is a divider taken

from the register. A 5-bit downcounter allows for frequencies from 0.39 MHz (div=63) to

12.5 MHz (div=1). The nominal setting is 6, giving 3.5714285 MHz.

Important: The sensor clock is synchronized to the rising edge of the (delayed) trigger

input, so that there is a positive slope at exactly one sensor clock period after the trigger.

This positive slope is then used to synchronize integration start signal (sensor reset or

shutter). The synchronization is done so that one of clock states (0 or 1) gets extended, but

never shortened.

Note: 4 MHz is also the top speed accepted by the ADC module.

The sensor reset (shutter) logic block generates a 'reset' (shutter) signal for the sensor. It

defines the integration time and is programmable by means of a register in sensor clock

units. The leading (positive) slope of this signal is synchronized with the first positive

slope of the sensor clock after the trigger. This reset-clock alignment is required by

sensor’s specification.

An internal 12-bit downcounter allows for a max. integration time of ca 1.15 ms. It can be

further extended by slowing down the sensor clock. It's user's responsibility to check if the

integration period fits into the trigger period. If this requirement is not fulfilled, some

triggers will be skipped.

Beam Position Monitor

Technical description
rev. 1.1

40 / 97 Michał Dziewiecki 2019

Important remark from sensor's specification: Rise of a RESET pulse must be set outside

the video output period. This must by guaranteed by user by means of proper timing. First

video comes 18 cycles after negative slope of sensor reset and is 2 cycles long. Then 2

cycles pause (here we can come with the positive reset slope), then next video and so on,

every 4 cycles.

The minimum duration of reset low is 21 clocks, and 20 clocks for reset high. Our logic

requires that new reset low comes only after all channels are read.

The ADC trigger logic produces triggering signals for ADC framework and cares about

counting ADC samples. It doesn't rely on incoming Trig signals supplied by sensors, it just

generates their ‘mirror’ internally by counting clocks.

The ADC logic gives an SPI interface for ADCs. It triggers conversion and reads out the

data on each incoming ADC trigger signal from the previous module.

The ADC framework and SPI runs with full master clock frequency or with half of it,

depending on register setting. (For our nominal throughput of 10 000 frames per second,

only full clock frequency is applicable.)

The converter works in the 'CS Mode, 3-Wire Without Busy Indicator Serial Interface' [6].

The CNV signal length is defined by register and expressed in ADC clocks. It's user's

responsibility to ensure that the CNV pulse is longer than 500 ns (required by ADC spec).

The task of the data merger is to put together all needed data (from ADC, serial

synchronization link and registers) and create a packet from them. See the following table

for the packet structure.

Part Word Octet Field name Value Remarks

0

1
command_header.marker 0x5555

2
0

3
command_header.command Reg2[31:16]

4

C
o

m
m

a
n

d
 h

e
a

d
e

r

5
command_header.length 323

See chapter 2.6.4,

Table 2-20 and

Table 2-21

6
1

7
sync_frame.local_ctr local_sync_ctr

Local synchronization

counter

8 global_sync_error global_sync_error
Error of serial

receiver (bit 25)

9 sync_frame.global_ctr global_sync_ctr

Global

synchronization

counter

10 sync_frame.sma_state[15:8] Reg2[15:8]
ANYDATA

see Table 2-11

S
y

n
ch

ro
n

iz
a

ti
o

n
 f

ra
m

e

2

11 sync_frame.sma_state[7:0] PMODA External input (SMA)

S
e

n
so

r

d
a

ta

3-162 ... frame_buffer

ADC data

Two octets per

sample

Table 2-14 Output packet format for the sensor interface

MIONTECH Triode Gun Modulator MiTwo

41 / 97 Michał Dziewiecki 2019

The Avalon-ST transmitter is used to transmit collected sensor data together with sync

frame. The data can be later packed into UDP by UDP generator and sent over Ethernet.

(Or whatever user wants.) The transmitter has 8-bit symbol, 4 symbols per beat (see

Avalon-ST specification to understend these odd names). It's backpressurizable and

includes packet signals. The Empty signal is dummy (always zero), as the data is always

aligned to 32-bit size.

The data packet produced by the sensor interface consists basically of three blocks:

 the command header to comply with general packet specification (see chapter

2.6.4)

 the synchronization frame, which contains all the information needed for

synchronizing packet from different boards, as well as synchronizing with external

systems

 sensor data containing 320 16-bit words for total of 320 sensor channels.

The SSL transmitter and SSL receiver are responsible for frame-level synchronization.

The transmission is getting triggered by an internal trigger (same as for the Avalon-ST

transmitter). The transmitter sends 9 LSBs of the local synchronization counter with

programmed baudrate.

The default baudrate is 1 Mbps, which needs a setting of 50 for master clock of 50MHz.

The receiver puts freshly received data into a register to be used by data merger. It does not

need any triggering.

2.5.4.2. UDP generator

The task for the UDP generator is collecting frames from the sensor interface and packing

them into valid UDP/IP packets. It uses Avalon-ST links as data input and output. The

configuration is done by means of an Avalon-MM interface and a set of registers.

The generated packet can be passed directly to the TSE MAC (Ethernet) IP core.

The following tables summarize the register map of this block.

Reg. Bits Name Description

7-0 Control byte

15-8
UDPGEN_REG_CSR

Status byte 0

31-16 UDPGEN_REG_SIZE Payload size in 32-bit words

1 31-0 UDPGEN_REG_SRCIP Source IP, last octet first

2 31-0 UDPGEN_REG_DSTIP Destination IP, last octet first

15-0 UDPGEN_REG_DSTPORT Destination port
3

31-16 UDPGEN_REG_SRCPORT Source port

4 31-0

5 15-0
UDPGEN_REG_DSTMAC Destination MAC address, last octet first

6 31-0 UDPGEN_REG_RES1 Reserved

7 31-0 UDPGEN_REG_RES2 Reserved

Table 2-15 Register map of the UDP generator

Beam Position Monitor

Technical description
rev. 1.1

42 / 97 Michał Dziewiecki 2019

Bitmask Name Description

0x01 transfer enable Enable operation

Table 2-16 Control byte bitmasks for the UDP generator

Bitmask Name Description

0x07 state of the machine

State of the internal state machine

0: Idle

1-4: sending MAC header

5-9: sending IP header

10-11: sending UDP header

12: sending data

13: padding too short packet

14: dumping too long packet

15: finished transfer

Table 2-17 Status byte bitmasks for the UDP generator

The incoming and outgoing data must be packetized (packet signals are required for both

Avalon-ST links). Any incoming packet will be converted to one outgoing packet.

The UDP generator doesn’t buffer incoming data: it produces the UDP packet in real-time

as the data is coming. This implies three important facts:

 The packet size must be known a priori. It’s needed to fill various length fields in

the packet header. It means also, that exactly the declared number of octets must be

transmitted. Therefore, each packet longer than declared will be truncated. Any

shorter packet will be padded with zeros. It’s not a real problem for us, as we

exactly know the size of ou packets.

 The incoming data streem must be backpressed for the time of preparing and

sending packet header. This means, that the data source must support backpressure.

 The UDP checksum can not be used as it can be calculated only after transferring

the payload, but it’s needed before. Anyway, calculating the UDP checksum is not

required by the standard, so the packet will be fully correct. Further, it’s not really

needed as there’s another checksum added by Ethernet MAC in the MAC layer.

The structure of an outgoing UDP packet is shown below.

MIONTECH Triode Gun Modulator MiTwo

43 / 97 Michał Dziewiecki 2019

Part Word Octet Field name Value Remarks

0

1
Blank 0x0000

Used for header alignment for TSE

MAC (Ethernet)

2
0

3
Reg5[15:0]

4

5

6
1

7

DSTMAC

Reg4[31:0]

8

9

10
2

11

12

13

SRCMAC 0
SRCMAC will be filled by TSE MAC IP

core

14

MAC

3

15
EtherType/length 0x0800 IP v. 4

16
Version/header

length
0x45 IP v.4, length: 5 words

17 DSCP/ECN 0x0000

18

4

19
Total length

4*Reg0[31:16] +

28

Reg0[31:16] is the declared payload

size in words

20

21
Identification ip_id

A unique identifier of a packet.

Incremented after each packet.

22
5

23

Flags/fragment

offset
0x4000 Don't fragment flag set

24 Time to live 0x80 TTL=128

25 Protocol 0x11 UDP

26
6

27
Header checksum header_checksum See description

28

29

30
7

31

SRCIP Reg1

32

33

34

IP

v. 4

8

35

DSTIP Reg2

36

37
SRCPORT

38
9

39
DSTPORT

Reg3

40

41
UDP length 4*Reg0[31:16] + 8

Reg0[31:16] is the declared payload

size in words

42

UDP

10

43
UDP checksum 0

UDP checksum is not used. This is

allowed by the standard.

DATA
The amount of data is always a

multiple of 32 bits.

Table 2-18 Complete UDP packet structure

Beam Position Monitor

Technical description
rev. 1.1

44 / 97 Michał Dziewiecki 2019

2.5.4.3. Debouncers

Two signal debouncers are used in the project: one for the incoming synchro trigger signal

and another one for the receive data of synchro serial port. Their task is to remove glitches

from the signal, which might arise due to external interference. It also helps dealing with

long signal slopes. It’s quite important as neither the trigger circuit nor the serial receiver

are glitch-proof.

A simplified diagram of a debouncer is shown below.

Fig. 2-28 Debouncer design (simplified)

Each debouncer incorporates a chain of D flip-flops (the number of these flip-flops is

configurable; the drawing shows 3 of them) and an output circuit which changes its state

only if all flip-flops show the same output state. This means, that only pulses longer than N

clock periods, where N is the number of flip-flops, will pass through the circuit. A 50MHz

master clock is used to drive these circuits.

It’s also important to mention that a debouncer adds some delay to the signals. It’s

especially non-negligible for the trigger signal.

2.5.4.4. Test benches

For testing the VHDL components, a number of test benches have been prepared. hey are

stored in the project folder and may be used if a change of any of the custom components

has to be made.

Component Test bench

debouncer.v debouncer_testbench.v

sensor_interface.v sensor_testbench.v

udp_generator.v udp_testbench.v

Table 2-19 Summary of Verilog test benches

2.5.5. Additional information

As the project uses some high speed buses, proper time constraining is crucial for its

operation. Especially, the Ethernet PHY connection is running a 125 MHz DDR interface

(RGMII), which needs a very precise timing.

It has been found that original timing constraints for this interface are false and the device

works only by means of luck. These constraints have been changed so that the system is

functional after each re-compilation (so far), but there’s no warranty that it will be always

like this. If there are any problems with Ethernet connectivity for future FPGA

compilations (especially with the RX path), try tuning these constraints. The most probable

way is further increasing Td_max and Td_min parameters in

[fpga]/rgmii_sdc/rgmii_input.sdc.

MIONTECH Triode Gun Modulator MiTwo

45 / 97 Michał Dziewiecki 2019

Below a code snippet from this file is shown, which is responsible for RGMII receive path

timing.

Another high-speed device, the DDR3 RAM, seems to work flawlessly. The on-board

QSPI Flash has not been tested.

