HITDAQ/FPGA_firmware/sensor_algo_qsys/calibration.v

249 lines
8.3 KiB
Coq
Raw Permalink Normal View History

2024-10-15 16:39:23 +02:00
/******************************************************************************
* Copyright *
* Scintillating Fibre Beam Profile Monitor Software by Michal Dziewiecki, *
* Blake Leverington and Liqing Qin is licensed under CC BY 4.0 *
* https://creativecommons.org/licenses/by/4.0/ *
* funded by the Deutsche Forschungsgemeinschaft *
* (DFG, German Research Foundation) Projektnummer 419255448 *
* Project Leader: B.Leverington *
*******************************************************************************
* Create Date - Oct 15th. 2024 *
* Author: L.Qin *
* Module - calibration.v *
******************************************************************************/
2024-10-15 11:25:38 +02:00
/*Created by Lq.Qin on Oct 15th. 2024*/
2024-10-11 14:42:06 +02:00
//module calibration has two functions: calibration and merge 16-bit stream to 32-bit stream and then output
//calibration output 16-bit data_caled
//a better design is a design seperate these two functions
//tested by calibration_tb 25.07.2024
module calibration
(
input wire clk,
input wire rst, // connect to the data_in_startofpacket; to reset for everyframe
//avalon ST(Streaming) sink: 0 readlatency and 0 readallowence 320 channel
input wire signed[15:0] data_in_data, // st.data
output wire data_in_ready, // .ready
input wire data_in_valid, // .valid
input wire data_in_empty, // .empty
input wire data_in_endofpacket, // .endofpacket
input wire data_in_startofpacket, // .startofpacket
//the interface with cali_ram (storing cali factor) Avalon-MM: read califac from this ram
output wire [8:0] address,
output wire clken, //read
input wire [15:0] cali_fac,
input wire waitrequest,
//the interface for provide the calibrated data in a ram // one clock latency
input wire [8:0] data_caled_address,
output wire [15:0] data_caled,
input wire data_caled_rd_enable, // to enable read
output wire data_in_last, //....
//avalon ST(Streaming) source: 0 readlatency and 0 readallowence //160 * 32 bits data
// channel 0 [31:16] channel 1 [15:0]
output wire [31:0] to_udp_data, // st.data
input wire to_udp_ready, // .ready
output wire to_udp_valid, // .valid
output wire [1:0] to_udp_empty, // .empty
output wire to_udp_endofpacket, // .endofpacket
output wire to_udp_startofpacket // .startofpacket
);
assign data_in_last = data_in_endofpacket;
localparam SHIFT_BIT = 13; //2^13 = 8192, the calibration factor 1 is represented by 8192
//for to_udp_data
reg [15:0] first_data_buffer;
//for read calibration ram
reg [8:0] read_cali_address;
reg signed[16:0] cali_fac_buffer;
wire read;
assign clken = read;
assign address = read_cali_address;
//for write and read the calibrated data
reg signed[31:0] data_caled_data_32bit;
wire data_caled_wren_a;
reg [8:0] data_caled_address_a;
wire [8:0] address_b;
assign address_b = (data_caled_rd_enable)? data_caled_address: 9'd0;
wire[15:0] data_caled_data_a;
assign data_caled_data_a = {data_caled_data_32bit[31],data_caled_data_32bit[14+SHIFT_BIT:SHIFT_BIT]};
data_caled_ram data_caled_ram0 (
.clock ( clk ),
.address_a (data_caled_address_a),
.data_a (data_caled_data_a),
.wren_a (data_caled_wren_a),
.q_a ( ),
.address_b ( address_b ),
.data_b ( ),
.wren_b (1'b0),
.q_b ( data_caled)
);
//the state machine for read calibration factor from ram
reg[3:0] state;
localparam STATE_IDLE = 4'd0; //waiting for startofpacket
localparam STATE_CAL0 = 4'd1; //get califactor for channel0
localparam STATE_INPUT0 = 4'd2; // stream in data for channel0;
localparam STATE_CAL1 = 4'd3; // get califactor for channel1
localparam STATE_INPUT1 = 4'd4; // stream in data for channel1;
localparam STATE_CAL2 = 4'd5; //get califactor for channel1; output the first 32-bit udp data [channel0, channel1]
localparam STATE_INPUT_EVEN = 4'd6; // stream in data for channel 2,4,6.....
