HITDAQ/hit2023v2/hit_analyse_v2.cpp

337 lines
11 KiB
C++
Raw Normal View History

#include "hit_analyse_v2.h"
#include <random>
HIT_ANALYSE_V2::HIT_ANALYSE_V2(QObject *parent) : QObject(parent)
{
}
// Define your own functions for matrix operations
struct Matrix2x2 {
double data[2][2];
};
Matrix2x2 InvertMatrix2x2(const Matrix2x2& mat) {
Matrix2x2 result;
double det = mat.data[0][0] * mat.data[1][1] - mat.data[0][1] * mat.data[1][0];
if (det != 0.0) {
double invDet = 1.0 / det;
result.data[0][0] = mat.data[1][1] * invDet;
result.data[0][1] = -mat.data[0][1] * invDet;
result.data[1][0] = -mat.data[1][0] * invDet;
result.data[1][1] = mat.data[0][0] * invDet;
} else {
// Handle the case when the matrix is not invertible
// You might want to implement error handling here.
std::cerr << "Matrix not invertible! " << std::endl;
}
return result;
}
struct Vector2 {
double data[2];
};
QString HIT_ANALYSE_V2::analyseBeamData(QVector<BufferData> dataframe){
double position=0.1;
double focus=8;
double intensity=1000.0;
QString dataString;
const int vector_length = 300; // Replace with the actual length of your vectors
std::vector<double> signal_list(vector_length);
std::vector<double> channel_list(vector_length);
std::vector<double> short_signal_list;
std::vector<double> short_channel_list;
// Create a random number generator with a Gaussian distribution
std::random_device rd;
std::mt19937 gen(rd());
std::normal_distribution<double> dist(0.0, 17.0); // Mean of 0 and Sigma of 17
// Create a vector to store the generated values
std::vector<short int> result(vector_length);
// Fill the vector with random noise values
//add a gaussian profile, focus is FWHM, position is random between 50 and 250
bool fixeddata = true;
if (!fixeddata){
position = 50 + (rand() % (int)(250 - 50 + 1));
for (int i = 0; i < vector_length; i++) {
double randomValue = dist(gen);
signal_list[i] = static_cast<short int>(std::round(randomValue));
channel_list[i] = i;
signal_list[i] += static_cast<short int>(std::round(intensity*exp(-4*log(2)*pow((channel_list[i]-position)/focus,2))));
// std::cerr << channel_list[i] << ", ";
}
// std::cerr <<std::endl;
}
else{
signal_list = fixed_signal[0];
channel_list = fixed_channel;
}
/*
// Fill signal_list and channel_list with your data
double SumT = 0.0, SumS = 0.0, SumS2 = 0.0, SumST = 0.0, SumT2 = 0.0, SumY = 0.0, SumYS = 0.0, SumYT = 0.0;
double b_den = 0.0, b_num = 0.0, b = 0.0, p = 0.0, c = 0.0, SumYYP = 0.0, SumYYM = 0.0, MeanY = 0.0;
double S[vector_length];
double T[vector_length];
for (int k = 0; k < vector_length; k++) {
if (k == 0) {
S[k] = 0.0;
T[k] = 0.0;
} else {
S[k] = S[k - 1] + 0.5 * (signal_list[k] + signal_list[k - 1]) * (channel_list[k] - channel_list[k - 1]);
T[k] = T[k - 1] + 0.5 * (channel_list[k] * signal_list[k] + channel_list[k - 1] * signal_list[k - 1]) *
(channel_list[k] - channel_list[k - 1]);
}
SumS += S[k];
SumT += T[k];
SumY += signal_list[k];
SumS2 += S[k] * S[k];
SumST += S[k] * T[k];
SumT2 += T[k] * T[k];
SumYS += signal_list[k] * S[k];
SumYT += signal_list[k] * T[k];
MeanY += signal_list[k];
}
MeanY /= vector_length;
// Calculate M1 matrix elements
double M1_00 = SumT2;
double M1_01 = SumST;
double M1_02 = SumT;
double M1_10 = SumST;
double M1_11 = SumS2;
double M1_12 = SumS;
double M1_20 = SumT;
double M1_21 = SumS;
double M1_22 = vector_length;