2.6. Internal processor firmware

2.6.1. General

The main task of the firmware is to control the on-chip hardware modules. It doesn’t take

part in data acquisition, as this is performed solely by hardware components.

The firmware uses a single TCP/IP connection for programming the device, while data

transfer is done via UDP/IP.

The firmware project was derived from Intel’s ‘Simple socket server’ example and deeply

modified. It’s based on Micrium’s MicroCOS II real-time kernel and uses NicheStack from

Interniche to add network functionality. The original socket server code has been

completely rewritten to improve it’s stability, allow for multiple connections and clean up

the totally odd Intel’s code.

On top of it, a simple command interpreter has been built. In general, it’s fully compatible

with version 1 of the device, however some commands (mainly slow-control) are not

implemented.

Important remark: The system uses Booting method 2[3]. It means, that the program

code is stored in the internal Flash memory of the FPGA, but it’s loaded to RAM (in this

case, the external DDRAM) by a special bootloader program and executed from there. It

allows for faster execution than directly from Flash. Anyway, working without external

DDRAM is virtually impossible due to huge apetite of MicroCOS for data memory.

Remark for NIOSII-beginners: The firmware project is internally divided into two

projects:

 the ‘right’ project is what is described here;

 the BSP project is an automatically generated set of libraries which is derived from

the configuration of the QSYS. It must be re-generated after each QSYS change

(otherwise the main project won’t compile’). There are some files excluded from

#set Tco_max 0.350 Changed M.D. 2019.10.07
#set Tco_min -0.350
set Tco_max 0.9
set Tco_min -1.3

#set Td_max 1.0 Changed M.D. 2019.10.07
#set Td_min 0.9
set Td_max 1.6
set Td_min 1.5

set longest_src_clk 0.0
set shortest_src_clk 0.0
set longest_dest_clk 1.0
set shortest_dest_clk 0.9

Beam Position Monitor

Technical description
rev. 1.1

46 / 97 Michał Dziewiecki 2019

automatic re-generation, as they were edited to render the project working and must

stay in this state.

2.6.2. Socket server

The socket server is responsible for assigning sockets, handling incoming connections and

socket data transmission. It’s able to handle multiple listener sockets on different ports,

however only one socket is currently used.

If a client connects to a port, a communication socket is being assigned for him. If another

client wants to connect to the same port, the old client gets disconnected. This behavior

looks very odd and nasty, but it gives a simple method of killing lost connections.

The socket server offers a simple programmer’s interface consisting of three functions:

 ethernet_listen() for initializing listeners;

 ethernet_read() to read data from a socket

 ethernet_write() to write data to a socket.

 ehernet_close() to force connection closing.

Currently, ethernet_listen() can be called only once for each listener socket, so a

socket can be configured only once and can not be unlistened.

All these functions are thread-safe and can be used from any user’s thread. However, this

thread must be created as Niche-compatible. It’s described in the Niche Stack

documentation [4], how to do it.

The socket server uses its own thread for handling incoming connections.

For details, look directly into the source code:

[firmware]/hit20_v3/src/socket_server.c

[firmware]/hit20_v3/inc/socket_server.h

Important – the base IP address of the device is defined in socket_server.h. Another

important define there is NR_CHANNELS. It tells how many different port numbers can be

used. If another TCP channel is needed in the future, this define must be adapted. See the

snippet from socket_server.h below.

Please note that, even if the DHCP can be enabled by switch, it doesn’t make any sense, as

there is no reliable way of finding the DHCP-assigned address of the device (unless the

DHCP server is configured to give certain ‘static’ IP addresses to given MAC). Also, the

PC software has no support for dynamic addresses. Therefore, static addressing should be

always used.

MIONTECH Triode Gun Modulator MiTwo

47 / 97 Michał Dziewiecki 2019

2.6.3. Control task

The control task is really where all the action takes place. So, it:

 reads data from Ethernet

 interprets it and does some actions

 sends back replies

All the rest of the code can be treated as a ‘miraculous background’ which is only

responsible for handling read and write functions.

The main loop of the control task (which was derived from version 1) continuously

attempts to receive packet headers, interpret them, receive data, if any, then take some

actions and generate an answer. It uses HAL-layer code to interface to the hardware.

Connecting and disconnecting client(s) is done in background by the socket server itself.

The control task doesn’t need to control it.

For details, look directly into the source code:

[firmware]/hit20_v3/src/control.c

[firmware]/hit20_v3/inc/control.h

#define NR_CHANNELS 1 //number of listening sockets -
as in Wiznet

 //Each socket listens on its own
port and is able to open one "talking" connection at a time
 //If
a new connection request comes, the old one gets preempted. This
allows us killing dead connections.

/*
 * If DHCP will not be used, select valid static _BASE_ IP addresses
here:
 * The contents of DIPSW[3:0] will be added to the last byte of the
IP.
 * DIPSW[4] is used to enable/disable DHCP.
 */
#define IPADDR0 10
#define IPADDR1 0
#define IPADDR2 7
#define IPADDR3 16

#define GWADDR0 10
#define GWADDR1 0
#define GWADDR2 7
#define GWADDR3 1

#define MSKADDR0 255
#define MSKADDR1 255
#define MSKADDR2 255
#define MSKADDR3 0

Beam Position Monitor

Technical description
rev. 1.1

48 / 97 Michał Dziewiecki 2019

2.6.4. TCP control protocol

Table 2-21 summarizes all TCP commands, as listed in [firmware]/hit20_v3/inc/
dev_commands.h

 The general packet structure (being payload for a TCP packet) is shown in Table 2-20.

All fields are transmitted as 16-bit words with LSB first due to historical grounds. As

both the NIOS processor and x86 architecture are big endian, the data must be converted

on both sides of the TCP link.

The offset and length values in the following tables are expressed in 16-bit units (one must

multiply them by two to get byte values).

Nr Offset Length Field name Description

1 0 1 Marker Must be 0x5555

2 1 1 Command Command code

3 2 1 Length Data length

4 3 = Length Data Packet data

Table 2-20 TCP packet structure

The packet format is the same for both transmission directions. The device always answers

with the same command code as the request. There are no special error codes. In case of an

error in the incoming packet, the device will not reply.

The UDP transmission channel uses the same internal packet structure (command code

0x8000 for sending data) as the TCP link.

Physikalisches Institut

Ruprecht-Karls

Universität Heidelberg

Beam Position Monitor

Technical description

49 / 97 Michał Dziewiecki 2019

PC → device device → PC
Command Description Code

Len Data Len Data

COMMAND_PING Return the same 0x0001 0 [] 0 []

COMMAND_DEBUG_LED_OFF Turn off LED 0 0x0010 0 [] 0 []

COMMAND_DEBUG_LED_ON Turn on LED 0 0x0011 0 [] 0 []

COMMAND_LEDS_DISABLE
Disable LED4 blinking. Other LEDs must

be explicitly switched off.
0x0110 0 [] 0 []

COMMAND_LEDS_ENABLE Enable LED4 blinking. 0x0111 0 [] 0 []

COMMAND_TRIGGER_DISABLE
Disable trigger generation in master

mode
0x0210 0 [] 0 []

COMMAND_TRIGGER_ENABLE
Enable trigger generation in master

mode
0x0211 0 [] 0 []

COMMAND_TRIGGER_SET_SLAVE Set trigger to slave mode 0x0220 0 [] 0 []

COMMAND_TRIGGER_SET_MASTER Set trigger to master mode 0x0221 0 [] 0 []

COMMAND_TRIGGER_SET_PERIOD
Set trigger period for master mode in

master clock ticks
0x0230 1 [Period_ticks] 0 []

COMMAND_TRIGGER_SET_TINT Set integration time in sensor clock ticks 0x0240 1 [Tint_ticks] 0 []

COMMAND_SET_GAIN Set sensor gain (low/high 0x0250 1 [Gain] 0 []

COMMAND_TRIGGER_SET_MASTER_DELAY
Set trigger delay time in master clock

ticks for master mode
0x0260 1 [Tdelay_ticks] 0 []

COMMAND_TRIGGER_SET_SLAVE_DELAY
Set trigger delay time in master clock

ticks for slave mode
0x0270 1 [Tdelay_ticks] 0 []

COMMAND_DAQ_DISABLE Disable sending data 0x0310 0 [] 0 []

COMMAND_DAQ_ENABLE Enable sending data 0x0311 0 [] 0 []

COMMAND_DAQ_RESET_COUNTERS Reset synchronization counters 0x0321 0 [] 0 []

COMMAND_DAQ_FLUSH_DATA
Send all remaining data over data socket

(applies only to v.1)
0x0322 0 [] 0 []

Beam Position Monitor

Technical description
rev. 1.1

50 / 97 Michał Dziewiecki 2019

COMMAND_DAQ_CONFIG_PEER

Set connection settings (peer IP and

port) for data transfer

Warning: IP is sent as 4 shorts with

MSB=0!

0x0331 5 [ip ip ip ip port] 0 []

COMMAND_SLOWCTRL_SNAPSHOT

Slow control snapshot - read all channels

of ADC

(applies only to v.1)

0x0410 0 [] 10

[Readout of 5

ADC channels

as 32-bit

integers]

COMMAND_DATA_TRANSFER
Transfer data frame

UDP packet!
0x8000 - - 6

4
6

[Single data

frame]

Table 2-21 TCP command summary

Physikalisches Institut

Ruprecht-Karls

Universität Heidelberg

Beam Position Monitor

Technical description

51 / 97 Michał Dziewiecki 2019

2.6.5. HAL for custom components

The hardware abstraction layer (HAL) functions for custom components have been

collected in following files:

 [firmware]/hit20_v3/inc/sensor.h and .../sensor.c for sensor interface

support

 [firmware]/hit20_v3/inc/udpgen.h and .../udpgen.c for UDP generator

 [firmware]/hit20_v3/inc/utils.h and .../utils.c for trigger routing,

frame clock generation and LEDs.

The HAL consists mainly of simple wrapper functions to access hardware registers of

specific blocks. Utils contains also some generic helper functions.

Look at the source code for details.

2.7. Brief description of v.1

2.7.1. Comparison to v.2

The v.1 is not being developed anymore, but it can still be used in various setups together

with v.2. Most important differences between v.1 and v.2 are:

 v.1 supports only two sensors while v.2 supports five;

 v.1 is entirely based on a microcontroller (STM32F446) and its built-in peripherals

while v.2 is based on FPGA;

 it uses 100Mbps Ethernet adapter (based on Wiznet chip) rather than 1 Gbps; it’s

enough for 2 sensors per board (it’s theoretically enough even for five sensors).

 its main clock frequency is different. This implies differences in setting frame

frequency, integration time and delays. Therefore the PC software has separate

timing settings for v.1 and v.2. It’s user’s responsibility to set them properly;

 it supports packing output UDP packets into bunches. This allows for better

bandwidth utilization (more big packets instead of many small ones give less

overhead from packet headers). V.2 hasn’t got this feature as a single data frame

from 5 sensors is already close to maximum allowed by Ethernet. Anyway, the

feature of packing is not supported by PC software, so it has never been used;

 power supplies are different.

 v.1 is equipped with an analog ‘dosimetry’ output reflecting the total current of all

photodiodes. In v.2 this feature was cut out.