localparam STATE_CAL_ODD = 4'd7;
localparam STATE_INPUT_ODD = 4'd8;
localparam STATE_CAL_EVEN = 4'd9;
localparam STATE_OUTPUT_LAST = 4'd10; //outout the last 32-bit udp data
assign data_in_ready = (state == STATE_INPUT0 || state == STATE_INPUT1 || state == STATE_INPUT_EVEN || state == STATE_INPUT_ODD)?1'b1:1'b0;
assign data_caled_wren_a = (state == STATE_CAL1 || state == STATE_CAL2 || state == STATE_CAL_EVEN || state == STATE_CAL_ODD || state == STATE_OUTPUT_LAST)?1'b1:1'b0;
assign read = (state == STATE_CAL0 ||state == STATE_CAL1 || state == STATE_CAL2 || state == STATE_CAL_EVEN || state == STATE_CAL_ODD)?1'b1:1'b0;
always @ (posedge clk or posedge rst)
begin
if (rst)
begin
state <= STATE_IDLE;
data_caled_address_a <= 0;
read_cali_address <= 0;
end
else case(state)
STATE_IDLE:
begin
data_caled_address_a <= 0;
read_cali_address <= 0;
if (data_in_startofpacket)
begin
state <= STATE_CAL0;
end
end
STATE_CAL0:
begin
if (~waitrequest) begin
cali_fac_buffer <= {1'b0,cali_fac};
state <= STATE_INPUT0;
end
end
STATE_INPUT0:
begin
if (data_in_valid)
begin
first_data_buffer <= 16'd0;
data_caled_data_32bit <= data_in_data*cali_fac_buffer;
//data_caled_data_32bit <= cali_fac_buffer;// test! cali
read_cali_address <= read_cali_address + 1'b1;
state <= STATE_CAL1;
end
end
STATE_CAL1:
begin
if (~waitrequest) begin
cali_fac_buffer <= {1'b0,cali_fac};
state <= STATE_INPUT1;
end
end
STATE_INPUT1:
begin
if (data_in_valid)
begin
first_data_buffer <= data_caled_data_a;
data_caled_data_32bit <= data_in_data*cali_fac_buffer;
//data_caled_data_32bit <= cali_fac_buffer;// test! cali
read_cali_address <= read_cali_address + 1'b1;
data_caled_address_a <= data_caled_address_a + 1'b1;
state <= STATE_CAL2;
end
end
STATE_CAL2:
begin
if (~waitrequest & to_udp_ready) begin
cali_fac_buffer <= {1'b0,cali_fac};
state <= STATE_INPUT_EVEN;
end
end
STATE_INPUT_EVEN:
begin
if (data_in_valid)
begin
data_caled_data_32bit <= data_in_data*cali_fac_buffer;
//data_caled_data_32bit <= cali_fac_buffer;// test! cali
first_data_buffer <= 16'd0;
read_cali_address <= read_cali_address + 1'b1;
data_caled_address_a <= data_caled_address_a + 1'b1;
if (data_in_endofpacket)
state <= STATE_OUTPUT_LAST;
else
state <= STATE_CAL_ODD;
end
end
STATE_CAL_ODD:
begin
if (~waitrequest) begin
cali_fac_buffer <= {1'b0,cali_fac};
state <= STATE_INPUT_ODD;
end
end
STATE_INPUT_ODD:
begin
if (data_in_valid)
begin
first_data_buffer <= data_caled_data_a;
data_caled_data_32bit <= data_in_data*cali_fac_buffer;
//data_caled_data_32bit <= cali_fac_buffer;// test! cali
read_cali_address <= read_cali_address + 1'b1;
data_caled_address_a <= data_caled_address_a + 1'b1;
if (data_in_endofpacket)
state <= STATE_OUTPUT_LAST;
else
state <= STATE_CAL_EVEN;
end
end
STATE_CAL_EVEN:
begin
if (~waitrequest & to_udp_ready) begin
cali_fac_buffer <= {1'b0,cali_fac};
state <= STATE_INPUT_EVEN;
end
end
STATE_OUTPUT_LAST:
begin
if (to_udp_ready)
state <= STATE_IDLE;
end
default:
state <= STATE_IDLE;
endcase
end
//output the 160 32bit words to upd, first channel [31:16] , second channel [15:16]
//output wire [31:0] to_udp_data, // st.data
assign to_udp_valid = (((state == STATE_CAL2 || state == STATE_CAL_EVEN) && (~waitrequest))|| state == STATE_OUTPUT_LAST)? 1'b1: 1'b0;
assign to_udp_empty = 2'b0;
assign to_udp_startofpacket = (state == STATE_CAL2 && (~waitrequest))? 1'b1:1'b0;
assign to_udp_endofpacket = (state == STATE_OUTPUT_LAST)? 1'b1: 1'b0;
//reverse the polarity for output => no for simulation
assign to_udp_data = (((state == STATE_CAL2 || state == STATE_CAL_EVEN) && (~waitrequest))|| state == STATE_OUTPUT_LAST) ? {~first_data_buffer,~data_caled_data_a}: 32'b0;
endmodule