used liqings FAS linear reg with fake data
This commit is contained in:
parent
89258a816f
commit
25b19b6b68
@ -64,7 +64,7 @@ void EventBuilder::onNewData(DataReceiver* receiver)
|
||||
//1. Background subtraction.
|
||||
|
||||
frame_counter++;
|
||||
|
||||
/*
|
||||
while (frame_counter<10000){
|
||||
for (unsigned int dev_nr = 0; dev_nr < nrReceivers; dev_nr++){
|
||||
for (unsigned int ch = 0; ch < channelCounts[dev_nr]; ch++)
|
||||
@ -84,7 +84,7 @@ void EventBuilder::onNewData(DataReceiver* receiver)
|
||||
currentFrame[dev_nr].sensor_data[ch]-=backgroundFrame[dev_nr].sensor_data[ch] ;
|
||||
}
|
||||
}
|
||||
|
||||
*/
|
||||
|
||||
|
||||
lastFrameMutex.lock();
|
||||
@ -108,13 +108,13 @@ void EventBuilder::onNewData(DataReceiver* receiver)
|
||||
|
||||
//log data
|
||||
if (loggingData) logDataToFile();
|
||||
//HIT_ANALYSE_V2 hit_analyse_v2;//create the object
|
||||
// QString dataString = hit_analyse_v2.analyseBeamData(currentFrame);
|
||||
|
||||
HIT_ANALYSE_V2 hit_analyse_v2;//create the object
|
||||
QString dataString = hit_analyse_v2.analyseBeamData(currentFrame);
|
||||
std::cerr << dataString.toStdString() << std::endl;
|
||||
// Call sendData method of the UDP server
|
||||
QString dataString = QString::number(intensity) + ',' + QString::number(position) + ',' + QString::number(focus);
|
||||
QByteArray data = dataString.toUtf8();
|
||||
udpServer.sendData(data);
|
||||
// QString dataString = QString::number(intensity) + ',' + QString::number(position) + ',' + QString::number(focus);
|
||||
//QByteArray data = dataString.toUtf8();
|
||||
// udpServer.sendData(data);
|
||||
|
||||
}
|
||||
|
||||
|
@ -8,6 +8,32 @@ HIT_ANALYSE_V2::HIT_ANALYSE_V2(QObject *parent) : QObject(parent)
|
||||
|
||||
}
|
||||
|
||||
// Define your own functions for matrix operations
|
||||
struct Matrix2x2 {
|
||||
double data[2][2];
|
||||
};
|
||||
|
||||
Matrix2x2 InvertMatrix2x2(const Matrix2x2& mat) {
|
||||
Matrix2x2 result;
|
||||
double det = mat.data[0][0] * mat.data[1][1] - mat.data[0][1] * mat.data[1][0];
|
||||
if (det != 0.0) {
|
||||
double invDet = 1.0 / det;
|
||||
result.data[0][0] = mat.data[1][1] * invDet;
|
||||
result.data[0][1] = -mat.data[0][1] * invDet;
|
||||
result.data[1][0] = -mat.data[1][0] * invDet;
|
||||
result.data[1][1] = mat.data[0][0] * invDet;
|
||||
} else {
|
||||
// Handle the case when the matrix is not invertible
|
||||
// You might want to implement error handling here.
|
||||
std::cerr << "Matrix not invertible! " << std::endl;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
struct Vector2 {
|
||||
double data[2];
|
||||
};
|
||||
|
||||
QString HIT_ANALYSE_V2::analyseBeamData(QVector<BufferData> dataframe){
|
||||
|
||||
double position=0.1;
|
||||
@ -20,7 +46,8 @@ QString HIT_ANALYSE_V2::analyseBeamData(QVector<BufferData> dataframe){
|
||||
|
||||
std::vector<double> signal_list(vector_length);
|
||||
std::vector<double> channel_list(vector_length);
|
||||
|
||||
std::vector<double> short_signal_list;
|
||||
std::vector<double> short_channel_list;
|
||||
|
||||
// Create a random number generator with a Gaussian distribution
|
||||
std::random_device rd;
|
||||
@ -31,20 +58,24 @@ QString HIT_ANALYSE_V2::analyseBeamData(QVector<BufferData> dataframe){
|
||||
std::vector<short int> result(vector_length);
|
||||
|
||||
// Fill the vector with random values
|
||||
for (int i = 0; i < vector_length; ++i) {
|
||||
result[i] = static_cast<short int>(dist(gen));
|
||||
signal_list.push_back(result[i]);
|
||||
channel_list.push_back(i);
|
||||
for (int i = 0; i < vector_length; i++) {
|
||||
double randomValue = dist(gen);
|
||||
result[i] = static_cast<short int>(std::round(randomValue));
|
||||
signal_list[i] = result[i];
|
||||
channel_list[i] = i;
|
||||
//std::cerr << vector_length<< " " << channel_list[i] << " " << signal_list[i] <<std::endl;
|
||||
|
||||
}
|
||||
//add a gaussian profile, focus is FWHM, position is random between 50 and 250
|
||||
position = 50 + (rand() % (int)(250 - 50 + 1));
|
||||
for (int i = 0; i < vector_length; ++i) {
|
||||
for (int i = 0; i < vector_length; i++) {
|
||||
signal_list[i] += intensity*exp(-4*log(2)*pow((channel_list[i]-position)/focus,2));
|
||||