There are also some very important aspects where both versions are identical:

 they share the same standard of synchronization interface;

 they share the same TCP control protocol and the same UDP frame format (besides

the packet size).

Beam Position Monitor

Technical description
rev. 1.1

52 / 97 Michał Dziewiecki 2019

These features make it quite easy to mix both versions in a single measurement setup.

2.7.2. Connectors and controls

A general view of a v.1 board (with mounting plate) is shown below.

Table 2-22 Connectors and controls of v.1

J1: Ethernet connector: RJ-45

Standard 100Base-TX connector.

J2: Synchronization connector: RJ-45 – compatible to J1 in v.2 (see chapter 2.3.7.3:

Sockets and connectors), but includes also analog dosimetry output.

Nr Name Function Remarks

1 LINK3B

2 LINK3A
Frame clock

Output for master configuration, input for

slave

3 LINK2A
Synchronization

serial link

Output for master configuration, input for

slave

4 LINK0B

5 LINK0A
unused

6 LINK2B
Synchronization

serial link

Output for master configuration, input for

slave

7 LINK1B

8 LINK1A
Dosimetry output

Output of dosimetry signal – analog,

differential

Table 2-23 Synchronization connector pinout of v.1

MIONTECH Triode Gun Modulator MiTwo

53 / 97 Michał Dziewiecki 2019

J3: JTAG connector: IDC-10

This connector is used for programming and debugging the microcontroller.

J4: External synchronization connector: SMA

This is exactly what is called the ‘SMA connector’ throughout this document.

J5: Power connector: 3.5 mm 3-pin EDG connector

Fig. 2-29 V.1 power plug pin numbering

Nr Function

1 +5V

2 GND

3 +9V

Table 2-24 Power connector pinout for v.1

SW1: 8-bit dip-switch which defines the last byte of board’s IP address. The general IP

pattern is the same as for v.2: 10.0.7.x.

2.8. External hardware components

Only a single board can be run without any external components (OK, still needs a power

supply!). All more sophisticated configurations need at least two further components:

 the synchro board,

 an ethernet switch.

If synchronization to the HIT’s Ethercat system is needed, then the timestamper is

required.

Beam Position Monitor

Technical description
rev. 1.1

54 / 97 Michał Dziewiecki 2019

2.8.1. Synchro board

The synchro(nization) board is responsible for routing synchronization signals among

boards in a multi-board configuration (see chapter 2.4: Details on synchronization and Fig.

2-21).

Currently it’s made as a prototype board with one master and three slave connections. The

master socket is marked (see Fig. 2-30 below). It must be connected to a board configured

as master (while the others must be configured as slaves, that’s clear), otherwise the system

won’t work. Wrong configuration is inoperable, but not dangerous, i.e. burning RS-485

transmitters is not probable even if there’s a bus conflict.

Additionally, the synchro board is used for power supply routing for v.1 boards. There are

three power inputs, as shown in the table below:

Power Ground
Voltage Description

cable plug cable plug

+3.3V DAQ digital supply red red blue blue

+9V DAQ analog supply yellow yellow blue blue

+5V synchro board supply yellow green blue blue

Table 2-25 Power supply for the synchro oard

The output cables for DAQ bouards are equipped with three-way plugs, and they can be

connected only in one (proper) way.

V.2 board(s) must be supplied independently of the synchro board. See chapter 2.3.7.3:

Sockets and connectors and 4.1: Hardware preparation for details).

Fig. 2-30 The synchro board

The master connector has eight test pints (in form of a 2.54mm header) which allow direct

observation of signals with an oscilloscope. The two Lemo connectors can be connected to

any signal for easy routing signals to the scope.

MIONTECH Triode Gun Modulator MiTwo

55 / 97 Michał Dziewiecki 2019

2.8.2. Timestamper

The timestamper is a simple device to synchronize our system with an external one, e.g.

the HIT’s Ethercat. The idea is to put a pseudo-random digital signal to both readouts.

Then, this signal can be used for off-line data synchronization.

So, this pseudo-random signal is really current system timestamp of the controlling

computer. It’s transmitted over a serial port four times a second with a baud rate of 250

bps.

Physically, the timestamper consists of a stock USB-to-serial converter and a small board

with digital buffers. The power for the converter is drawn parasitically from serial port’s

control lines and fed through a 5V regulator. The board has two outputs with different

logic levels. These levels are nominally 5V and 3.3V, however, due to limited power

output of the USB-to-serial converter, it’s less (at least for the converter we use).

In critical cases, the power regulator can be bypassed by a jumper, however this must be

done with care, as the power voltage for the logic must not exceed 5.5V.

If a true serial port is available in the PC, it can be used without problems. It’s even better

than a USB interface as it’s expected to offer higher current on control pins and true +/-

10V RS-232 voltage standard (which is hard to find in case of USB ports).

Fig. 2-31 General view of the timestamper

There’s a special PC software which makes the timestamper work. See chapter 3.2:

Timestamper.

Beam Position Monitor

Technical description
rev. 1.1

56 / 97 Michał Dziewiecki 2019

2.8.3. Ethernet switch

The Ethernet switch is needed to connect multiple boards to a single adapter of the PC. In

general, it should be a 1Gbps switch. Anyway, for limited number of channels, a 100Mbps

switch should work as well. The expected data rate for a single sensor is 10 Mbps, so, very

theoretically, up to 10 sensors can be served with a 100Mbps link.

Anyway, it’s important that it’s a switch and not a hub. Many collisions are expected when

frame data are being sent (simultaneously from all the boards!). Since they are UDP

packets and will never be retransmitted, it relies solely on the switch, that they are

buffered, queued and flawlessly sent to the PC.

2.8.4. Power supplies

The v.2 electronics needs two PS channels to work, v.1 needs another two and the synchro

board needs one. Typically, one 4-channel lab PS (Hameg HMP-4040) and one dedicated

PS for FPGA is used. The Ethernet switch has its own power supply.

All PS channels are summarized below:

Nr Voltage Source Destination Typ. current

1 +5V Lab PS (ch. 1) Synchro board 270 mA

2 +3.3V Lab PS (ch. 2) v.1 digital 670 mA

3 +9V Lab PS (ch. 3) v.1 analog 290 mA

4 +12V Lab PS (ch. 4) v.2 frontend board 270 mA

5 +12V dedicated PS v.2 FPGA board (no readout)

Table 2-26 Summary of power supply voltages

The typical currents are given for a setup containing three v.1 boards and one v.2 board.

Remarks concerning v.2 power supply:

 The system can be powered from single 12 power supply as well as with dual (see

chapter 2.3.6: Further remarks)

 However, the power scheme has great influence on the noise figure. Single power

supply has a way bigger noise due to influence of noisy FPGA on sensitive analog

circuits.

 Best results are obtained when two physical power supplies are used (even not two

channels of one PS!) Therefore, a lab PS can be used to supply the frontend board,

while the FPGA board should be supplied from the attached PS.

 It’s not known at this moment how the setup will behave when more than one v.2

boards are used. We have only one board.

MIONTECH Triode Gun Modulator MiTwo

57 / 97 Michał Dziewiecki 2019

3. PC software

The PC software can be divided into two groups: online and offline software. The online

software are basically the DAQ and Timestamper programs. The offline software is

everything used for data conversion, processing and analysis, as well as simulation. These

are mainly various Matlab scripts.

3.1. DAQ software

3.1.1. General overview

The DAQ software allows for connecting to multiple DAQ boards, configuring them,

reading frame data and storing them to hard disk. On top of it, it offers a real-time data

monitor.

The software is also equipped with a number of diagnostic procedures which were used for

debugging the v.1 electronics (these procedures have never been used with v.2, so it’s not

obvious, that they work with v.2).

The code is developed with QT 5 and compiled for Windows.

And very important: this software is not deeply maintained. Therefore is not idiot-proof

and wrong settings (see chapter 4.2: Setting up software) may cause a crash. Also, some

older test procedures may be useless for v.2 hardware or they may even crash.

3.1.2. Basic concepts

 The software allows connecting (theoretically) unlimited number of boards of both

versions in any combination. They can be grouped in detector planes. A plane is a

purely virtual concept (doesn’t need to be physically a single and entire plane) and

it doesn’t have any influence on how the data gets processed and stored. The only

use of it is currently grouping data from various sensors into a single plot on the

display.

 The data is stored in form of binary files. Prior to writing, data from all boards gets

synchronized on frame level.

 Hardware configuration is stored using the QSettings mechanism. Ini files are used

for this. In addition, for each data file, a copy of currently used ini file is created to

keep track at which settings the data has been collected.

 The data is not deeply processed during acquisition. Basically, what comes from

the hardware, gets written to the disk.

 Multi-threaded architecture increases overall throughput (by using multiple

processor cores) and guarantees fast response of user interface.

Beam Position Monitor

Technical description
rev. 1.1

58 / 97 Michał Dziewiecki 2019

3.1.3. Deeper into the code

The code can be found in [pcsoft]. Besides common QT structures (mainwindow etc.),

there are some important classes to support communication with devices and data taking:

 Device: this is a wrapper class for a physical device. It allows connecting to

hardware, configuring it and taking data. A helper class, DeviceConfig, is used to

pass hardware configuration. Device objects are allocated dynamically upon system

configuration.

 DataReceiver: it includes all the code needed for receiving data over UDP socket.

Each data receiver uses its own thread which continuously receives and buffers data

from a single board (either v.1 or v.2) The received frames are internally stored into

cyclic buffers as objects of type BufferData. There is one data receiver per one

device.

 EventBuilder is responsible for collecting data from cyclic buffers of each data

receiver, merging them (with attention of frame-level synchronization) and writing

to the disk. It uses a separate thread for its activity. In contrast to devices and data

receivers, there is only one event builder in the system.

An additional function of the event builder is filling amplitude histograms, which

are used by some diagnostic procedures (used only for v.1).

 DisplayServer and Display: The display server is responsible for fetching some

data frames (10 per second or whatever) and displaying them using multiple

displays. There is only one display server, but the number of displays is equal to the

number of defined detector planes (this is not equivalent to number of boards).

MIONTECH Triode Gun Modulator MiTwo

59 / 97 Michał Dziewiecki 2019

3.1.4. Output data format

The data is saved as a stream of 16-bit words. They are grouped into regular structures

storing frames. Each frame contains a header and a set of data for every board. These sets

of data contain sensor data as well as synchronization structures.

A structure of a single frame is shown below.

 Word offset Symbol Description

0 N Number of sensors

1 C1 Board 1: number of channels

(boards 2 to N-1)

H
e

a
d

e
r

N CN Board N: number of channels

N+1

...

N+8

S1
Board 1: sync frame

(8 words = 16 bytes)

N+9 Board 1: first sensor channel

... (other sensor channels)

N+9+C1

D1

Board 1: last sensor channel

(boards 2 to N-1)

(X)+1

...

(X)+8

SN Board N: sync frame

(X)+9 Board N: first sensor channel

... (other sensor channels)

D
a

ta

(X)+9+CN

DN

Board N: last sensor channel

Table 3-1 Output file data format

The sync frame is described in the following table.

Word offset Name Description

0 local_ctr Value of local frame counter (0-65535)

1 global_ctr Value of global frame counter (0-511)

2 sma_state State of the SMA/PMOD input

3 dummy
Nothing. This is to align following 32-bit

values to 32-bit boundary.