// Calculate M2 vector elements
double M2_0 = SumYT;
double M2_1 = SumYS;
double M2_2 = SumY;
// Calculate the inverse of M1
double detM1 = M1_00 * (M1_11 * M1_22 - M1_12 * M1_21) -
M1_01 * (M1_10 * M1_22 - M1_12 * M1_20) +
M1_02 * (M1_10 * M1_21 - M1_11 * M1_20);
if (detM1 == 0.0) {
std::cerr << "M1 is not invertible." << std::endl;
//return 1;
}
double invM1_00 = (M1_11 * M1_22 - M1_12 * M1_21) / detM1;
double invM1_01 = (M1_02 * M1_21 - M1_01 * M1_22) / detM1;
double invM1_02 = (M1_01 * M1_12 - M1_02 * M1_11) / detM1;
double invM1_10 = (M1_12 * M1_20 - M1_10 * M1_22) / detM1;
double invM1_11 = (M1_00 * M1_22 - M1_02 * M1_20) / detM1;
double invM1_12 = (M1_02 * M1_10 - M1_00 * M1_12) / detM1;
double invM1_20 = (M1_10 * M1_21 - M1_11 * M1_20) / detM1;
double invM1_21 = (M1_01 * M1_20 - M1_00 * M1_21) / detM1;
double invM1_22 = (M1_00 * M1_11 - M1_01 * M1_10) / detM1;
// Calculate ABC vector
double ABC_0 = invM1_00 * M2_0 + invM1_01 * M2_1 + invM1_02 * M2_2;
double ABC_1 = invM1_10 * M2_0 + invM1_11 * M2_1 + invM1_12 * M2_2;
double ABC_2 = invM1_20 * M2_0 + invM1_21 * M2_1 + invM1_22 * M2_2;
// Calculate b, p, and c
p = -ABC_0 / 2.0;
c = -ABC_1 / ABC_0;
for (int k = 0; k < vector_length; k++) {
double exp_term = exp(-p * (channel_list[k] - c) * (channel_list[k] - c));
b_num += exp_term * signal_list[k];
b_den += exp_term;
}
b = b_num / b_den;
for (int k = 0; k < vector_length; k++) {
double y_pred = b * exp(-p * (channel_list[k] - c) * (channel_list[k] - c));
SumYYM += (signal_list[k] - MeanY) * (signal_list[k] - MeanY);
SumYYP += (y_pred - MeanY) * (y_pred - MeanY);
}
double R_squared = SumYYP / SumYYM;
//std::cout << "R-squared = " << R_squared << endl;
position = -ABC_1/ ABC_0;
//sigma = sqrt(1.0 / (2.0 * ABC_0));
focus = 2.3548/sqrt(2*p);
intensity = b;
*/
double SumArea = 0.0, SumY2 = 0.0, SumXY2 = 0.0, SumX2Y2 = 0.0, SumX3Y2 = 0.0;
double SumY2LnY = 0.0, SumXY2LnY = 0.0, Ymax = 0.0, Pomax = 0.0;
double fac_c = 0.0, Yn = 0.0, sigma = 0.0, amp = 0.0;
double SumYYP = 0.0, SumYYM = 0.0, MeanY = 0.0, window_start = 0.0, window_end = 0.0;
// ...
Matrix2x2 M1, M1inv;
Vector2 ABC, M2;
for (int i = 0; i < vector_length; i++) {
if (signal_list[i] > Ymax) {
Ymax = signal_list[i];
Pomax = channel_list[i];
}
if (i > 0 && signal_list[i] > 34) {
SumArea += signal_list[i] * (channel_list[i] - channel_list[i - 1]);
}
}
// Estimate sigma
sigma = SumArea / Ymax / 2.5066;
// Set a +-3 sigma window
window_start = Pomax - 3 * sigma;
window_end = Pomax + 3 * sigma;
// std::cerr<< Pomax << " " << Ymax << " " << sigma << std::endl;
for (int i = 0; i < vector_length; i++) {
if (signal_list[i] > 34 && channel_list[i] > window_start && channel_list[i] < window_end) {
short_signal_list.push_back(signal_list[i]);
short_channel_list.push_back(channel_list[i]);
}
}
signal_list.clear();
channel_list.clear();
// Recalculate SumArea using the sieved data
SumArea = 0.0;
for (int i = 1; i < short_signal_list.size(); i++) {
SumArea += short_signal_list[i] * (short_channel_list[i] - short_channel_list[i - 1]);
}
const int shortlist_length = short_channel_list.size();
if (shortlist_length <= 3) {
intensity = -1;
focus = -1;
position = -128;
dataString += QString::number(intensity) + ',' + QString::number(position) + ',' + QString::number(focus)
+ ',' + QString::number(0);
return dataString;
}
// Re-Estimate sigma
sigma = SumArea / Ymax / 2.5066;