// std::cerr << vector_length<< " " << channel_list[i] << " " << signal_list[i] <<std::endl;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/*
|
||||
// Fill signal_list and channel_list with your data
|
||||
|
||||
double SumT = 0.0, SumS = 0.0, SumS2 = 0.0, SumST = 0.0, SumT2 = 0.0, SumY = 0.0, SumYS = 0.0, SumYT = 0.0;
|
||||
@ -138,6 +169,151 @@ QString HIT_ANALYSE_V2::analyseBeamData(QVector<BufferData> dataframe){
|
||||
//sigma = sqrt(1.0 / (2.0 * ABC_0));
|
||||
focus = 2.3548/sqrt(2*p);
|
||||
intensity = b;
|
||||
*/
|
||||
double SumArea = 0.0, SumY2 = 0.0, SumXY2 = 0.0, SumX2Y2 = 0.0, SumX3Y2 = 0.0;
|
||||
double SumY2LnY = 0.0, SumXY2LnY = 0.0, Ymax = 0.0, Pomax = 0.0;
|
||||
double fac_c = 0.0, Yn = 0.0, sigma = 0.0, amp = 0.0;
|
||||
double SumYYP = 0.0, SumYYM = 0.0, MeanY = 0.0, window_start = 0.0, window_end = 0.0;
|
||||
|
||||
// ...
|
||||
|
||||
Matrix2x2 M1, M1inv;
|
||||
Vector2 ABC, M2;
|
||||
|
||||
for (int i = 0; i < vector_length; i++) {
|
||||
if (signal_list[i] > Ymax) {
|
||||
Ymax = signal_list[i];
|
||||
Pomax = channel_list[i];
|
||||
}
|
||||
if (i > 0 && signal_list[i] > 20) {
|
||||
SumArea += signal_list[i] * (channel_list[i] - channel_list[i - 1]);
|
||||
}
|
||||
}
|
||||
|
||||
// Estimate sigma
|
||||
sigma = SumArea / Ymax / 2.5066;
|
||||
|
||||
// Set a +-3 sigma window
|
||||
window_start = Pomax - 3 * sigma;
|
||||
window_end = Pomax + 3 * sigma;
|
||||
// std::cerr<< Pomax << " " << Ymax << " " << sigma << std::endl;
|
||||
|
||||
|
||||
for (int i = 0; i < vector_length; i++) {
|
||||
if (signal_list[i] > 20 && channel_list[i] > window_start && channel_list[i] < window_end) {
|
||||
short_signal_list.push_back(signal_list[i]);
|
||||
short_channel_list.push_back(channel_list[i]);
|
||||
}
|
||||
}
|
||||
signal_list.clear();
|
||||
channel_list.clear();
|
||||
// Recalculate SumArea using the sieved data
|
||||
SumArea = 0.0;
|
||||
for (int i = 1; i < short_signal_list.size(); i++) {
|
||||
SumArea += short_signal_list[i] * (short_channel_list[i] - short_channel_list[i - 1]);
|
||||
}
|
||||
|
||||
|
||||
const int shortlist_length = short_channel_list.size();
|
||||
|
||||
if (shortlist_length <= 3) {
|
||||
intensity = -1;
|
||||
focus = -1;
|
||||
position = -128;
|
||||
dataString += QString::number(intensity) + ',' + QString::number(position) + ',' + QString::number(focus)
|
||||
+ ',' + QString::number(0);
|
||||
|
||||
|
||||
return dataString;
|
||||
}
|
||||
|
||||
// Re-Estimate sigma
|
||||
sigma = SumArea / Ymax / 2.5066;
|
||||
fac_c = -1.0 / (2.0 * sigma * sigma);
|
||||
// std::cerr << sigma << std::endl;
|
||||
for(int k=0; k<shortlist_length;k++){
|
||||
|
||||
SumY2 += short_signal_list[k]*short_signal_list[k];
|
||||
SumXY2 += short_signal_list[k]*short_signal_list[k]*short_channel_list[k];
|
||||
SumX2Y2 += short_signal_list[k]*short_signal_list[k]*short_channel_list[k]*short_channel_list[k];
|
||||
SumX3Y2 += short_signal_list[k]*short_signal_list[k]*short_channel_list[k]*short_channel_list[k]*short_channel_list[k];
|
||||
|
||||
SumY2LnY += short_signal_list[k]*short_signal_list[k]*log(short_signal_list[k]);
|
||||
SumXY2LnY += short_channel_list[k]*short_signal_list[k]*short_signal_list[k]*log(short_signal_list[k]);
|
||||
// std::cerr<< shortlist_length << " " << short_channel_list[k] << " " << short_signal_list[k] << " " << short_signal_list[k] << " " << log(short_signal_list[k]) << std::endl;
|
||||
MeanY+=short_signal_list[k];
|
||||
}
|
||||
MeanY/=shortlist_length;
|
||||
|
||||
// Use custom matrix and vector functions for calculations
|
||||
M1.data[0][0] = SumY2;
|
||||
M1.data[0][1] = SumXY2;
|
||||
M1.data[1][0] = SumXY2;
|
||||
M1.data[1][1] = SumX2Y2;
|
||||
|
||||
// std::cerr << M1.data[0][0] << " " << M1.data[0][1] << " " << M1.data[1][0] << " " << M1.data[1][1] << std::endl;
|
||||
M2.data[0] = SumY2LnY - fac_c * SumX2Y2;
|
||||
M2.data[1] = SumXY2LnY - fac_c * SumX3Y2;
|
||||
// std::cerr << M2.data[0] << " " << M2.data[1] << std::endl;
|
||||
M1inv = InvertMatrix2x2(M1);
|
||||
ABC.data[0] = M1inv.data[0][0] * M2.data[0] + M1inv.data[0][1] * M2.data[1];
|
||||
ABC.data[1] = M1inv.data[1][0] * M2.data[0] + M1inv.data[1][1] * M2.data[1];
|
||||
|
||||
// std::cerr << ABC.data[0] << " " << ABC.data[1] << std::endl;
|
||||
|
||||
|
||||
//iterate to improve the fit.