4

5
device_nr

A unique number given to a device. It has

minor to no meaning in data processing.

6

7
data_ok

Diagnostic field. Frames with data_ok=0

should be skipped in offline processing.

Table 3-2 Sync frame format

Beam Position Monitor

Technical description
rev. 1.1

60 / 97 Michał Dziewiecki 2019

Important remark: The sensor signal has inverted polarity (baseline is close to maximum,

i.e. 65535 or 0xFFFF while any signal decreases this value, see chapter 2.3.1: (The

Electronics) Overview). It gets inverted by the software, so that intuitive ‘non-Australian’

values are written to the file.

3.2. Timestamper

The timestamper software is a simple program developed with QT5 for Windows. Its

function and use are self-explaining. Below is a screenshot of its main and only window.

Fig. 3-1 Timestamper's main window

The program will send timestamps to selected serial port. These are just ordinary Unix

timestamps: 32 bits, so 4 bytes are sent each time.

A quite important fact is that the exact time intervals between sent values are not

guaranteed. Windows is not an RTOS. The good message is that has no meaning for

synchronization purposes.

3.3. Offline software

The offline software is used for data post-procesing, including merging our detector’s data

with HIT’s EtherCAT data. It’s written mainly in Matlab (at least Michal’s part). There is

also a little c++ library to simplify loading data files into Root.

3.3.1. Matlab functions

The following paragraphs describe only most important functions. On top of them, there’s

a plenty of specific functions and scripts for processing data from various test sessions.

A remark on array sizes used here:

 Whereever M or N is used, it means any number. One M or N can be different from

another M or N.

 Whereever C is used, it means number of channels in the data.

 Whereever B is used, it means number of boards.

 Whereever F is used, it means number of frames (samples).

MIONTECH Triode Gun Modulator MiTwo

61 / 97 Michał Dziewiecki 2019

3.3.1.1. load_data

This is the basic function for reading binary files (*.dat and *.da2). It subsequently calls

load_data_v1() or load_data_v2() functions depending on given file’s extension.

Input arguments:

Name Format Default Description

filename
1xN

char
required

The name of the file to load with an extension (*.dat

or *.da2)

nr_boards
1x1

double
0

Number of boards – important only for *.dat files. In

other case optional and not used.

first_frame
1x1

double
0

First frame to read from file. Indexing starts from 0.

Optional.

nr_frames
1x1

double
+inf

Biggest number of frames to read from file. +inf is

legal. Optional.

Table 3-3 load_data: input arguments

Output arguments:

Name Format Description

data
CxF

uint16

An array of all data as saved in the file. Dimensions:

nr_channels x nr_samples.

syncdata
1x1

struct
A structure containing synchronization data. See table below.

boardinfo
1x1

struct

A structure containing information about number and version

of boards. See table below.

Table 3-4 load_data: output arguments

Syncdata description:

Field name Format Description

local_ctr
BxF

uint16

An array containing local frame counters for all boards and all

samples. Dimensions: nr_boards x nr_samples.

global_ctr
BxF

uint16

An array containing local frame counters for all boards and all

samples. Dimensions: nr_boards x nr_samples.

sma_state
BxF

uint16

An array containing the state of SMA/PMOD inputs for all

boards and all samples. Dimensions: nr_boards x nr_samples.

device_nr
BxF

uint16

An array containing device numbers for all boards and all

samples (the device number gets added to each frame).

Dimensions: nr_boards x nr_samples.

data_ok
BxF

uint16

An array containing the state of the data_ok flag for all boards

and all samples. Dimensions: nr_boards x nr_samples.

Table 3-5 load_data: syncdata structure description

function [data syncdata boardinfo] =
load_data
(filename, nr_boards, first_frame, nr_frames)

Beam Position Monitor

Technical description
rev. 1.1

62 / 97 Michał Dziewiecki 2019

Boardinfo description:

Field name Format Description

nr_boards
1x1

double
Number of boards in the system (B)

channel_counts
1xB

uint16

A vector containing channel counts for all boards.

Dimensions: 1 x nr_boards.

Table 3-6 load_data: boardinfo structure description

Remark: The loaded data may occupy a lot of memory, especially if it gets converted to

double at some point. Therefore, user should consider loading files and processing data in

smaller pieces (allowed by first_frame and nr_frames arguments). If only

synchronization data is needed, the following function can be used.

3.3.1.2. load_sync_data

function [syncdata boardinfo] =
load_sync_data
(filename, nr_boards, first_frame, nr_frames)

Load only synchronization data from a given binary file. Allows loading synchronization

data from big files with only moderate use of memory. It’s helpful for synchronizing our

data with HIT.

Input arguments:

See 3.3.1.1:

MIONTECH Triode Gun Modulator MiTwo

63 / 97 Michał Dziewiecki 2019

load_data, Table 3-3.

Output arguments:

See 3.3.1.1:

Beam Position Monitor

Technical description
rev. 1.1

64 / 97 Michał Dziewiecki 2019

load_data, Table 3-4.

3.3.1.3. load_and_prepare_data

Load data, subtract baseline from each channel and find spills, offspills and transient states.

This function uses find_spills function (see below), which can be used standalone.

Input arguments:

See 3.3.1.1:

function [data_bl syncdata I_offspill I_onspill I_neutral boardinfo] =
load_and_prepare_data
(filename, nr_sensors, first_frame, nr_frames)

MIONTECH Triode Gun Modulator MiTwo

65 / 97 Michał Dziewiecki 2019

load_data, Table 3-3.

Beam Position Monitor

Technical description
rev. 1.1

66 / 97 Michał Dziewiecki 2019

Output arguments:

Name Format Description

data_bl
CxF

double

An array of all data after substracting baseline for each

channel. Dimensions: nr_channels x nr_samples.

syncdata
1x1

struct
A structure containing synchronization data. See Table 3-5.

I_offspill
1xN

double
Indices of all frames qualified as off-spill.

I_onspill
1xN

double

Indices of all frames qualified as on-spill. A quick method to see

the spill. A quick method of viewing the spill structure is

hist(I_onspill,1000) (1000, or any other big number,

defines the resolution of our view).

I_neutral
1xN

double

Indices of all frames qualified as transient state between on-

spill and off-spill.

Table 3-7 load_and_prepare_data: output arguments

Remark: The algorithm used by this function needs that there is a beam-free ‘warmup

period’ in the beginning, i.e. that the data begins with off-spill. This warmup time is must

be at least 10000 frames long (1 second with nominal frame rate).

3.3.1.4. find_spills

Find spill structure in detector's data. The data must be baseline-aligned first.

Input arguments:

Name Format Default Description

data
CxF

double
required

An array of all data after substracting baseline

for each channel. Dimensions: nr_channels x

nr_samples.

warmup_samples
1x1

double
required

Number of samples for the warmup period.

The warmup period must be off-spill.

drawplot
1x1

double
required

1 to plot data divided into on-spill, off-spills

and transient states, 0 not to plot them.

Table 3-8 find_spills: input arguments

function [I_offspill I_onspill I_neutral mask_offspill mask_onspill
mask_neutral] =
find_spills
(data, warmup_samples, drawplot)

MIONTECH Triode Gun Modulator MiTwo

67 / 97 Michał Dziewiecki 2019

Output arguments:

Name Format Description

I_offspill
1xN

double
Indices of all frames qualified as off-spill.

I_onspill
1xN

double

Indices of all frames qualified as on-spill. A quick method to see

the spill. A quick method of viewing the spill structure is

hist(I_onspill,1000) (1000, or any other big number,

defines the resolution of our view).

I_neutral
1xN

double

Indices of all frames qualified as transient state between on-

spill and off-spill.

mask_offspill
1xF

double

A vector including value of 1 for each off-spill sample and 0

otherwise. Dimensions: 1 x nr_samples

mask_onspill
1xF

double

A vector including value of 1 for each on-spill sample and 0

otherwise. Dimensions: 1 x nr_samples

mask_neutral
1xF

double

A vector including value of 1 for each transient sample and 0

otherwise. Dimensions: 1 x nr_samples

Table 3-9 find_spills: output arguments

3.3.1.5. make_real_timestamp

Calculate real timestamp for each frame based on data from timestamper. Timestamper

bitrate is assumed to be 250 bps, 4 transmissions/s.

Input arguments:

Name Format Default Description

sync_data
1xF

double
required

A vector containing timestamper data, like

sync_data.sma_state returned by load_data().

It can be a binary (boolean) or ‘analog’ signal.

fs
1x1

double
required Sampling frequency (or frame rate) in Hz.

threshold
1x1

double
required

Threshold value for interpreting sync_data values.

Set to 0.5 for boolean data.

fig_nr
1x1

double
required

Specify figure number to a plot report to. Set to 0 to

disable plotting.

subpl

1x3

double

or []

required

Specify position of the subplot in the figure as a 3-

element vector (see Matlab’s subplot) or empty

array if subplots are not used.

Table 3-10 make_real_timestamp: input arguments

function real_time =
make_real_timestamp
(sync_data, fs, threshold, fig_nr, subpl)

Beam Position Monitor

Technical description
rev. 1.1

68 / 97 Michał Dziewiecki 2019

Output arguments:

Name Format Description

real_time
1xF

double

Real timestamps for all frames. They are expressed in

timestamper’s units (milliseconds according to Unix

timestamp), but with fractional resolution.

Table 3-11 make_real_timestamp: output arguments

The function currently uses linear interpolation to calculate timestamp values. It can be

easily changed in the code. See help for Matlab’s interp1() function.

3.3.1.6. export_all_timestamps

This script is to calculate and export all real timestamps (timestamper must be used!) for

runs in given directory. It will ask user for the working directory, total number of boards

and from which board the timestamper signal should be taken. The data will be exported as

*.csv files.

3.3.1.7. recon

This is a common, uniform interface for all reconstruction (i.e. beam finding) algorithms.

It divides the data sensor-by-sensor and then applies specified beam finding algorithm for

each sensor separately by calling a specific function.

Input arguments:

Name Format Default Description

data
CxF

double
required

An array containing sensor data. Baseline must

be subtracted first (see 3.3.1.3:

load_and_prepare_data).

recon_mode

1xN

char

or 1x1

double

required

Reconstruction algorithm. Can be specified by

name (char array) or identifier (double). See

Table 3-14 for details.

recon_attributes any []
A variable or structure containing algorithm-

specific configuration.

boardinfo
1x1

struct
[]

Boardinfo structure as returned by load_data()

(see 3.3.1.1: load_data). If not specified, it is

assumed that all boards are v.1 (128 channels)

and board count is derived from data size.

Table 3-12 recon: input arguments

function [positions widths] =
recon
(data, recon_mode, recon_attributes, boardinfo)

MIONTECH Triode Gun Modulator MiTwo

69 / 97 Michał Dziewiecki 2019

Output arguments:

Name Format Description

positions
BxF

double

Reconstructed beam positions (expressed in channels) for each

board and each sample

widths
BxF

double

Reconstructed beam widths (expressed in channels) for each

board and each sample

Table 3-13 recon: output arguments

Remark regarding boardinfo: If there is a plane which contains more than one board, it is

still possible to use recon as is, but a modified boardinfo structure must be provided,

where all boards assigned to one plane are merged.