fac_c = -1.0 / (2.0 * sigma * sigma);
// std::cerr << sigma << std::endl;
for(int k=0; k<shortlist_length;k++){
SumY2 += short_signal_list[k]*short_signal_list[k];
SumXY2 += short_signal_list[k]*short_signal_list[k]*short_channel_list[k];
SumX2Y2 += short_signal_list[k]*short_signal_list[k]*short_channel_list[k]*short_channel_list[k];
SumX3Y2 += short_signal_list[k]*short_signal_list[k]*short_channel_list[k]*short_channel_list[k]*short_channel_list[k];
SumY2LnY += short_signal_list[k]*short_signal_list[k]*log(short_signal_list[k]);
SumXY2LnY += short_channel_list[k]*short_signal_list[k]*short_signal_list[k]*log(short_signal_list[k]);
// std::cerr<< shortlist_length << " " << short_channel_list[k] << " " << short_signal_list[k] << " " << short_signal_list[k] << " " << log(short_signal_list[k]) << std::endl;
MeanY+=short_signal_list[k];
}
MeanY/=shortlist_length;
// Use custom matrix and vector functions for calculations
M1.data[0][0] = SumY2;
M1.data[0][1] = SumXY2;
M1.data[1][0] = SumXY2;
M1.data[1][1] = SumX2Y2;
// std::cerr << M1.data[0][0] << " " << M1.data[0][1] << " " << M1.data[1][0] << " " << M1.data[1][1] << std::endl;
M2.data[0] = SumY2LnY - fac_c * SumX2Y2;
M2.data[1] = SumXY2LnY - fac_c * SumX3Y2;
// std::cerr << M2.data[0] << " " << M2.data[1] << std::endl;
M1inv = InvertMatrix2x2(M1);
ABC.data[0] = M1inv.data[0][0] * M2.data[0] + M1inv.data[0][1] * M2.data[1];
ABC.data[1] = M1inv.data[1][0] * M2.data[0] + M1inv.data[1][1] * M2.data[1];
// std::cerr << ABC.data[0] << " " << ABC.data[1] << std::endl;
//iterate to improve the fit.
int N_iter = 1;
for (int i = 0; i < N_iter; i++) {
SumY2 = 0.0;
SumXY2 = 0.0;
SumX2Y2 = 0.0;
SumX3Y2 = 0.0;
SumY2LnY = 0.0;
SumXY2LnY = 0.0;
for (int k = 0; k < shortlist_length; k++) {
Yn = exp(ABC.data[0] + ABC.data[1] * short_channel_list[k] + fac_c * short_channel_list[k] * short_channel_list[k]);
SumY2 += Yn * Yn;
SumXY2 += Yn * Yn * short_channel_list[k];
SumX2Y2 += Yn * Yn * short_channel_list[k] * short_channel_list[k];
SumX3Y2 += Yn * Yn * short_channel_list[k] * short_channel_list[k] * short_channel_list[k];
SumY2LnY += Yn * Yn * log(short_signal_list[k]);
SumXY2LnY += short_channel_list[k] * Yn * Yn * log(short_signal_list[k]);
}
M1.data[0][0] = SumY2;
M1.data[0][1] = SumXY2;
M1.data[1][0] = SumXY2;
M1.data[1][1] = SumX2Y2;
M2.data[0] = SumY2LnY - fac_c * SumX2Y2;
M2.data[1] = SumXY2LnY - fac_c * SumX3Y2;
M1inv = InvertMatrix2x2(M1);
ABC.data[0] = M1inv.data[0][0] * M2.data[0] + M1inv.data[0][1] * M2.data[1];
ABC.data[1] = M1inv.data[1][0] * M2.data[0] + M1inv.data[1][1] * M2.data[1];
}
position = -ABC.data[1]/fac_c/2;
amp = exp(ABC.data[0]-ABC.data[1]*ABC.data[1]/4/fac_c);
sigma=SumArea/amp/2.5066;
// cout << sigma << " " << mean << " " << amp << endl;
for(int k=0; k<shortlist_length;k++){
SumYYM+= (short_signal_list[k]-MeanY)*(short_signal_list[k]-MeanY);
SumYYP+= (amp*exp(-(short_channel_list[k]-position)*(short_channel_list[k]-position)/2/(sigma*sigma)) - MeanY )*(amp*exp(-(short_channel_list[k]-position)*(short_channel_list[k]-position)/2/(sigma*sigma)) - MeanY );
}
focus = 2.3548*sigma;
intensity = amp;
double R_squared = SumYYP/SumYYM;
dataString += QString::number(intensity) + ',' + QString::number(position) + ',' + QString::number(focus)
+ ',' + QString::number(R_squared);
return dataString;
}
HIT_ANALYSE_V2::~HIT_ANALYSE_V2()
{
}