|
||||
int N_iter = 1;
|
||||
for (int i = 0; i < N_iter; i++) {
|
||||
SumY2 = 0.0;
|
||||
SumXY2 = 0.0;
|
||||
SumX2Y2 = 0.0;
|
||||
SumX3Y2 = 0.0;
|
||||
SumY2LnY = 0.0;
|
||||
SumXY2LnY = 0.0;
|
||||
|
||||
for (int k = 0; k < shortlist_length; k++) {
|
||||
Yn = exp(ABC.data[0] + ABC.data[1] * short_channel_list[k] + fac_c * short_channel_list[k] * short_channel_list[k]);
|
||||
SumY2 += Yn * Yn;
|
||||
SumXY2 += Yn * Yn * short_channel_list[k];
|
||||
SumX2Y2 += Yn * Yn * short_channel_list[k] * short_channel_list[k];
|
||||
SumX3Y2 += Yn * Yn * short_channel_list[k] * short_channel_list[k] * short_channel_list[k];
|
||||
SumY2LnY += Yn * Yn * log(short_signal_list[k]);
|
||||
SumXY2LnY += short_channel_list[k] * Yn * Yn * log(short_signal_list[k]);
|
||||
}
|
||||
|
||||
M1.data[0][0] = SumY2;
|
||||
M1.data[0][1] = SumXY2;
|
||||
M1.data[1][0] = SumXY2;
|
||||
M1.data[1][1] = SumX2Y2;
|
||||
|
||||
M2.data[0] = SumY2LnY - fac_c * SumX2Y2;
|
||||
M2.data[1] = SumXY2LnY - fac_c * SumX3Y2;
|
||||
|
||||
M1inv = InvertMatrix2x2(M1);
|
||||
ABC.data[0] = M1inv.data[0][0] * M2.data[0] + M1inv.data[0][1] * M2.data[1];
|
||||
ABC.data[1] = M1inv.data[1][0] * M2.data[0] + M1inv.data[1][1] * M2.data[1];
|
||||
}
|
||||
|
||||
position = -ABC.data[1]/fac_c/2;
|
||||
|
||||
amp = exp(ABC.data[0]-ABC.data[1]*ABC.data[1]/4/fac_c);
|
||||
|
||||
sigma=SumArea/amp/2.5066;
|
||||
|
||||
// cout << sigma << " " << mean << " " << amp << endl;
|
||||
|
||||
|
||||
for(int k=0; k<shortlist_length;k++){
|
||||
SumYYM+= (short_signal_list[k]-MeanY)*(short_signal_list[k]-MeanY);
|
||||
SumYYP+= (amp*exp(-(short_channel_list[k]-position)*(short_channel_list[k]-position)/2/(sigma*sigma)) - MeanY )*(amp*exp(-(short_channel_list[k]-position)*(short_channel_list[k]-position)/2/(sigma*sigma)) - MeanY );
|
||||
}
|
||||
|
||||
|
||||
|
||||
focus = 2.3548*sigma;
|
||||
intensity = amp;
|
||||
double R_squared = SumYYP/SumYYM;
|
||||
|
||||
dataString += QString::number(intensity) + ',' + QString::number(position) + ',' + QString::number(focus)
|
||||
+ ',' + QString::number(R_squared);
|
||||
@ -148,6 +324,8 @@ QString HIT_ANALYSE_V2::analyseBeamData(QVector<BufferData> dataframe){
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
HIT_ANALYSE_V2::~HIT_ANALYSE_V2()
|
||||
{
|
||||
|
||||
|
Binary file not shown.
Loading…
Reference in New Issue
Block a user