An example: Let’s assume that we have four boards configured as two planes:

 Board 0, 128 channels, plane 0

 Board 1, 128 channels, plane 0

 Board 2, 128 channels, plane 1

 Board 2, 128 channels, plane 1

The boardinfo has the following structure:

To merge boards in planes, use the following boardinfo

Available reconstruction algorithms:

Name Identifier Description

gaussfit 1 Gaussian fitting

basic_moments 2 Basic center of gravity / variance

windowed_moments 3 Center of gravity / variance with iterative windowing

basic_phase 4
Phase information from first Fourier coefficient, no

beam width calculation

fourier_phase 5
Phase information from more Fourier coefficients, no

bram width calculation

Table 3-14 reconstruction algorithms

gaussfit: The beam profile is fitted by a gaussian function by a nonlinear least squares fit.

To increase fit speed and reliability, the data gets divided into smaller blocks of frames.

For each block, first the mean over all samples is calculated and fitted. Then, this fit is used

as starting point for individual frame fitting. Block size can be configured using

recon_attributes.

boardinfo.nr_boards = 4
boardinfo.channel_counts = [128 128 128 128]

boardinfo.nr_boards = 2
boardinfo.channel_counts = [256 256]

Beam Position Monitor

Technical description
rev. 1.1

70 / 97 Michał Dziewiecki 2019

Field name Format Default Description

block_size
1x1

double
1000

Default block size. Can be specified as +inf

to treat all data as a single block.

blocks
Nx2

double
[]

Explicit boundaries for each reconstructed

block. If this attribute is specified,

block_size is disregarded. Gaps and block

overlapping are allowed.

Table 3-15 gaussfit: recon_attributes

In general, small block sizes should be used if the beam position changes frequently, while

large blocks are better if the beam position is rather stable.

If blocks attribute is used - output data will be aligned block-by-block – so if there are any

gaps between blocks or they are overlapping, the indices of reconstructed points will not

directly correspond to input data.

The gaussian fitting is used as a reference method. It can’t be used in reality due to huge

computational effort, indeterminate calculation time and occasional inconvergence. In

Matlab, it’s orders of magnitude slower than other methods.

basic_moments: Beam position is calculated as the center of gravity for all signals (i.e.

mean/expected value if we treat the profile as a histogram). Beam width is derived from

second central moment (variance). This method is very simple and fast, but it’s prone to

common noise, especially f the beam is far from detector’s center.

This method hasn’t got any attributes to be configured.

windowed_moments: A more advanced algorithm, where basic moment calculation is

iteratively repeated. After each iteration, the data gets windowed to cut off insignificant

tails of the distribution. The procedure is configurable.\ Remark: the first iteration is

always a non-windowed basic_moments. So, if M is, let’say, 5, then 6 iterations will be

performed: one unwindowed and five windowed, according to configuration as described

above.

MIONTECH Triode Gun Modulator MiTwo

71 / 97 Michał Dziewiecki 2019

Field name Format Default Description

widths
1xM

double
[3]

A vector of window widths (for each pass

but the first which is basic_moments)

referred to reconstructed beam width (i.e.

2.0 means the window would be twice as

wide as the beam width found for the

previous pass). The size of this vector

defines the number of algorithm loops.

min_widths
1xM

double
[20]

A vector of minimum window widths in

detector's channels. Must be the same size

as widths.

shapes

1xN

char

or Mx1

cell

or 1xN

double

or MxN

double

'gauss'

A string or a number or a vector (1,N), or a

cell array, or a vector (M,1) or an array

(M,N).

1xN char: specify window shape for all

passes as either ‘rect’ or ‘gauss’.

Mx1 cell: specify window shape for each

iteration separately, e.g. {‘gauss’, ‘rect’,

‘rect’}

1xN double: specify any window shape. The

size of this vector is not important; it will be

resampled to give correct window width.

The same shape will be applied for all

iterations.

MxN double: as above, but allows

specifying different shape for each iteration.

Table 3-16 windowed_moments: recon_attributes

basic_phase: The beam position is derived from the phase of the first Fourier component

of the profile. This method does not support width calculation (not yet). It is very fast

(comparable to basic_moments) and largely insensitive to common noise. However, it’s

behavior with asymmetric beam shape must be studied.

There’s nothing to configure here.

fourier_phase: The beam position is derived from the phase of first N Fourier components

of the profile. This method does not support width calculation (not yet). It is only a bit

slower than basic_phase and offers superb beam position reconstruction even for very bad

SNR. It has been proven to be more stable than gaussian fitting. For good SNR, it gives

comparable or slightly worse results than fitting. For bad SNR it’s even better.

However, good reliability depends on proper setting of the npoints attribute (see below).

In general, the wider the beam and the smaller the detector plane (less channels), the lower

value of this parameter should be used. Typical values range from 5 (v.1 board, wide

beam) to 20 or more (v.2 board, narrow beam).

Still, its behavior with asymmetric beam shape must be studied. Also, beam width

calculation must be implemented.

Beam Position Monitor

Technical description
rev. 1.1

72 / 97 Michał Dziewiecki 2019

There is one configuration attribute:

Field name Format Default Description

npoints
1x1

double
5

Number of points of Fourier transform

taken into account. In general, the wider

the beam, the less points make sense.

Table 3-17 fourier_phase: recon_attributes

other methods: Adding new methods to the recon framework is quite easy:

1. Find a nice name for the new method, In this example, it will be my_method.

2. Develop a function with a custom algorithm. Its declaration should have a form:

Save the file as [matlab]/recon_my_method.m.

3. Edit [matlab]/recon.m and add the name of the method (in our case,

‘my_method’, to the declaration around line 26. It will allow calling our method by

identifier. If the method will be called only by name, this step is not needed. Below

a code snippet from recon.m with my_method added:

The programmer has full freedom with defining attributes for his method. However: the

uniform recon interface requires that the recon_attributes parameter is optional. It is

programmer’s responsibility to provide a parameter control mechanism. Tip: see any of

recon_*.m files to see how to deal with default parameters.

Note that any specific reconstruction function deals with a single board and it is assumed

that there is only one beam, i.e. we search for a single peak.

3.3.1.8. load_hit_data

Load HIT (EtherCAT) text file.

Input arguments:

Name Format Default Description

filename
1xN

char
required

The name of the file to load with an extension

(mostly probably *.csv)

Table 3-18 load_hit_data: input arguments

function [positions widths] =
recon_my_method
(data, attributes);

 %Convert numeric recon_mode to string
recon_modes = {'gaussfit', 'basic_moments', 'windowed_moments',
'basic_phase', 'fourier_phase', 'my_method'};
if ~ischar(recon_mode)
 recon_mode = recon_modes(recon_mode);
end;

function out =
load_hit_data
(filename)

MIONTECH Triode Gun Modulator MiTwo

73 / 97 Michał Dziewiecki 2019

Output arguments:

Name Format Description

out
nested

structure

A structure with multiple fields, each containing two sub-

fields(see below). The field names are same as in HIT file (with

dots ‘.’ and minus signs ‘-‘ changed to underscore ‘_’.

Table 3-19 load_hit_data: output arguments

out structure sub-fields:

Name Format Description

time
1xF

double

A vector containing a timestamp for each sample (it’s HIT’s

timestamp, it has nothing to do with our timestamper)

values
1xF

double
A vector ontaining the value of each sample.

Table 3-20 load_hit_data: out structure sub-fields

To clarify this odd format: if the HIT file contains data for IC1 and IC2, each having

12345 samples, we can expect following structure at the output:

Important remark: Each channel in EtherCAT can have its own sampling frequency.

Therefore, output vectors can be of different length for each channel. Use hit_resample() to

make them uniform.

3.3.1.9. hit_resample

Resample HIT data to common frequency and make the structure less complex.

Input arguments:

Name Format Default Description

in
nested

structure
required

The structure returned by load_hit_data. See

Table 3-20 for details.

fs
1x1

double
required

Common sampling frequency for all channels

after resampling.

Table 3-21 hit_resample: input arguments

Output arguments:

Name Format Description

out
1x1

structure

A structure with multiple fields. The field names are same as

in the input structure and contain vectors with resampled

data. There is an additional field called rel_time which

contains common timestamps for all data after resampling.

Table 3-22 hit_resample: output arguments

out.IC1.time: 1x12345 double
out.IC1.values: 1x12345 double
out.IC2.time: 1x12345 double
out.IC2.values: 1x12345 double

function out =
hit_resample
(in, fs)

Beam Position Monitor

Technical description
rev. 1.1

74 / 97 Michał Dziewiecki 2019

To clarify this less odd format: if the HIT file contains data for IC1 and IC2, and the input

structure is like in the previous example, and we assume that we resample 1 second of data

at 10 kHz, we can expect following structure at the output:

3.3.1.10. process_all_hit

This script is to process all HIT data (*.csv) and convert it into *.mat files. It will ask

user for the working directory. The data is resampled to 20 kHz and absolute timestamp

from timestamper is added. The timestamper signal must be recorded as Analog_IN1.

If needed, the code can be edited to change resampling frequency or name of the

timestampler channel.

3.3.1.11. export_hit_all

This script is to export all resampled HIT data with absolute timestamps to *.csv files,

which can be further used e.g. by root scripts. The *.mat files must be generated first by

using process_hit_all.

User will be asked for the directory name to process. The directory must contain a

subdirectory called with_timestamp/. This is the place where converted files will be

stored.

out.rel_time: 1x10000 double
out.IC1: 1x10000 double
out.IC2: 1x10000 double

MIONTECH Triode Gun Modulator MiTwo

75 / 97 Michał Dziewiecki 2019

3.3.2. ROOT interface

First remark: It’s not really a ROOT interface. It’s a bundle of C++ objects which allows

easy accessing the saved data from any C++ program. No single ROOT type is used here.

But yes, it’s compatible with cint without any steroids, which makes interfacing with

interpreted ROOT scripts possible.

3.3.2.1. Data structure

The data structure (see Fig. 3-2) has several levels: The main Hitdata contains a number

of Fullframes, which contain a number of Boardframes, which finally contain some data

(exactly a single frame, single board) and a Syncframe.

Hitdata

int nrFrames

frames[]

int readFile(...)

Fullframe

int nrBoards

boards[]

Boardframe

syncframe

unsigned short

data[]

int nrChannels

Syncframe

unsigned short

local_ctr

unsigned short

global_ctr

unsigned short

sma_state

unsigned short

dummy

int device_nr

unsigned int

data_ok

Here is the sensor data!

int nrChannels()

Fig. 3-2 Data strucure used by the ROOT interface

Beam Position Monitor

Technical description
rev. 1.1

76 / 97 Michał Dziewiecki 2019

3.3.2.2. Reading data

To load some data, one might do simply:

However, there’s one remark: while it’s not a big deal to load even a big file with a

compiled program, forget about it in the case of cint. Therefore, it’s desirable to read

process data in smaller bunches. This is allowed by using optional parameters. The full

declaration of Hitdata::readFile is actually:

The use of first_frame and nr_frames is obvious, where nr_frames==-1 means ‘read

all frames till the end of the file’. The increment parameter allows reading only every nth

frame, which might be helpful to see just a quick overview of the file.

The function returns the number of correctly read frames.

If talking about numbers, reading 10 000 frames with 11 sensors (704 channels) at once

with cint (virtual machine, 2 GB RAM) is reasonable. For more than 40 000 frames, the

execution time was significantly increasing due to problems with memory allocation (yes,

it was only around 50 MB of data!)

3.3.2.3. Accessing data

Once we have loaded the data, we can access it. Here are some examples:

All data structures are safely copy-able (a deep copy of all arrays is performed), so one can

‘extract’ interesting parts and dump the rest. The following code (even if stupid) will work

correctly:

 //We load all data
Hitdata* pmydata = new Hitdata;
pmydata->readFile(“my_file.da2”);
 //Let’s say that we want to deal only with frame 3
 //Copy data
Fullframe myframe = pmydata.frames[3];
 //Delete unneeded dataset
delete pmydata;
 //myframe is still accessible and functional.

Hitdata mydata;
mydata.readFile(“my_file.da2”)

int readFile(char* filename,
 int first_frame = 0,
 int nr_frames = -1,
 int increment = 1)

 //frame count
mydata.nrFrames
 //board count
mydata.frames[0].nrBoards
 //channel count in board 0
mydata.frames[0].boards[0].nrChannels
 //access channel 1 in board 2, frame 3
mydata.frames[3].boards[2].data[0]
 //access data_ok field
mydata.frames[3].boards[2].syncframe.data_ok

MIONTECH Triode Gun Modulator MiTwo

77 / 97 Michał Dziewiecki 2019

A more advanced (and not that stupid) example:

A ‘simplified access’ is possible thanks to overloading the [] operator. For Hitdata, [] is

the same as .frames[]. The thing is more complicated for Fullframe, where the []

operator accesses directly sensor channels. The channel numbering is consecutive over

boards, so first all channels of board 0, then all channels of board 1 and so on.

This allows to reduce our three-level data structure to two-dimensional [frame][channel]

addressing, similar as for the ‘old’ v.1 ROOT interface and Matlab’s load_data (see

3.3.1.1: load_data). Below an example:

 //First, load all data
Hitdata mydata;
mydata.readFile(“my_file.da2”);
 //Get a single value: frame 1, channel 2
unsigned short mysample = mydata[1][2];
 //That’s all

Remember that what you see is an effect of operator overloading and not a true array –

don’t try to memcpy it. If you want to make a copy, you need to do it manually:

 //We assume that our output array is already allocated
for (int frame = 0; frame < mydata.nrFrames; frame++)
 for (int ch = 0; ch < mydata[frame].nrChannels(); ch++)
 output[frame][ch] = mydata[frame][ch];
 //Done.

In the example above, a convenience method nrChannels() of Fullframe is used, which

calculates the total channel count for all boards.

 //We are gonna get data only for board 3, but all frames
 //First, load all data
Hitdata* pmydata = new Hitdata;
pmydata->readFile(“my_file.da2”);
 //Assign memory for our fine-cut data
Boardframe* pmyboarddata = new Boardframe[pmydata->nrFrames];
 //Copy data
for (int i = 0; i < pmydata->nrFrames; i++)
 pmyboarddata[i] = pmydata.frames[i].boards[3];
 //Delete unneeded dataset
delete pmydata;
 //pmyboarddata is still accessible and functional.

Beam Position Monitor

Technical description
rev. 1.1

78 / 97 Michał Dziewiecki 2019

4. User’s manual

This brief manual can be used as a checklist when running the system.

4.1. Hardware preparation

Besides the mechanical installation, check connections of all cables (see 2.3.7.3: Sockets

and connectors):

 Power connections between lab PS, synchro board, v.1 boards and v.2 frontend

board;

 Power supply connection for the v.2 FPGA board;

 Synchronization connections between DAQ boards and synchro board; check if

correct board is connected to the Master socket (see 2.8.1: Synchro board)

 Timestamper connections (coax to DAQ and Ethercat, USB to the PC) – if

timestamper is used;

 Ethernet: DAQ boards, switch, PC, connection to control room,

 Power supply of the Ethernet switch.

 Optional: USB serial port for debugging (see 6.1: Debug port)

Next, power on the system:

 Power up the PC;

 Ensure that the Ethernet switch is working;

 Switch on the FPGA board (on-board switch);

 Switch on lab PS and check voltages, then switch on its output;

Look at current consumption (see 2.8.4: Power supplies). Check if there’s no smoke and

that the component’s don’t overheat (the FPGA board and metal plates around it, as well as

all voltage regulators can be noticeably warmer). After this check, the black cover can be

put on.

4.2. Setting up software

If any major changes to the setup have been introduced (changing number of boards,

planes, new PC etc.), they have to be reflected in the configuration. All settings are

collected in the DAQ software under menu→Settings.

Remark: Changing any settings needs the run be stopped. Some of them (host IP, device

list) need the devices be disconnected (see chapter 4.3: Data acquisition). If these

conditions are not fulfilled, the software will stop the run and disconnect devices prior to

entering any configuration window. Or maybe I’m wrong, so it’s always better to do it

manually.

MIONTECH Triode Gun Modulator MiTwo

79 / 97 Michał Dziewiecki 2019

4.2.1. Configuring host IP

The host IP configuration is needed to tell to all boards, where they should send frame

data. The IP of this interface should be entered, which is used for communication with the

measurement system. It must be compliant with 10.0.7.x mask.

Fig. 4-1 Host IP configuration window

4.2.2. Configuring device list

Device list configuration can be found under menu→Settings→Devices. It’s use is obvious

and a screenshot is below.

Fig. 4-2 Device list configuration window

Beam Position Monitor

Technical description
rev. 1.1

80 / 97 Michał Dziewiecki 2019

The following table summarizes all settings:

Nr. Field Description

1 Hardware ver.
Set 1 for v.1 devices and 2 for v.2. Other numbers are

not supported.

2 Layer

Assign layer to each device. Layer numbers should be

sonsecutive and start with 0. More than one device can

be assigned to a single layer.

3 Position
Position of the device in its layer. These numbers should

start with 0 and be consecutive for each layer.

4 Sensors

Number of sensors installed. The DAQ allows for

installing less sensors on a board than its capacity.

However, if removing some sensors, there should be

always last ones (these which appear rightmost on the

online display).

5 Master

Set 0 for slave board and 1 for master one. Exactly one

board should have master setting. And no zero of them

will you set as masters and not two, but exactly one.

One is the number of boards which you set as master

and the number of boards which you set as master is

one.

6 Master dly
Delay setting when working in master mode.

See chapter 2.4: Details on synchronization

7 Slave dly
Delay setting when working in slave mode.

See chapter 2.4: Details on synchronization

Fig. 4-3 Device list configuration parameters

4.2.3. Setting up timing and sensor gain

These settings can be found under menu→Settings→Trigger config. The setting window is

shown below.

Fig. 4-4 Trigger configuration window

There are two identical panes. The upper one is for configuring all v.1 devices while lower

one is for v.2. The settings are given by user in clock units. For convenience, the software

MIONTECH Triode Gun Modulator MiTwo

81 / 97 Michał Dziewiecki 2019

translates them to seconds and shows next to the entered setting. It also performs a basic

check if the entered settings are correct. There basically three settings:

 Period: this is the period of the frame clock used by the master board. If a v.1

board is used as master, it’s enough ot configure proper period for v.1 pane. The

same story for v.2.

The clock used is 90 MHz for v.1 and 50 MHz for v.2.

 Tint: this is the integration time (or, strictly speaking, the duration of positive

RESET pulse) expressed in sensor’s MCLK ticks. The MCLK frequency is 4 MHz

for v.1 and 3.5714285 for v.2.

Integration time is checked if it’s shorter than frame period (minus a margin

required by the sensor).

 Gain: It simply switches sensor gain between low and high. The difference in

sensitivity is about a factor of 2. There’s no defference in behaviour of v.1 and v.2

boards.

4.3. Data acquisition

To acquire data, proceed with following steps:

1. Connect devices (menu→Device→Connect)

2. Switch on online display if needed (Show display button; it will turn to Hide

display)

3. Start run by pressing Run button. The button will turn into Stop.

4. Press Start logging button. A file dialog will open. Enter file name for saving

data. The button will turn into Stop logging.

5. To finish, press Stop logging, Stop, Hide display and finally menu→

Device→Disonnect.

In the status bar of the application, there’s an information about current frame rate and

buffer occupancy. During a run, the buffer occupancy for all boards oscillates around

12.5%. This level is maintained to allow fluent operation of the event builder. The

information also contains a text: ‘OK’ or ‘Warning’, which is a quick indicator if buffer

levels are considered ‘safe’.

Important: Constant indication of 0%, 50% or 100% for any board means that there’s a

problem with synchronization.

Refer to chapter 3.1.4:

Beam Position Monitor

Technical description
rev. 1.1

82 / 97 Michał Dziewiecki 2019

Output data format, Table 3-1 and Table 3-2 for file format specification. The files have

.da2 extension in contrast to .dat files of earlier software version which supported only

v.1 electronics and had different file structure. Together with the dat file, another file with

.dat.ini extension will be created. It’s a copy of currently used ini file, i.e. the hardware

configuration.

4.4. Data post-processing

The data may be conveniently post-processed by Michal’s Matlab scripts or imported into

ROOT. Look at chapter 3.3: Offline software for a quick reference of most important

functions.

4.4.1. Post-processing in Matlab

Here a very brief description to see collected data in Matlab:

To load your data

[data_bl syncdata I_offspill I_onspill I_neutral boardinfo] = ...
load_and_prepare_data(‘your_filename’); ◄┘

If you don’t want to load the whole file, but only a specific range of frames, use a longer

form:

[data_bl syncdata I_offspill I_onspill I_neutral boardinfo] = ...
load_and_prepare_data(‘your_filename’, [], first_frame, ...
nr_frames); ◄┘

Note that data_bl has already removed baseline.

To plot your data as a 3-D plot, simply type:

The first command will make a mesh plot of every 1000
th

 frame of your data; of course

you can change this number to anything you like. We simply don’t want to plot all frames,

as it would kill your computer with e.g. few millions of them...

The second command is to change the viewport to see the plot directly from top (resulting

a flat colorized surface). The plot can be rotated and zoomed by mouse.

Note that load_and_prepare_data returns not only the data itself, but also

synchronization structures, an information on hardware (boardinfo) and further arrays used

for frame classification: each frame is classified as either on-spill, off-spill or neutral (i.e.

transient). In most cases, only the on-spill frames are interesting for reconstruction, so we

can simply decrease the amount of data:

data_bl = data_bl(:,I_onspill); ◄┘

If syncdata is going to be used, the same operation should be performed for all syncdata

arrays to keep them consistent with data_bl.

To calculate beam parameters (make reconstruction) for each frame, type:

mesh data_bl(:,1:1000:end) ◄┘
view(0,90) ◄┘

MIONTECH Triode Gun Modulator MiTwo

83 / 97 Michał Dziewiecki 2019

[positions widths] = recon (data_bl, ‘simple_moments’, [], ...
boardinfo); ◄┘
plot(positions’) ◄┘

Look at 3.3.1.7: recon for more details on reconstruction framework. The second used

command is, of course, to plot your results...

If the data was collected with a timestamper, you might like to extract the timestamper

data. To do this, type:

real_time = make_real_timestamp(sync_data.sma_state(my_board,:),...
10000, 0.5); ◄┘

where my_board ist the number of the board with connected timestamper. Please

remember that numbering starts with 1 (not with 0) in Matlab.

Probably you want to generate real times for all your runs, and for both our DAQ and

HIT’s Ethercat, and finally store them as text files. To do this, proceed as follows:

Please look at the description of used scripts: 3.3.1.6: export_all_timestamps and 3.3.1.11:

export_hit_all.

There are a plenty of further functions, scripts, etc. Look at 3.3.1: Matlab functions for

more information. Look also at 6.2.3: Problems with noise for a description of the noise

analysis script.

4.4.2. Post-processing in ROOT

Do it on your own:) What you get from Michal, is a library for loading data into an object-

oriented interface. See 3.3.2:

export_all_timestamps ◄┘
<enter directory name when asked>
process_all_hit ◄┘
<enter directory name when asked>

Beam Position Monitor

Technical description
rev. 1.1

84 / 97 Michał Dziewiecki 2019

ROOT interface for details.

MIONTECH Triode Gun Modulator MiTwo

85 / 97 Michał Dziewiecki 2019

5. Cloning the setup

This chapter describes how to build another copy of the DAQ system to work in a common

trigger domain (i.e. to be connected to the same trigger board). Preparing a new trigger

board is not described here.

5.1. Preparing hardware

5.1.1. The FPGA board

An Intel MAX10 development kit should be purchased. Following modifications to the PCB

are required:

 Installing terminating resistors for LVDS receivers (110 Ohm):

o Required: R252, R253, R257, R259, R261, R263, R265

o Nice to have: R254, R255, R256, R258, R260, R262, R264

 Setting DIP switches according to Table 2-3, page 25.

The FPGA schould be programmed with proper programming file:

[fpga]/output_files/output_file.pof (see chapter 1.2: Project directory

description).

5.1.2. The frontend board

Four pieces of the frontend board’s PCb have been produced, so there’s no need to produce

new ones in a close future. If needed, they can be produced from generated Gerber files

(see chapter 1.2: Project directory description). There are no special requirements

regarding plating, however the original PCBs were gold plated. There are no special

requirements on the technology (smallest detail/gap: 6 mils) and virtually any 4-layer

technology is acceptable.

The new PCB should be populated according to 2.3.3: Assembly drawings and 2.3.4:

Component list. Manual soldering the HSMC connector is possible, but needs some

experience. Reflow soldering is recommended.

Beam Position Monitor

Technical description
rev. 1.1

86 / 97 Michał Dziewiecki 2019

5.2. First run

A fresh board needs configuring its serial number to generate a unique MAC number for

the on-board Ethernet controller. To do it, a debug connection is required:

1. Connect the FPGA board’s USB serial port to a Windows PC with a mini-USB

cable

2. Power up the board and see the virtual serial port’s number in the device manager.

Power off the board.

3. Open a terminal software (e.g. RealTerm) and configure it as follows:

Setting Value

COM nr. as detected in Device Manager

Baud rate 115200 bps

Parity none

Stop bits 1

Table 5-1 Debug comm port settings

4. Power up the board and immediately connect the terminal.

5. When asked for serial number, just type a random 9-digit number. The board

configuration should go on.

5.3. Setting up the software

Proceed according to chapter 4.2: Setting up software.

5.4. Equalizing delays

Equalizing delays (fine synchronization) is a quite kinky procedure and it requires an

oscilloscope. In fact, it’s not needed for new boards, but it’s needed for any new

configuration of our measurement setup, e.g. changing the master board or changing the

length of synchro cables.

Proceed as follows:

1. Power off everything.

2. Safely connect a probe to RESET signal (i.e. pin 1) of one sensor in each board.

You need four probes for four boards. Set up oscilloscope for positive trigger.

3. Power on everything.

4. Run acquisition.

5. Measure time differences between boards using a scope.

6. Stop acquisition and edit delays in board configuration pane in the DAQ software.

V.1 uses a 90 MHz clock. Therefore, a single quantum of this setting is 11.1 ns. (or

maybe 45 MHz and 22.2 ns, I’m not sure...) V.2 uses a 50 MHz clock, so the

MIONTECH Triode Gun Modulator MiTwo

87 / 97 Michał Dziewiecki 2019

quantum is 20 ns. The master has obviously the shortest signal path, so master

delay settings are expected to be bigger.

See the figure below for help.

Fig. 5-1 Delay configuration

7. Go to 4 and repeat the sequence until all sensors start integration simultaneously,

that is within 50 ns or any accuracy you want.

Beam Position Monitor

Technical description
rev. 1.1

88 / 97 Michał Dziewiecki 2019

6. Troubleshooting

6.1. Debug port

The FPGA board is equipped with a USB serial port. During operation, this port outputs

some information regarding current state of the device.

To use the debug port, a terminal software (e.g. RealTerm) can be used. See Table 5-1 for

port settings.

The operation of the device is fully independent of the debug port connection. The port can

be connected and disconnected at any time.

6.2. Common problems

6.2.1. Connection-related problems

6.2.1.1. Board doesn’t connect to the software

Symptoms:

The PC software reports socket error after attemting to connect to the board.

Explanation:

The software con not bind a TCP/IP connection with the board. This can be caused by

wrong software configuration, wrong IP configuration of the host PC or the board,

connectivity problems on Ethernet link, problems with the internal IP core responsible for

Ethernet connectivity or finally problems with board’s firmware.

Debugging:

 Check if all devices are powered on

 Check status LEDs on the Ethernet switch if all devices and the PC are connected.

V.1 devices should report 100Mbps link, v.2 and the PC – 1Gbps.

 Restart software

 Check board IP in the configuration (menu→Settings→Devices)

 Compare it with board’s jumper setting (see chapters 2.3.7.1: Switches and 2.7.2:

(Brief description of v.1) Connectors and controls)

 Check if PC and board are located within the same subnet (subnet musk must be

255.255.255.0)

 Try pinging the device from the PC

 Powercycle the device(s)

 Restart software again

 Use debug port (see chapter 6.1: Debug port for details) to check Ethernet

connection state.

 Try connecting to the device with a terminal (TCP port 4000)

MIONTECH Triode Gun Modulator MiTwo

89 / 97 Michał Dziewiecki 2019

o Succesful connection: there’s indeed an error in the configuration of the PC

software

 Use Ethernet spying software (e.g. Wireshark) to check if the device replies to any

packet (including ARP).

o No reply to any packets with active Ethernet link and correct IP settings:

mostly probably a serious problem with interface timing on the FPGA

board.

6.2.1.2. No incoming data when running

Symptoms:

After connecting the board and pressing run button, there’s no data (rate counter(s) show

zero).

Explanation:

This problem can have two sources. First one is bad IP configuration. Another one is lack

of trigger signal

Debugging:

 Check „own IP” in the software (menu→Settings→Host IP)

 Check if PC’s IP configuration for the used Ethernet adapter matches own IP in the

software

 Set the problematic board as standalone master (menu→Settings→Devices)

o Works now: the problem is the trigger connection. Check if all used boards

are properly connected to the trigger board and which one is connected to

the „Master” socket. It must be configured as Master in the software.

 If running with multiple boards, try using another board as master (needs re-

connecting trigger connections and configuring the PC software in accordance to it)

6.2.2. Problems with signal integrity

6.2.2.1. No incoming data when running

See 6.2.1.2: No incoming data when running.

6.2.2.2. All channels show zero or maximum

Symptoms:

When running, the output from all channels is exactly zero or 65535.

Explanation:

It seems that there’s no signal from ADCs or the sensors are disconnected.

Debugging:

 Check power supplies for the FPGA board and frontend board (if used)

 Check the HSMC connector between the FPGA board and the frontend board.

Beam Position Monitor

Technical description
rev. 1.1

90 / 97 Michał Dziewiecki 2019

 Check output voltages of on-board power regulators of the frontend board (see

chapter 2.3.2: Frontend Schematics)

 Check the reference voltages (see chapter 2.3.2: Frontend Schematics)

 Check if sensors are properly attached. Aren’t they shifted by one pin? New board:

are the connectors mounted on the right side of the PCB?

6.2.2.3. One or more sensors show zero or maximum

Symptoms:

When running, the output from all channels from one or more sensors is exactly zero or

65535.

Explanation:

The most common reason for this problem is a broken or badly connected sensor. Another

possible reason is malfunction of the readout circuitry.

Debugging:

 Check if the sensor is properly attached.

 Try swapping two sensors to check if the problem moves with the sensor.

6.2.2.4. Some channels show odd values

Symptoms:

When running, the output from some channels from one or more sensors exhibits following

behavior:

 it suddenly jumps between different values

 it has outlying baseline

 it exhibits abnormal sensitivity (lower or higher)

 it outputs a constant value

Explanation:

Such kinds of artifacts happen for broken sensors. The most common reason for sensor

damage is ESD.

Debugging:

 Try swapping two sensors to check if the problem moves with the sensor.

 Replace suspect sensor with a new one.

6.2.2.5. A whole sensor shows odd values

Symptoms:

When running, the output from all channels from one or more sensors exhibits following

behavior:

 they suddenly jump between different values

 they have outlying baseline

 they exhibit abnormal sensitivity (lower or higher)

MIONTECH Triode Gun Modulator MiTwo

91 / 97 Michał Dziewiecki 2019

Explanation:

These artifacts may be caused by sensor malfunction or problems in the DAQ circuitry.

Debugging:

 Try swapping two sensors to check if the problem moves with the sensor.

 Replace suspect sensor with a new one.

 Visually inspect the PCB to find bad solders etc.

 Check the analog and digital path for the bad sensor (see chapter2.3.2: Frontend

Schematics)

6.2.3. Problems with noise

General remark: There is an utility (written in Matlab) to perform quick noise analysis. The

script name is script_cov. It’s placed in the [matlab] directory.

It takes a file with collected (dark) data as an input and produces some noise statistics,

including RMS (total, per-board and channel mean), spectrum and cross-covariance.

An example output for a correctly working setup is shown in Fig. 6-1 and Fig. 6-2. A

single v2 board (first 5 sensors) and three v1 boards (following pairs of sensors) can be

seen there.

Fig. 6-1 shows overall noise characteristics of the setup. The most interesting plots here are

channel covariance plots (to the left). By definition, the diagonal of the matrix shows the

noise power for each channel. What’s outside the diagonal are covariances between

channels. These values are a measure of common noise for sensors, boards and for whole

detector.

The upper plot shows the whole covariance matrix. The lower plot shows the same data bat

viewed ‘from corner’ (viewport 45,0); the ‘pin’ in the middle is a projection of the

diagonal.

Under normal circumstances, the common noise of a sensor is higher than common noise

of a board, and the common noise of a board is higher than common noise for whole

system. The common noise of v2 board is significantly lower than v1. However, the

channel noise is comparable for both versions.

The two plots to the right show the periodogram – i.e. the power spectrum of a noise in a

single channel (upper plot) and for the whole detector (lower plot).

Beam Position Monitor

Technical description
rev. 1.1

92 / 97 Michał Dziewiecki 2019

Fig. 6-1 Output of noise utility (1)

Fig. 6-2 Output of noise utility (2)

Fig. 6-2 shows histograms and power spectra of common noise for all sensors. On It can be

seen in the example that the common noise for first 5 sensors (v2 board) is lower than for

the following ones.

MIONTECH Triode Gun Modulator MiTwo

93 / 97 Michał Dziewiecki 2019

When collecting data for the script, two requirements should be fulfiled:

 at least 10 seconds of data (at 10 kHz) should be acquired

 there should be no optical signal – so completely dark.

6.2.3.1. Signal is “jumping”

Symptoms:

When running, the output from all channels „jumps” on the display

Explanation:

„Jumping” of the whole plot is typical for excessive common noise. The most common

sources are parasitic light, heavy external interference, problems with power suply and, last

but not least, with the reference

Debugging:

 Collect at least 10 seconds of data and run the Matlab utility. The desired noise

RMS per sensor should be 6-9 ADC counts.

 Check if there’s no active cell phone in the neighborhood.

 Check if there are any uncovered LEDs on the FPGA board.

 Switch off any light in the room and look for changes.

 Check power supply. If using power from FPGA board, try with an external PS.

 Try checking the noise on sensor and ADC references with a scope (due to limited

sensitivity of a scope, this will detect only very serious problems!)

6.2.3.2. Signal is “jumping” for a single sensor

Symptoms:

When running, the output from all channels in one or more sensors „jumps” on the display

Explanation:

This behavior is quite typical for a broken sensor. Another problem could be connectivity

issues in the reference and signal paths.

Debugging:

 Try swapping two sensors to check if the problem moves with the sensor.

 Replace suspect sensor with a new one.

 Visually inspect the PCB to find bad solders etc.

 Check the analog and digital path for the bad sensor (see chapter 2.3.2: Frontend

Schematics)

Beam Position Monitor

Technical description
rev. 1.1

94 / 97 Michał Dziewiecki 2019

6.2.3.3. Excessive channel noise

Symptoms:

Excessive channel noise is observed, but it’s uncorrelated between channels.

Explanation:

The most possible reason for such a behavior is a heavy source of external interference.

Debugging:

 Collect at least 10 seconds of data and run the Matlab utility. The desired noise

RMS per sensor should be 6-9 ADC counts.

 Check if there’s no active cell phone in the neighborhood.

 Check for other possible sources of RF signals.

MIONTECH Triode Gun Modulator MiTwo

95 / 97 Michał Dziewiecki 2019

7. Known issues

7.1. Even/odd channel swapped

During 24.11.2019 test beam run at HIT, it turned out that even and odd channels are

swapped in the output of the v.2 board. This has been corrected in hardware on 27.11. The

Matlab read procedure (load_data.m) has become a patch which automatically swaps

channels for files created earlier than the hardware correction. The files generated during

test beam run have not been corrected, so one has to be aware of it if not using Matlab

framework to read the data.

7.2. EVB loosing synchronization – dropping packets

During the same session, the event builder lost synchronization few times. Stopping the

run and re-connecting was enough to bring it back to working state. Later it was checked

that restarting run without reconnecting is enough,

The EVB algorithm was carefully checked. After trying to clone the problem on Michal’s

computer, it turned out that many data frames were lost in Ethernet transmission. What is

important, these were long, consecutive bunches of frames (reaching few dozens and more

frames from all boards).

Here is an explanation: If a bunch of lost frames is smaller or equal to 255, the event

builder is able to re-synchronize properly. However, if the gap is bigger, a mis-

synchronization (with a shift of a multiple of 512 frames) is possible.

The source of this problem is believed to be in the PC, as there are big differences between

Michal’s PC (many lost frames) and the lab PC (lost frames found only in one run over the

whole session). The possible reason could be either the Ethernet adapter or the processing

power of single core, or OS configuration, or whatever.

The DAQ software was tuned (changing task priorities, changing some constants regarding

use of buffers) to minimize the number of lost packets, however the effect of this tuning is

quite moderate. Still a fraction of ca 10
-4

-10
-3

 frames gets lost (on Michal’s PC), mostly in

bunches of few dozens of frames.

As a workaround, the EVB algorithm has been upgraded. Now it checks if local frame

counters are consistent with readouts of the global frame counter for each board (i.e. if

LFC%512==(GFC+1)%512). If it’s true, the local frame counters are used for synchronization

instead of global one. As local counters have bigger capacity (16 bits instead of 9), they

give a bigger safety margin, theoretically allowing up to 32767 frames be lost in one

bunch.

However, if a discrepancy between local and global counters is found (this might happen

e.g. if some boards loose some triggers), the algorithm falls back to comparing global

counter readouts, with a safety margin of 255 frames.

Anyway, this solution only increases the safety margin of the event builder. It does not

solve the problem of loosing packets.

Beam Position Monitor

Technical description
rev. 1.1

96 / 97 Michał Dziewiecki 2019

7.3. Trigger configuration

In trigger configuration pane of the DAQ software, the integration time was checked

against frame rate, but only regarding the same version of board. It has been corrected.

The correction has no influence on data format or whatever else.

By the way, it was checked that the calculation of frame rate from timer setting is correct.

MIONTECH Triode Gun Modulator MiTwo

97 / 97 Michał Dziewiecki 2019

8. Index of terms

board ...6

BSP project ...46

debouncer..45

detector plane..58

event builder ...7

fine synchronization................................7

FPGA PCB..9

frame ...6

frame clock ...30

frame-level synchronization7

frontend PCB ..9

global frame counter7

local frame counter7

master..7

PC ...6

sensor ..6

setup..6

slave ..7

synchronization serial link....................30

Beam Position Monitor

Technical description
rev. 1.1

98 / 97 Michał Dziewiecki 2019

9. List of figures

Fig. 2-1 Sensor's waveforms [5] ..6

Fig. 2-2 The electronics (both boards connected together, without additional shielding on

the FPGA board) ..9

Fig. 2-3 Electronics with supporting plate ...9

Fig. 2-4 Schematics diagram 1/9..10

Fig. 2-5 Schematics diagram 2/9..11

Fig. 2-6 Schematics diagram 3/9..12

Fig. 2-7 Schematics diagram 4/9..13

Fig. 2-8 Schematics diagram 5/9..14

Fig. 2-9 Schematics diagram 6/9..15

Fig. 2-10 Schematics diagram 7/9..16

Fig. 2-11 Schematics diagram 8/9..17

Fig. 2-12 Schematics diagram 9/9..18

Fig. 2-13 Assembly drawing - top ...19

Fig. 2-14 Assembly drawing - bottom ...20

Fig. 2-15 Important DIP-switches..25

Fig. 2-16 LED placement...26

Fig. 2-17 Important connectors ..27

Fig. 2-18 RJ-45 pin numbering ..27

Fig. 2-19 Power connector pin numbering...28

Fig. 2-20 Pmod connectors pin order...28

Fig. 2-21 Simplified diagram of the synchronization system. SSL TX is the transmitter for

synchronization serial link. RS-485 pairs are shown in blue. Debouncers are omitted.......30

Fig. 2-22 Basic timing for master/slave synchronization ..31

Fig. 2-23 Details on serial link timing ...31

Fig. 2-24 Simplified block diagram of the FPGA..32

Fig. 2-25 Simplified block diagram of the QSYS..33

Fig. 2-26 Simplified block diagram of the sensor interface. Only most important data and

trigger paths have been shown ...36

Fig. 2-27 A simplified timing scheme of the sensor interface ...37

Fig. 2-28 Debouncer design (simplified) ...44

Fig. 2-29 V.1 power plug pin numbering...53

Fig. 2-30 The synchro board ..54

Fig. 2-31 General view of the timestamper..55

Fig. 3-1 Timestamper's main window..60

Fig. 3-2 Data strucure used by the ROOT interface ..72

Fig. 4-1 Host IP configuration window ...76

Fig. 4-2 Device list configuration window ..76

Fig. 4-3 Device list configuration parameters..77

Fig. 4-4 Trigger configuration window..77

Fig. 5-1 Delay configuration..83

Fig. 6-1 Output of noise utility (1)...88

Fig. 6-2 Output of noise utility (2)...88

MIONTECH Triode Gun Modulator MiTwo

99 / 97 Michał Dziewiecki 2019

10. List of tables

Table 2-1 Components summary...23

Table 2-2 Debug-time updates summary...24

Table 2-3 On-board DIP-switches ...25

Table 2-4 On-board LEDs ...26

Table 2-5 Synchronization connector pinout...27

Table 2-6 Frontend power connector pinout..28

Table 2-7 FPGA power connector pinout..28

Table 2-8 External synchronization socket pinout ..28

Table 2-9 Debug socket pinout..29

Table 2-10 Memory map of the QSYS..35

Table 2-11 Register map of the sensor interface ...38

Table 2-12 Command byte bitmasks for the sensor interface ...38

Table 2-13 Status byte bitmasks for the sensor interface ..39

Table 2-14 Output packet format for the sensor interface ...40

Table 2-15 Register map of the UDP generator ..41

Table 2-16 Control byte bitmasks for the UDP generator ...42

Table 2-17 Status byte bitmasks for the UDP generator ...42

Table 2-18 Complete UDP packet structure ..43

Table 2-19 Summary of Verilog test benches ...44

Table 2-20 TCP packet structure ...48

Table 2-21 TCP command summary ...50

Table 2-22 Connectors and controls of v.1..52

Table 2-23 Synchronization connector pinout of v.1 ..52

Table 2-24 Power connector pinout for v.1 ...53

Table 2-25 Power supply for the synchro oard..54

Table 2-26 Summary of power supply voltages ..56

Table 3-1 Output file data format ..59

Table 3-2 Sync frame format ...59

Table 3-3 load_data: input arguments ...61

Table 3-4 load_data: output arguments ...61

Table 3-5 load_data: syncdata structure description..61

Table 3-6 load_data: boardinfo structure description ..62

Table 3-7 load_and_prepare_data: output arguments..63

Table 3-8 find_spills: input arguments ..63

Table 3-9 find_spills: output arguments ..64

Table 3-10 make_real_timestamp: input arguments..64

Table 3-11 make_real_timestamp: output arguments..65

Table 3-12 recon: input arguments ..65

Table 3-13 recon: output arguments ..66

Table 3-14 reconstruction algorithms ..66

Table 3-15 gaussfit: recon_attributes...67

Table 3-16 windowed_moments: recon_attributes..68

Table 3-17 fourier_phase: recon_attributes ...69

Table 3-18 load_hit_data: input arguments ...69

Table 3-19 load_hit_data: output arguments ...70

Table 3-20 load_hit_data: out structure sub-fields ..70

Beam Position Monitor

Technical description
rev. 1.1

100 / 97 Michał Dziewiecki 2019

Table 3-21 hit_resample: input arguments...70

Table 3-22 hit_resample: output arguments...70

Table 5-1 Debug comm port settings...82

MIONTECH Triode Gun Modulator MiTwo

101 / 97 Michał Dziewiecki 2019

11. References

[1] Max10 Developer Kit manual – google it!

[2] Max10 Developer Kit schematics – google it!

[3] Max10 booting methods – google it!

[4] Niche stack documentation – google it!

[5] Hamamatsu S11865-64 spec – google it!

[6] AD7983 spec – google it!

